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An integrative pan-cancer-wide analysis of
epigenetic enzymes reveals universal pat-
terns of epigenomic deregulation in cancer
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Abstract

Background: One of the most important recent findings in cancer genomics is the identification of novel driver
mutations which often target genes that regulate genome-wide chromatin and DNA methylation marks. Little is
known, however, as to whether these genes exhibit patterns of epigenomic deregulation that transcend cancer types.

Results: Here we conduct an integrative pan-cancer-wide analysis of matched RNA-Seq and DNA methylation data
across ten different cancer types. We identify seven tumor suppressor and eleven oncogenic epigenetic enzymes which
display patterns of deregulation and association with genome-wide cancer DNA methylation patterns, which are largely
independent of cancer type. In doing so, we provide evidence that genome-wide cancer hyper- and hypo- DNA
methylation patterns are independent processes, controlled by distinct sets of epigenetic enzyme genes. Using causal
network modeling, we predict a number of candidate drivers of cancer DNA hypermethylation and hypomethylation.
Finally, we show that the genomic loci whose DNA methylation levels associate most strongly with expression of these
putative drivers are highly consistent across cancer types.

Conclusions: This study demonstrates that there exist universal patterns of epigenomic deregulation that transcend
cancer types, and that intra-tumor levels of genome-wide DNA hypomethylation and hypermethylation are controlled
by distinct processes.
Background
Epigenetic alterations are by now a well-recognized can-
cer hallmark [1]. One of the most intriguing and exciting
observations to have recently emerged in cancer genom-
ics is the subtle interplay between genetic and epigenetic
mutations [2, 3]. Specifically, many epigenetic enzymes
(EEs), including chromatin modifiers, have been found
to exhibit genetic mutations in cancer, often resulting in
a genome-wide deregulation of the DNA methylation
(DNAm) landscape [2–6]. For example, alteration of
genome-wide DNAm and gene expression patterns has
been observed in acute monocytic leukemias carrying
DNMT3A mutations [7]. Another example is mutation
of IDH1 (isocitrate dehydrogenase 1), which establishes
a hypermethylator phenotype in glioma [8, 9]. Mutations
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in the DNA demethylation pathway, affecting genes such
as TET1, TET2 and TET3, have been discovered in mye-
loproliferative neoplasms and acute myeloid leukemia
[10]. In general, it is thought that deregulation of global
chromatin, DNAm and gene expression patterns may
help cancer cells evolve more swiftly, fueling intra-tumor
heterogeneity and resulting in increased invasiveness,
drug resistance and metastatic potential [11–15]. Indeed,
several of the mutations targeting EE genes are consid-
ered to be key driver mutations in specific cancers, while
a few are also targetable with existing and upcoming
therapies [1–3, 16, 17].
Given the emerging role of EE genes as drivers of the

carcinogenic process, it has become of paramount interest
to study their patterns of deregulation in cancer [18, 19].
Specifically, here we aimed to determine if EE genes ex-
hibit consistent patterns of deregulation across different
cancer types and, if so, whether these patterns dictate cor-
responding changes in the cancer DNA methylome [20].
In order to assess the patterns of deregulation of EE genes
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in cancer, we decided to anchor our analysis on their
mRNA expression patterns. There are three reasons for
focusing on gene expression. First, the frequency of gen-
etic mutation of any given EE in any given cancer type is
usually quite low. Second, the effect of an observed muta-
tion on gene function can be hard to predict. Thus, al-
though mRNA expression may not always correlate with
gene activity, the same is true for specific mutations.
Third, and most importantly, functional disruption of an
EE may also be caused by a mechanism other than muta-
tion, for instance by amplification or deletion, or by
DNAm itself [21, 22].
Therefore, we posited that by analyzing matched

RNA-Seq and DNAm data in a pan-cancer-wide study of
The Cancer Genome Atlas (TCGA) data, that we would
be able to identify universal patterns of covariation be-
tween expression and DNAm, determined by specific EE
genes, thus allowing us to pinpoint the most important
regulators of the cancer epigenome. To this end, we here
conduct a pan-cancer-wide integrative analysis focusing
on a large class of EE genes, including all main writers,
readers, editors and erasers of the epigenome.

Results
Pan-cancer-wide differential expression analysis of EE
genes
Given the emerging importance of EE genes, we com-
piled a comprehensive list of such genes from several re-
cent reviews and a literature search [2, 3]. The list
contained a total of 212 genes, including writers,
readers, editors and erasers of the most important epi-
genetic marks, including histone and DNAm marks
(Table S1 in Additional file 1). Although previous studies
have already shown that a subset of these EE genes ex-
hibit differential expression in cancer (e.g., [18]), we
wanted to re-assess this using a more comprehensive list
of EE genes and also using fresh high-quality RNA-Seq
data from TCGA consortium. Gene-normalized RNA-
Seq data for ten cancer types from TCGA [23–32] were
downloaded and subjected to a quality control proced-
ure designed to assess the relative amount of variation
associated with biological versus technical factors (i.e.,
batch effects; Supplemental Methods, Figure S1, and
Table S2 in Additional file 1). Differentially expressed EE
genes were identified across all cancer types (Additional
file 2). Kidney, breast and thyroid cancer exhibited the
highest fraction (~77 %) of differentially expressed EE
genes (Benjamini Hochberg false discovery rate <0.05),
whilst bladder and endometrial cancer exhibited the
lowest fractions (~53 %) (Additional file 2). EE genes
consistently over- or under-expressed across all or most
cancer types are of particular interest, since these may
represent an initial candidate list of epigenetic onco-
genes or tumor suppressors (Fig. 1a). We identified a
total of 62 EE genes which were consistently deregulated
across at least eight of the ten cancer types, with 35 of
these upregulated and representing putative oncogenes,
and with the remaining 27 exhibiting downregulation
(Fig. 2).
To assess the overall statistical significance of these

numbers, we estimated the corresponding counts for a
random set of 212 genes using an analytic binomial
model (“Materials and methods”; Table S3 in Additional
file 1). Specifically, we estimated that for a random
choice of 212 genes, we would only expect about 0.54 ±
0.74, i.e., one or no genes, to be significantly upregulated
in at least eight of the ten cancer types, and only about
0.89 ± 0.94, i.e., none to two genes, to be significantly
downregulated in at least eight datasets (“Materials and
methods”; Table S4 in Additional file 1). From this, we
estimated the null probabilities of observing 35 upregu-
lated and 27 downregulated EE genes in as many as
eight of the ten cancer types to be as low as P < 10−50

