2,246 research outputs found

    Visual Eureka Navigating Images Through Textual Queries

    Get PDF
    Within the domain of text extraction technologies, progress has been somewhat constrained, notwithstanding notable instances such as Google Lens, which proficiently extracts text from images. A conspicuous gap persists, however, in the availability of software tailored for the reciprocal task of searching images based on their textual content. Our pioneering conceptual framework introduces a transformative paradigm shift—a software solution engineered for image retrieval through text search. The crux of our technical innovation lies in the systematic incorporation of metadata as a repository for textual data linked to images. Through advanced text extraction algorithms, including robust optical character recognition methods, we decipher and store relevant textual information in this metadata. This meticulous indexing facilitates a highly efficient search mechanism, allowing users to query images based on specific text-related parameters. The user interface seamlessly integrates these functionalities, providing an intuitive platform for users to input text queries and retrieve images with unprecedented precision. Scalability and performance optimization measures ensure the system's adaptability to growing datasets, promising not only a redefined utility of image search but also a significant advancement in user convenience and operational efficiency within the visual data retrieval landscape

    An Optimized Machine Learning and Deep Learning Framework for Facial and Masked Facial Recognition

    Get PDF
    In this study, we aimed to find an optimized approach to improving facial and masked facial recognition using machine learning and deep learning techniques. Prior studies only used a single machine learning model for classification and did not report optimal parameter values. In contrast, we utilized a grid search with hyperparameter tuning and nested cross-validation to achieve better results during the verification phase. We performed experiments on a large dataset of facial images with and without masks. Our findings showed that the SVM model with hyperparameter tuning had the highest accuracy compared to other models, achieving a recognition accuracy of 0.99912. The precision values for recognition without masks and with masks were 0.99925 and 0.98417, respectively. We tested our approach in real-life scenarios and found that it accurately identified masked individuals through facial recognition. Furthermore, our study stands out from others as it incorporates hyperparameter tuning and nested cross-validation during the verification phase to enhance the model's performance, generalization, and robustness while optimizing data utilization. Our optimized approach has potential implications for improving security systems in various domains, including public safety and healthcare. Doi: 10.28991/ESJ-2023-07-04-010 Full Text: PD

    Optimizing Alzheimer's disease prediction using the nomadic people algorithm

    Get PDF
    The problem with using microarray technology to detect diseases is that not each is analytically necessary. The presence of non-essential gene data adds a computing load to the detection method. Therefore, the purpose of this study is to reduce the high-dimensional data size by determining the most critical genes involved in Alzheimer's disease progression. A study also aims to predict patients with a subset of genes that cause Alzheimer's disease. This paper uses feature selection techniques like information gain (IG) and a novel metaheuristic optimization technique based on a swarm’s algorithm derived from nomadic people’s behavior (NPO). This suggested method matches the structure of these individuals' lives movements and the search for new food sources. The method is mostly based on a multi-swarm method; there are several clans, each seeking the best foraging opportunities. Prediction is carried out after selecting the informative genes of the support vector machine (SVM), frequently used in a variety of prediction tasks. The accuracy of the prediction was used to evaluate the suggested system's performance. Its results indicate that the NPO algorithm with the SVM model returns high accuracy based on the gene subset from IG and NPO methods

    Application of expert systems in project management decision aiding

    Get PDF
    The feasibility of developing an expert systems-based project management decision aid to enhance the performance of NASA project managers was assessed. The research effort included extensive literature reviews in the areas of project management, project management decision aiding, expert systems technology, and human-computer interface engineering. Literature reviews were augmented by focused interviews with NASA managers. Time estimation for project scheduling was identified as the target activity for decision augmentation, and a design was developed for an Integrated NASA System for Intelligent Time Estimation (INSITE). The proposed INSITE design was judged feasible with a low level of risk. A partial proof-of-concept experiment was performed and was successful. Specific conclusions drawn from the research and analyses are included. The INSITE concept is potentially applicable in any management sphere, commercial or government, where time estimation is required for project scheduling. As project scheduling is a nearly universal management activity, the range of possibilities is considerable. The INSITE concept also holds potential for enhancing other management tasks, especially in areas such as cost estimation, where estimation-by-analogy is already a proven method