(in the case of upregulation) and P < 10−30 (in the case
of downregulation) (binomial test P values; “Materials
and methods”).
Among the upregulated genes were those encoding

well-known enzymes such as EZH2, a histone methyl-
transferase catalyzing H3K27me3, and which has already
been identified as a potential therapy target for cancer
[33, 34]. Notably, the upregulated list also included genes
encoding the methyl-transferase enzymes DNMT1,
DNMT3A, and DNMT3B, various histone deacetylases
(HDAC1, HDAC8, HDAC10), as well as PRMT1 (a his-
tone methyltransferase), KDM1A (a histone demethylase)
and SMARCB1 (a chromatin remodeling helicase). One of
the genes with the most consistent and marked overex-
pression was UHRF1, which encodes a member of the
RING-finger type E3 ubiquitin ligases which has been im-
plicated in the maintenance of DNAm by interaction with
DNA methyltransferases. Among the underexpressed
genes, we observed the DNAm reader ZBTB4, whose ex-
pression has been significantly correlated with relapse-free
survival [35], as well as the polycomb component and K36
reader, CBX7, which has already been implicated as a
tumor suppressor [36–40]. Interestingly, this list of puta-
tive epigenetic tumor suppressors included several histone
methyltransferases (EZH1, SETD3, SETBP1, PRDM2 and
PRDM5) and histone acetyltransferases (NCOA1, NCOA2,
NCOA4, KAT5, KAT2B), but only one histone acetylation
editor (SIRT1) and only one histone deacetylase (HDAC4).

Genome-wide levels of DNA hypermethylation and
hypomethylation are only weakly correlated in cancer
Given that many EE genes are aberrantly expressed in
cancer and given their role in modulating/regulating the
epigenome, including, potentially, the DNA methylome,
we aimed to identify those genes which might control



Fig. 1 Identification of master epigenetic regulators of the cancer DNA methylome. a First, we conduct a pan-cancer-wide (TCGA) differential
expression analysis of a comprehensive list of 212 “epigenetic enzyme” (EE) genes, defined as genes which play a role in modifying or regulating
epigenetic marks, in order to identify those which exhibit consistent up- or downregulation across different cancer types. N normal, C cancer.
b Since EE genes may control the epigenome, including the DNA methylome, we computed for each cancer sample two epigenetic instability
indices (HyperZ and HypoZ), reflecting the global deviation in DNAm patterns from a normal reference (obtained using the corresponding normal
tissue specimens). Briefly, the HyperZ index measures aberrant hypermethylation over promoter CpG islands (CGI) in a given cancer sample,
whereas HypoZ measures aberrant hypomethylation over opensea probes (intergenic regions of low CpG density). c Third, we use the matched
RNA-Seq and DNAm data of TCGA tumor samples to conduct a pan-cancer-wide correlation analysis between the expression levels of EE genes
and these two epigenetic instability indices in order to identify EE genes whose expression variation associates with aberrant cancer DNAm.
d Finally, we use causal network modeling of the EE genes which show consistent differential expression and correlation with HyperZ/HypoZ
across cancer types to identify the subset of EE genes which appear to control the global variations in DNAm (HyperZ/HypoZ). The causal modeling
uses partial correlations to eliminate (indirect) associations between EE gene expression and HyperZ/HypoZ which are mediated by DNAm changes
driven by other EE genes
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the aberrant DNAm patterns seen in cancer. To this
end, we first needed to define a measure of aberrant
DNAm in individual cancer samples. We adopted a
strategy similar to that used by us previously [41], defin-
ing DNAm “instability” indices by comparison of a can-
cer’s DNAm profile with a normal reference obtained
from the corresponding normal tissue samples of TCGA.
Since DNA hyper- and hypomethylation may be con-
trolled by distinct epigenetic pathways, we decided to
construct two separate indices for each individual cancer
sample, one measuring the “hypermethylation” deviation
from the normal reference and another measuring the
degree of “hypomethylation” (Fig. 1b). Since the baseline
level of DNAm in a normal sample depends largely on
CpG density, the two indices were constructed for dis-
tinct regions of the genome (“Materials and methods”).
Briefly, for a given cancer sample, the index was con-
structed by averaging the Z scores (as computed relative
to the average and variance of the normal samples)
across all probe clusters falling within the appropriate



Fig. 2 Pan-cancer-wide differential expression analysis of epigenetic enzyme genes. Heatmaps of average expression in normal (N) and cancer (C)
tissue, across ten different TCGA cancer types (BRCA breast cancer, BLCA bladder cancer, COAD colon adenomacarcinoma, HNSC head and neck
squamous carcinoma, KIRC kidney renal carcinoma, LIHC liver hepatocellular carcinoma, LSCC lung squamous cell carcinoma, LUAD lung
adenomacarcinoma, THCA thyroid cancer, UCEC uterine cervix endometrial carcinoma) for 62 EE genes which showed consistent differential
expression in at least eight of the ten tissue types. The significance level of differential expression is indicated by the sidebars for each heatmap
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genomic region: opensea probes for the “HypoZ” index,
and promoter CGIs for the “HyperZ” index (“Materials
and methods”, Fig. 1b). Thus, for each cancer sample s,
we obtained an overall HyperZs, and separately, a
HypoZs index, reflecting the global level of aberrant
DNA hypermethylation and hypomethylation in that sam-
ple, respectively. Plotting the HyperZ and HypoZ instabil-
ity indices against each other for all cancer samples of a
given tissue type revealed no strong correlation between
them, although associations were significant owing to
large sample sizes (Fig. 3). An even weaker correlation was
observed if the indices were computed by restricting to
loci with only significant Z scores (“Materials and
methods”; Figure S2 in Additional file 1). The lack of a
strong correlation between the two DNAm indices, across
so many cancer types, is consistent with studies suggesting
that cancer hyper- and hypomethylation constitute inde-
pendent processes in tumor progression [41–43].
To demonstrate the biological significance of these
DNAm instability indices, we asked whether they differ
between different cancer subtypes. We performed this
analysis for breast cancer, for which a number of tran-
scriptomic “intrinsic subtypes” have been determined
and firmly established [44, 45]. Both HyperZ and HypoZ
indices were highest in the luminal B subtype (Figure S3
in Additional file 1). In fact, both indices differed be-
tween the luminal A and B subtypes, with a more wide-
spread DNAm deregulation in the luminal B estrogen
receptor-positive subtype, consistent with a previous re-
port [32]. Interestingly, however, the HyperZ index was
not only highest in luminal B tumors, but also in the
HER2+ subtype, whereas the HypoZ index was signifi-
cantly lower in HER2+ tumors compared with luminal B.
Thus, this shows that luminal B breast cancers exhibit
more widespread deregulation of DNAm patterns than
HER2+ breast cancers.



Fig. 3 Genome-wide hypomethylation and hypermethylation correlate weakly. For each cancer type (BRCA breast cancer, BLCA bladder cancer,
COAD colon adenomacarcinoma, HNSC head and neck squamous carcinoma, KIRC kidney renal carcinoma, LIHC liver hepatocellular carcinoma,
LSCC lung squamous cell carcinoma, LUAD lung adenomacarcinoma, THCA thyroid cancer, UCEC uterine cervix endometrial carcinoma), we display
two-dimensional density plots (bright yellow indicates highest density) illustrating the distribution of tumors in the plane defined by the HyperZ
and HypoZ indices. The number of tumors is given above each panel. For each cancer type, we provide the Spearman correlation coefficient
(SCC), its P value, as well as the R2 value for a linear regression
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Pan-cancer-wide correlation analysis between EE gene
expression and global DNAm reveals universal patterns of
epigenomic deregulation
Having found that global aberrant DNA hypermethyla-
tion and hypomethylation are not generally correlated,
we next decided to investigate if these two distinct
DNAm instability indices are determined by the expres-
sion patterns of specific EE genes. Using matched RNA-
Seq and DNAm data for cancers of a given tissue type,
we computed Pearson correlations between the EE
genes’ expression profiles and these epigenetic instability
indices, separately for each tissue type (Fig. 1c). This re-
vealed many significant associations between expres-
sion of EE genes and the HyperZ and HypoZ instability
indices (“Materials and methods”; Figures S4 and S5 in
Additional file 1). Although many of these associations
and their directionality were cancer-specific, we also
observed several associations which were consistent
across cancer types (“Materials and methods”; Fig. 4a):
a total of 16 genes exhibited significant correlations of
consistent directionality (five positive and 11 negative
correlations) with the HyperZ index, in at least six of
the ten cancer types, whereas there were 33 genes
which did so (18 positive and 15 negative correlations)
with the HypoZ index (Fig. 4a). In order to assess the
overall statistical significance of these numbers, we
used an analytical binomial model to estimate the ex-
pected numbers for a randomly selected set of 212
genes (“Materials and methods”; Tables S5 and S6 in
Additional file 1). In every case, the observed numbers
of significantly and consistently correlated EE genes
with HyperZ/HypoZ across at least six of the ten



Fig. 4 Pan-cancer-wide correlation analysis between EE expression and DNA methylation. a Heatmaps of Pearson correlation coefficients between
mRNA expression of EE genes and the HyperZ or HypoZ indices, as assessed across cancers from ten different TCGA cancer types (BRCA breast cancer,
BLCA bladder cancer, COAD colon adenomacarcinoma, HNSC head and neck squamous carcinoma, KIRC kidney renal carcinoma, LIHC liver hepatocellular
carcinoma, LSCC lung squamous cell carcinoma, LUAD lung adenomacarcinoma, THCA thyroid cancer, UCEC uterine cervix endometrial carcinoma). Only
EE genes exhibiting significant and directionally consistent correlations in at least six of the ten cancer types are shown. The subset of EE genes which
also show significant and directionally consistent differential expression changes between normal and cancer in at least eight of the ten cancer types are
colored, with red indicating overexpression in cancer, green underexpression. Those shown in black indicate that these were not consistently differentially
expressed across the ten cancer types. b Correlation network meta-analysis (across all ten cancers) of the main epigenetic oncogenes and
tumor suppressors which are associated with HyperZ or HypoZ
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cancer types were significantly higher than those of a
randomly selected set of 212 genes (“Materials and
methods”; Table S6 in Additional file 1; binomial test P
values ranged from 0.001 to 10−24). Thus, the consist-
ent correlations across six of the ten cancer types as
depicted in Fig. 4a are highly unlikely to be due to ran-
dom chance. Generally speaking, EE genes exhibiting
consistent correlations with the HyperZ index did not
do so with the HypoZ index, although there were a few
exceptions to this rule, which included RAD54L,
SMEK3P, SETBP1, NCOA7, EZH2 and PCNA (Fig. 4a).

Candidate epigenetic regulators of cancer DNAm
To identify EE genes which may represent master regu-
lators of the global DNAm patterns in cancer, we fo-
cused on those EE genes which exhibited consistent
differential expression and DNAm instability correlation
patterns across cancer types (Fig. 1d). We identified a
total of 18 such genes, with seven of them exhibiting un-
derexpression in cancer (EYA4, SETBP1, PRDM2,
PRDM5, CBX7, DUSP1 and KAT2B), and 11 exhibiting
overexpression (RAD54L, WHSC1, EZH2, UHRF1, PCNA,
TTF2, KDM1A, SUV39H2, HDAC1, TDG and TET3)
(Fig. 4a). Remarkably, the 11 cancer overexpressed EEs al-
ways exhibited positive correlations with HyperZ and/or
HypoZ, whereas the seven underexpressed genes always
exhibited anticorrelations (Fig. 4a), clearly indicating that
in both cases it is the deregulation of gene expression
from the normal reference which associates with wide-
spread changes in DNAm.
Next, we asked if the associations of these 18 genes

are independent of each other, or, if instead, they are
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highly correlated. Computing correlations in mRNA ex-
pression between these 18 genes across all cancer samples
of a given type, and combining the results in a meta-
analysis over cancer types (“Materials and methods”), re-
vealed a core cluster of positively correlated oncogenes,
which included UHRF1, EZH2, TTF2, SUV39H2, PCNA,
WHSC1, and RAD54L (Fig. 4b). This analysis also revealed
a number of epigenetic oncogenes (KDM1A, HDAC1,
TDG) and tumor suppressors (KAT2B, PRDM5, DUSP1,
EYA4) which did not correlate significantly with any of
the others, suggesting that these may affect cancer DNAm
patterns independently of each other (Fig. 4b).
The correlations between EE gene expression and glo-

bal DNAm indices may not represent direct effects
(Fig. 5a). For example, widespread alterations in DNAm
caused by an independent EE gene could alter the pro-
moter DNAm level of a given EE gene, affecting its ex-
pression and resulting in an indirect correlation between
its expression and the HyperZ/HypoZ indices. Thus, in
Fig. 5 Causal network modeling meta-analysis. a Influence diagram depict
could arise. For gene A, global changes in DNAm affect the DNAm level in
correlation between mRNA of gene A and HyperZ/HypoZ. For gene B, the co
of another EE gene. For gene C, there is a direct influence between its expres
these different models can be discriminated. Only for EE genes following
expression and HyperZ/HypoZ, whereas for genes of type A and B we wo
type and results summarized in a meta-analysis over the resulting networ
all ten cancers) using partial correlation coefficients, identifying three EE g
independently of other EE gene expression and their promoter DNAm le
order to pinpoint the more likely drivers of the global
DNAm patterns in cancer, we devised a causal network
modeling strategy implementing partial correlations [46]
to remove indirect correlations (Fig. 5a). First, we imple-
mented this strategy for each of the 18 EE genes separ-
ately. This revealed that, for most cases, the promoter
DNAm of EE genes could not explain the observed associ-
ations between their expression and the global epigenetic
instability indices with the exception of PRDM5, SETBP1,
and EYA4 in the case of HyperZ, and DUSP1 and TET3 in
the case of HypoZ (Figure S6 in Additional file 1). Next,
we implemented the causal network strategy using all pre-
viously identified 18 EE genes together in the inference
procedure. Summarizing the inferred partial correlation
(or direct influence) networks for each cancer type across
all cancers (Fig. 5b) predicts that overexpression of
UHRF1 and WHSC1 and underexpression of CBX7 could
be key drivers of cancer DNA hypermethylation and DNA
hypomethylation, respectively (Fig. 5c).
s how correlations between expression of EE genes and HyperZ/HypoZ
its promoter, thereby affecting its expression, resulting in a spurious
rrelation of its expression with HyperZ/HypoZ is driven by the expression
sion and HyperZ/HypoZ. The partial correlation diagram depicts how
model C would we see a significant partial correlation between their
uld not. b A partial correlation network is derived for each tissue
ks. c Result of the causal network modeling meta-analysis (across
enes whose expression patterns associate with HyperZ or HypoZ
vels
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Candidate regulators of the cancer methylome affect
DNAm levels at the same loci across different cancer types
Finally, we asked if the predicted regulators (UHRF1,
WHSC1, and CBX7) influence DNAm at the same gen-
omic loci across cancer types. To this end, we ranked
the genomic regions used previously to construct the
HyperZ and HypoZ indices, according to their levels of
association with the gene expression of either UHRF1,
WHSC1, or CBX7 (“Materials and methods”). Specific-
ally, for each of the three regulators, we ranked the gen-
omic loci according to the correlation statistic in one
cancer type, and then asked if the correlations between
DNAm and mRNA expression were similarly ranked in
other cancer types (Fig. 6a). This showed that those gen-
omic loci whose DNAm levels correlated most strongly
with increased gene expression of UHRF1 or WHSC1
were also significantly highly ranked in most other can-
cer types (Fig. 6a, b; Additional file 3). Similarly, loci
Fig. 6 Correlation heatmaps of EE gene expression with DNAm levels of in
correlation Fisher Z-statistics between the DNAm levels of ~140,000 genom
of the regulator, as indicated. For UHRF1 and WHSC1, regions have been ra
cancer, whereas for CBX7, regions have been ranked from negative to positive
statistics in the other cancer types. Above the heatmaps we give the P values
ranking in breast cancer and the ranking in every other cancer type
whose DNAm levels correlated most strongly with de-
creased gene expression of CBX7 were also most signifi-
cantly highly ranked in the other cancer types. Thus, we
can see that these candidate master regulators tend to
affect the same genomic loci, causing similar DNAm
patterns, independent of tissue type.
Focusing on these top-ranked genomic loci also allowed

us to check the effect sizes of the loci driving the global
HyperZ and HypoZ indices as well as their correlations
with the EE gene expression levels. Importantly, we ob-
served that top ranked loci not only exhibited large effect
sizes across tumors of a given type, but also between nor-
mal and cancer tissue, in support of their biological signifi-
cance (Figures S7–S9 in Additional file 1).

Discussion
The recent finding that genes encoding EEs are often
found mutated in cancer, causing widespread changes to
dividual genomic loci across different cancer types. Heatmaps of
ic regions (~100,000 open sea plus ~40,000 CGI) and mRNA expression
nked from positive to negative correlations as determined in breast
correlations. The same ranking is then used to depict the correlation
corresponding to the Spearman rank correlation coefficient between the
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the DNA methylome and transcriptome, motivated us to
perform a more in-depth exploration of the potential
role of these EEs in cancer.
Our strategy was to perform an integrative pan-

cancer-wide analysis of matched gene expression and
DNAm data, in an attempt to identify EEs which display
universal patterns of transcriptomic and epigenomic de-
regulation. Here, we did not consider mutation data for
the following reasons. First, in a given cancer type, the
frequency of mutation of a given EE is usually quite low.
Second, functional disruption of an EE may be caused
by a mechanism other than mutation, for instance by
amplification or deletion, or by DNAm itself. Third, the
effect of a mutation on gene function can be hard to
predict. Thus, we hypothesized that, by anchoring the
analysis on high-quality mRNA data of EE genes, this
would allow us to discern broader and more universal
patterns of epigenomic deregulation.
Confirming this, our meta-analysis clearly showed that

several EE genes which are universally deregulated in
cancer also appear to exhibit universal patterns of cor-
relation with genome-wide DNAm levels. It is likely that
these epigenetic genes constitute master regulators of
the cancer DNA methylome. We initially identified 18 of
such candidate regulators, with 11 representing putative
oncogenes and seven representing putative tumor sup-
pressors. In both cases, deregulation of the genes’ ex-
pression in cancer correlated positively with DNAm
instability. A causal network modeling meta-analysis fur-
ther filtered this list down to only three genes, predicting
UHRF1 and WHSC1 to be oncogenic master regulators
of the cancer DNA methylome, and CBX7 to be a key
tumor suppressor. Importantly, the genomic sites whose
DNAm levels associated most strongly with expression
of these genes were similar across different cancer types,
further supporting the view that much of the deregula-
tion of the DNA methylome obeys rules which tran-
scend the type of cancer/tissue.
The prediction that UHRF1 may be a key driver is

noteworthy for various reasons. First, it has previously
been implicated as an oncogene in many epithelial can-
cers, including, e.g., liver [47], prostate [48], breast [49],
lung [50], colon [51–53] and bladder [54], and also
hematological cancers [55]. Like EZH2, UHRF1 also of-
fers promising drug target potential [56]. Interestingly,
UHRF1 is a multi-faceted epigenetic regulator, whose
main role is to recruit DNMT1 during cell replication,
and associations with both DNA hypermethylation and
hypomethylation have been noted [47]. Our pan-cancer-
wide analysis shows that expression of UHRF1 correlates
consistently with DNA hypermethylation across samples
of a given cancer type, while it did not do so with DNA
hypomethylation (Fig. 4). Furthermore, even though all
major DNMTs were observed to be consistently
overexpressed in cancer (Fig. 2), expression of these en-
zymes did not consistently correlate with the differences
in global DNAm patterns between cancers. Thus, our
study predicts that UHRF1 may be an important driver
of the aberrant DNA hypermethylation seen in cancer.
Interestingly, UHRF1 also plays a role in recruiting
HDAC1 [57], which we also found consistently overex-
pressed in cancer, and which correlated specifically with
DNA hypomethylation (Fig. 4).
Our study also predicts important roles for WHSC1, a

H3K36me writer, and CBX7, a H3K36me reader. The
universal tumor suppressor role of the chromobox pro-
tein CBX7 is well supported by extensive literature in
many different cancer types [38–40, 58–60]. Likewise,
WHSC1 has been previously implicated as an oncogene
in numerous malignancies, including leukemias, liver,
endometrial and ovarian cancer [61–66]. For instance,
increased methyltransferase activity through point muta-
tion in WHSC1 has been shown to lead to widespread
genome-wide increases in H3K36me2 and H3K36me3
marks [63]. Importantly, our data link putative deregula-
tion of this histone mark via WHSC1 to increased
DNAm at promoter CGIs. Similarly, underexpression of
CBX7 appears to be associated with widespread inter-
genic DNA hypomethylation in cancer, an entirely novel
insight.
It is worth noting that the list of 11 candidate epigen-

etic oncogenes also included TDG (thymine DNA glyco-
sylase) and TET3, both of which play key roles in the
DNA demethylation pathway [67]. Consistent with this,
we observed that overexpression of these two enzymes
in cancers correlated specifically with an increased glo-
bal DNA hypomethylation (Fig. 4). The list of epigenetic
tumor suppressors included several histone methyltrans-
ferases, among them PRDM2/5 and SETBP1. In agree-
ment with previous studies, PRDM2 has been found to
be widely underexpressed in epithelial [68] and
hematological cancers [69]. Mutations in SETBP1 have
been widely reported in hematological cancers. We ob-
served that underexpression of either PRDM2, PRDM5,
or SETBP1 correlated with the HyperZ index, i.e., with
increased DNAm at gene promoters.
All these results support the view that functional alter-

ations of these EE genes are important determinants of
cancer DNAm patterns. Although we here do not
present experimental validation of these claims, our
computational study does predict which of the EE genes
are of particular interest to follow up experimentally.
Another potential limitation of our study is the fact that
the overwhelming majority of TCGA normal samples
were collected adjacent to a matched tumor. Thus, by
comparing with normal adjacent samples, our analysis
may have missed important field defects. On the other
hand, the results presented in this manuscript are
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unlikely to be affected by field defects. In fact, by com-
paring Illumina 450k DNAm data from 21 normal sam-
ples adjacent to a breast tumor with 30 normal samples
from healthy women, we found that DNAm field defects
are rare (Figure S10 in Additional file 1) and that global
DNAm instability indices, such as HyperZ/HypoZ, are
largely independent of which normal samples we use to
construct them (Figure S11 in Additional file 1). As far
as the RNA-Seq differential expression analysis is con-
cerned, we verified that in the case of TCGA colon set
(the only set for which we could find sufficient numbers
of normals without matched cancer samples; Table S7 in
Additional file 1), statistics of differential expression of
all 212 EE genes were highly congruent, irrespective of
whether paired or unpaired normals were used (Figure
S12 in Additional file 1). Thus, field defects are very un-
likely to have affected the global pan-cancer-wide meta-
analysis results presented here.
Finally, our work has also shown that global levels of

DNA hypermethylation and hypomethylation do not
correlate that well within individual tumor samples: in
most cancer types R2 values, although statistically signifi-
cant, were around 0.1 or less. We interpret this finding
as follows: a statistically significant correlation is ex-
pected given that tumors differ in terms of their level of
normal cell contamination, and the HyperZ and HypoZ
indices do correlate much more strongly if the normal
samples are included. Second, several studies have re-
ported that hypermethylated CGIs in cancer are often
found immersed in large megabase scale blocks of hypo-
methylation [70, 71]. Thus, local correlations between
these indices should translate to some level of correl-
ation at the global scale. However, the relatively low R2

values also suggest that cancer hyper- and hypomethyla-
tion constitute independent processes in tumor progres-
sion, consistent with other reports [41–43]. We can
reconcile all of these observations by noting that most
studies did not consider the degree of quantitative
change across different tumors. Thus, although in any
given tumor a hypermethylated CGI will in general be
contained within a large block of hypomethylation, the
degree of hypermethylation and hypomethylation in that
tumor may not necessarily correlate. Further supporting
the view that global levels of cancer DNA hypermethyla-
tion and hypomethylation may be controlled by inde-
pendent epigenetic processes, we also generally observed
that EE genes correlating significantly with the HyperZ
index did not do so with HypoZ, and vice versa. Inter-
estingly, however, there were a few exceptions to this
rule, which included EZH2, a component of the PRC2
complex, and PCNA, a well-known proliferation marker.
Thus, the dynamics of DNAm change in cancer may
have components which simultaneously cause hyperme-
thylation of promoter CGIs and hypomethylation of
open sea regions, whereas other components may act
specifically to only cause promoter CGI hypermethyla-
tion or open sea hypomethylation. This is consistent
with a recent study showing how differential expression
patterns in cancer can arise due to widely different
shapes of differential DNAm in and around a gene pro-
moter’s region [72].

Conclusions
Our analysis indicates that many EEs are not only aber-
rantly expressed in specific cancers, but that they also
exhibit fairly universal patterns of deregulation across
different cancer types, including common patterns of
correlation with global DNAm levels. This supports the
view that there are universal rules underlying the aber-
rant epigenomic architecture of cancer, i.e., rules which
transcend cancer types. The master regulators of cancer
DNAm patterns predicted here deserve intense experi-
mental follow-up work and further computational study
in order to help elucidate these rules.

Materials and methods
Collection and definition of an EE gene list
We used two excellent recent reviews [2, 3], as well as
an additional literature search, to collate genes with roles
in shaping the epigenome. Specifically, we collated genes
encoding chromatin modification and remodeling en-
zymes, genes involved in the DNAm and/or DNA
demethylation pathways, genes involved in histone
modification, and genes involved in nucleosome posi-
tioning. A total of 212 chromatin modification/EE genes,
including all main writers, readers, erasers and editors of
the epigenome, from more than 20 gene families were
collected (Table S1 in Additional file 1). Throughout this
manuscript we refer to this class of 212 genes generally
as epigenetic enzymes (EEs). Among the represented
gene families were DNA (cytosine-5-)-methyltransferases
(DNMTs), methyl-CpG-binding proteins (MBDs), isocitrate
dehydrogenases (IDHs), ten-eleven translocation methylcy-
tosine dioxygenases (TETs), zinc finger and BTB domain
containing (ZBTBs), histone deacetylase (HDACs), histone
acetyltransferases (HATs), lysine (K)-specific methyltrans-
ferases (KMTs), protein arginine N-methyltransferases
(PRMTs), lysine (K)-specific demethylases (KDMs) and
chromodomain helicase DNA binding proteins (CHDs)
(see Table S1 in Additional file 1 for a full list).

TCGA gene expression data
RNA-SeqV2 level 3 expression data, quantified as RSEM
(RNA-Seq by expectation-maximization) were down-
loaded from TCGA. We downloaded the data for ten
cancer types that had profiled sufficient numbers of can-
cer samples at both RNA-Seq and DNAm levels (Table S2
in Additional file 1). This included breast invasive
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carcinoma (BRCA) [32], bladder cancer (BLCA) [26],
colon adenocarcinoma (COAD) [24], head and neck squa-
mous cell carcinoma (HNSC) [23], kidney renal carcinoma
(KIRC) [29], liver hepatocellular carcinoma (LIHC) [31],
lung adenocarcinoma (LUAD) [25], lung squamous cell
carcinoma (LUSC) [27], thyroid carcinoma (THCA) [28]
and uterine corpus endometrial carcinoma (UCEC) [30].
The level 3 RNA-Seq data were processed further as fol-
lows: (i) zero-valued entries were replaced by the minimal
positive value of the dataset; (ii) expression values were
then logarithmically transformed (base 2) in order to
regularize the data. Inter-sample variability and quality of
the data were assessed using singular value decomposi-
tions (SVDs) [73] by checking that the top component of
variation correlated with normal/cancer status. Before ap-
plying the SVD, the log-transformed expression values
were first centered so that each gene had a mean zero
across all samples. The number of significant components
of variation was then inferred by using random matrix
theory [74]. The significant components of variation were
correlated to phenotypic and technical factors to assess
the relative contributions of biological and technical vari-
ables to data variability and represented in a P value heat-
map between components and factors.

TCGA DNAm data
For the ten cancer types mentioned above, DNAm data
generated with the Illumina Infinium HumanMethyla-
tion450 BeadChip array [75] were downloaded from
TCGA data portal. The methylation level for each probe
was obtained as the beta value, which was calculated
from the intensity of methylated (M) and unmethylated
(U) alleles: beta=Max(M,0)/[Max(M,0)+Max(U,0)+100].
The beta ranges from 0 (unmethylated) and 1 (fully
methylated). Probes with missing data (i.e. NAs) in more
than 70 % of the samples were removed. The rest of the
probes with NAs were imputed using the k-nearest
neighbors (knn) imputation procedure [76]. Subse-
quently, BMIQ was used to correct for the type II probe
bias [77]. Data from each cancer type was then subjected
to the same SVD quality control analysis, as done for
gene expression.

Erlangen Illumina 450k breast cancer DNAm data
Illumina 450k DNAm data for 30 normal samples (from
healthy women), 21 normal samples adjacent to breast
cancers, and 165 breast cancer samples were collected
within the Bavarian Breast Cancer Cases and Controls
Study 2. The Ethics Committee of the Medical Faculty,
Friedrich-Alexander University approved the study (re.
no. 4514) and all patients gave written informed consent.
The study was done in adherence to the Declaration of
Helsinki. Data are available in the Gene Expression
Omnibus (accession number GSE69914). Raw data files
were processed using the minfi, impute and BMIQ/
ChAMP Bioconductor packages.

Differential expression TCGA meta-analysis of EE genes
across cancer
For each TCGA expression data set, we used moderated
t-tests [78] to assess differential expression of approxi-
mately 20,000 genes between normal and corresponding
cancer tissue, including the 212 EE genes. We note that
we used all cancer samples and not just those with
matched normal tissue. In view of the subsequent meta-
analysis, we used relaxed nominal P value thresholds of
0.05 to declare statistical significance in each individual
TCGA data set. We counted the number of EE genes
which showed significant and consistent (i.e., same dir-
ectionality) differential expression across at least eight of
the ten cancer/tissue types. To assess the overall statis-
tical significance of these counts, we also estimated the
proportions of all human genome genes with significant
overexpression and underexpression in each TCGA data
set, thus obtaining “null” probabilities of overexpression
(upregulation, pu) and underexpression (downregulated, pd).
We observed that these probabilities did not vary much
between cancer types (Table S3 in Additional file 1).
Hence, we next estimated an average null probability
for any given gene to be significantly upregulated or
downregulated in cancer compared with normal tissue
by taking the average of the corresponding probabilities
across all cancer types. These average null probability
estimates were �pu≈0:32 and �pd≈0:34 . We then esti-
mated the null probability that any given gene would be
significantly upregulated (downregulated) in at least
eight of the ten cancer types, using the binomial
formula:

p nUP ≥ 8ð Þ ¼
X10

k¼8

10!
k! 10−kð Þ! �p

k
u 1−�puð Þ10−k

p nDN ≥ 8ð Þ ¼
X10

k¼8

10!
k! 10−kð Þ! �p

k
d 1−�pdð Þ10−k

This yielded values of p(nUP ≥ 8) ≈ 0.003 and
p(nDN ≥ 8) ≈ 0.004. Finally, given a pool of 212 ran-
dom genes we can estimate the expected number
which would be significantly upregulated (downregu-
lated) in at least eight of the ten cancer types. This is
given by a binomial distribution B(n,p) with (n = 212,
p = 0.003) in the case of upregulation, and (n = 212,
p = 0.004) for the case of downregulation. We find
that E[nUP ≥ 8] ≈ 0.54(±0.73) and E[nDN ≥ 8] ≈
0.89(±0.94), i.e., effectively we would expect only 1 of
212 genes to be explained by random chance. Finally,
using the binomial distribution, we can estimate the
statistical significance of the observed numbers of
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significant and consistently overexpressed and under-
expressed EE genes. The observed numbers were 35
upregulated EE genes, and 27 downregulated EEs,
which can’t be explained by random chance (P = 2e-53
for upregulated case, P = 9e-33 for downregulated
case).

Construction of epigenetic instability indices: HyperZ and
HypoZ
In order to investigate whether the aberrant expression
of EEs in a given cancer is associated with changes in
the DNA methylome of that cancer, we first calculated
“epigenetic instability indices” reflecting absolute devia-
tions in DNAm in a given cancer sample, as assessed
relative to normal samples from the same tissue type.
We decided to construct two such indices, called
HyperZ and HypoZ, to account for the potentially dis-
tinct mechanisms driving cancer DNA hypermethylation
and DNA hypomethylation. The indices were con-
structed as follows: all CpGs in the genome were classi-
fied into different regional classes, according to whether
they fall into open sea, CGI or shore/shelf regions, re-
spectively [79]. All CpG sites within a regional class were
then grouped together into regional clusters by using the
boundedClusterMaker function of the bumphunter BioC
package with a maximum cluster width of 1500 bp and a
maximum gap of 500 bp between any two neighboring
CpGs [80]. The methylation level for each regional clus-
ter was defined as the average beta value of the CpGs
within that cluster. For a given cluster/region, labeled r,
in a given tumor sample s, we then computed a Z score,
Zrs, reflecting the absolution deviation in DNAm of that
region in the given cancer sample relative to all normal
samples of the same tissue type. Specifically, let μr

(N) and
σr

(N) denote the mean and standard deviation of the
DNAm level of the regional cluster r over all the normal

tissue samples. Then Zrs was defined as Zrs ¼ βrs−μ
Nð Þ
r

σ Nð Þ
r

.

Since regional clusters mapping to promoter CGIs are
usually unmethylated in normal tissue, we only consider
clusters for which the Z score in a given cancer sample
is positive. Similarly, for open sea regional clusters,
which are usually methylated in the normal tissue, we
only consider clusters in a given cancer sample for
which the Z score is negative, although we enforce posi-
tivity to ensure that the absolute deviation is taken into
account. Specifically, the HyperZ index for a given can-
cer sample s was obtained as:

HyperZs ¼ 1
nr

Xnr

r

ZrsH Zrsð Þ

where the summation is over all promoter CGI clusters
and where H(z) denotes the Heaviside function: H(z) = 1
if z > 0, H(z) = 0 if z ≤ 0. Thus, only regions for which
the Z score is positive contribute to the index, and the
positivity of the index is guaranteed by definition. Simi-
larly, the HypoZ index for a given cancer sample was es-
timated as:

HyporZs ¼ 1
nr

Xnr

r

Zrsj jH −Zrsð Þ

where the summation is now over all open sea regional
clusters. The term involving the Heaviside function en-
sures that only regions with negative scores, i.e., hypo-
methylation from the methylated state, contribute.
Taking the absolute value of the Z scores thus ensures
that the index is always positive.
The HyperZ and HypoZ indices can be thought of as

“epigenetic instability” indices in the sense that they
measure global levels of absolute deviation in DNAm in
a given cancer sample from a normal reference. The
HyperZ index does so restricting to promoter CGIs and
hence measures the overall level of cancer hypermethy-
lation of these regions, whereas the HypoZ index reflects
the overall absolute level of cancer hypomethylation in
open sea regions.
In this manuscript we also use an alternative definition

of the HyperZ and HypoZ indices, whereby the average
is computed only over genomic regions, r, for which the
Z score, Zrs, is significant (P < 0.05). This definition of
the indices thus only uses significant regions. The correl-
ation meta-analysis between RNA-Seq of EE genes and
the HyperZ/HypoZ indices described below was per-
formed using this latter definition of the indices, since
for this definition, the HyperZ/HypoZ indices were less
well correlated; thus, the two indices contain less redun-
dant or more complementary information.

Correlation meta-analysis of EE gene expression and epi-
genetic instability indices
Pearson correlation analysis was used to assess whether
the expression of EEs is correlated with the HypoZ and
HyperZ index from matched tumor samples. It is key to
emphasize here that these correlations were computed
only over tumor samples with matched RNA-Seq and
DNAm data. Pearson correlation coefficients were
transformed into Fisher Z-statistics Z ¼ 0:5 log 1þPCC

1−PCC
from which P values were then derived. Unadjusted P
values <0.05 were deemed statistically significant. Once
again the relaxed threshold was used because of the
subsequent meta-analysis which would reassess statis-
tical significance levels over all cancer types together.
To assess statistical significance in the meta-analysis,
we computed for each TCGA data set the fraction of
genes (from all genes with RNA-Seq data) exhibiting
significant positive and negative correlations with the
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HyperZ and HypoZ indices. This yielded four fractions/
probabilities for each TCGA dataset, corresponding to
positive correlations with HyperZ, negative correlations
with HyperZ, positive correlations with HypoZ and
negative correlations with HypoZ. From these fractions,
we then computed an overall probability by averaging
the corresponding probabilities over all cancer types.
Denote these average probabilities as follows: �puu for
the average probability that a random gene is positively
correlated with the HyperZ index; �pdu for the average
probability that a random gene is negatively correlated
with the HyperZ index; �pud for the case of positive cor-
relations with HypoZ; and �pdd for the case of negative
correlations with HypoZ. The specific estimates for
these average probabilities were �puu≈0:12; �pud≈0:16 and
�pdd≈0:25 . We then estimated the null probability that
any given gene would be significantly positively (nega-
tively) correlated with HyperZ in at least six of the ten
cancer types, and similarly for HypoZ, using the bino-
mial formulas:

p nUU ≥ 6ð Þ ¼
X10

k¼6

10!
k! 10−kð Þ! �p

k
uu 1−�puuð Þ10−k

p nDU ≥ 6ð Þ ¼
X10

k¼6

10!
k! 10−kð Þ! �p

k
du 1−�pduð Þ10−k

p nUD ≥ 6ð Þ ¼
X10

k¼6

10!
k! 10−kð Þ! �p

k
ud 1−�pudð Þ10−k

p nDD ≥ 6ð Þ ¼
X10

k¼6

10!
k! 10−kð Þ! �p

k
dd 1−�pddð Þ10−k

This yielded values of p(nUU ≥ 6) ≈ 0.0004, p(nDU ≥ 6) ≈
0.02, p(nUD ≥ 6) ≈ 0.002 and p(DD ≥ 6) ≈ 0.02. Finally,
given a pool of 212 random genes we can estimate the
expected number which would be significantly corre-
lated (anti-correlated) with HyperZ or HypoZ in at
least six of the ten cancer types. This is given by a bi-
nomial distribution B(n,p) with n = 212 and with p
given by one of the four probabilities given above. We
find that E[nUU ≥ 6] ≈ 0.54(±0.73) and E[nDN ≥ 8] ≈
0.89(±0.94), i.e., effectively we would expect only 1 of
212 genes to be explained by random chance. Finally,
using the binomial distribution, we can estimate the
statistical significance of the observed numbers of sig-
nificant and consistently overexpressed and underex-
pressed EE genes. The observed numbers were 35
upregulated EE genes, and 27 downregulated EE genes,
which can’t be explained by random chance (P = 2e-53
for upregulated case, P = 9e-33 for downregulated
case).
Causal network modeling meta-analysis of EE genes
The differential expression meta-analysis and mRNA ex-
pression–HyperZ/HypoZ meta-analysis led to 18 EE
genes, showing consistent differential expression and
correlative patterns across cancer types. These 18 EE
genes were then subjected to causal network modeling
analysis in order to assess if the correlations of mRNA
expression of these genes to the HyperZ/HypoZ indices
is likely to be a direct effect, or if instead it is likely to
be mediated by other factors (other EE genes or pro-
moter DNAm levels of EE genes). Thus, the problem
can be addressed by adopting a statistical method that
can “silence” or remove correlations which are likely to
be indirect. For this purpose, we used the framework of
partial correlations/multivariate linear regressions [46].
Specifically, we conducted two separate analyses, one
centered on individual EE genes, and another including
all 18 EE genes in the model. In the first approach we
estimated partial correlations between HyperZ/HypoZ
and each EE gene’s expression level using the promoter
DNAm level of the EE gene as a covariate. This allowed
us to assess if the correlation between HyperZ/HypoZ
and EE gene expression is independent of the EE gene’s
DNAm promoter level. In the second approach, we
used all other 17 EE gene expression as well as all 18
promoter DNAm levels as covariates, when estimating
the partial correlation between a given EE gene’s ex-
pression with either the HyperZ or HypoZ index. This
allowed us to assess if the correlation of an EE gene’s
expression with HyperZ/HypoZ is not only independ-
ent of its promoter DNAm level, but also independent
of the expression (and promoter DNAm) levels of the
other 17 EE genes.
Application of this procedure in each cancer type led

to a partial correlation network. We then constructed a
consensus network over all ten cancer types, with edges
defining significant and consistent partial correlations
present in at least six of the ten cancer types.

Correlation of genomic loci with EE gene expression
To assess if the same genomic loci are affected by a
given EE gene, independently of cancer type, we adopted
a genome-wide correlation approach. Specifically, we
computed Pearson correlations between the DNAm level
of any given region/cluster and the EE gene expression
level, using only cancer samples to estimate the correl-
ation. In the case of correlations with HyperZ, we only
considered CGI-associated regions/clusters. In the case
of correlations with HypoZ, we only considered open
sea regions/clusters. Pearson correlations were trans-
formed to Fisher Z-statistics. Spearman rank correlation
and P values of the ranking obtained in each cancer type
were used to evaluate consistency of rankings across
cancer types.
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Additional files

Additional file 1: Supplementary Methods, Supplementary tables
and all Supplementary figures, plus their associated legends/captions.

Additional file 2: A Supplementary table listing differential expression
t-statistics, P values and Benjamini-Hochberg adjusted P values for the
212 epigenetic enzymes across ten cancer types.

Additional file 3: A Supplementary table listing the genomic loci
whose DNA methylation levels correlate most strongly with mRNA
expression of UHRF1, WHSC1 and CBX7. Loci have been ranked
according to the average correlation across cancer types. The table gives the
chromosome and genomic location of the region (or probe), the Pearson
correlation coefficients and associated P values for each cancer type.
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