    Establishing A Systematic Outline for Operational Excellence Model and Proposing a Comprehensive Model

    Get PDF
    Manufacturing organizations adopt operational excellence strategies to meet performance targets. While Lean Manufacturing (LM) is widely used in OPEX and is supported by many industries case studies, but faces two major challenges. First, there is an absence of a standard framework to implement LM. Second, the framework does not explicitly address employee engagement and quality of life in the continuous improvement process. This has led to low reported levels of sustainability of LM. People-Centric Operational Excellence (PCOM) has been presented as a response to challenges in LM. PCOM comprises four modules: problem definition, design of metrics, design of reliability-based solutions, and alignment of solutions with employee quality of life. However, PCOM is not supported by an implementation template and case studies for the framework are not well documented in the literature. This paper compares PCOM with LM using literature-driven criteria, develops an implementation-ready template for PCOM, and documents case studies in PCOM for the manufacturing sector. Moreover, this paper presents the conceptual basis for a new model, Comprehensive PCOM or CPCOM, that combines the strengths of LM and PCOM and provides an initial roadmap for its implementation

    Enhancing Rice Plant Disease Recognition and Classification Using Modified Sand Cat Swarm Optimization with Deep Learning

    Get PDF
    Rice plant diseases play a critical challenge to agricultural productivity and food safety. Timely and accurate recognition and classification of these ailments are vital for efficient management of the disease. Classifying and recognizing rice plant disease by implementing Deep Learning (DL) has emerged as a powerful approach to tackle the challenges associated with automated disease diagnosis in rice crops. DL, a subfield of artificial intelligence, concentrates to train neural networks with several layers for automated learning of the complex patterns and illustrations from data. In the context of rice plant diseases, DL methods can effectually extract meaningful features from images and accurately classify them into different disease categories.  Therefore, this study introduces a new Modified Sand Cat Swarm Optimization with Deep Learning based Rice Plant Disease Detection and Classification (MSCSO-DLRPDC) technique. The main objective of the MSCSO-DLRPDC technique focalize on the automated classification and recognition of rice plant ailments. To achieve this, the MSCSO-DLRPDC methodology involves two levels of pre-processing such as median filter-based noise removal and CLAHE-based contrast enhancement. Besides, Multi-Layer ShuffleNet with Depthwise Separable Convolution (MLS-DSC) methodology is utilized for feature extraction purposes. Moreover, the Multi-Head Attention-based Long Short-Term Memory (MHA-LSTM) methodology is utilized for the process of rice plant disease detection. At last, the MSCSO method is utilized for the tuning process of the MHA-LSTM approach. The MSCSO approach inspired by the collective behaviour of sand cats and the mutation operator, is implemented for optimizing the parameters of the MHA-LSTM network. To demonstrate the enhanced accomplishment of the MSCSO-DLRPDC method, a broad set of simulations were carried out. The extensive outputs show the greater accomplishment of the MSCSO-DLRPDC method over other methods. The proposed approach has the capability in assisting farmers and agricultural stakeholders in effectively managing rice plant diseases, contributing to improved crop yield and sustainable agricultural practices

    Autonomous Threat Hunting: A Future Paradigm for AI-Driven Threat Intelligence

    Full text link
    The evolution of cybersecurity has spurred the emergence of autonomous threat hunting as a pivotal paradigm in the realm of AI-driven threat intelligence. This review navigates through the intricate landscape of autonomous threat hunting, exploring its significance and pivotal role in fortifying cyber defense mechanisms. Delving into the amalgamation of artificial intelligence (AI) and traditional threat intelligence methodologies, this paper delineates the necessity and evolution of autonomous approaches in combating contemporary cyber threats. Through a comprehensive exploration of foundational AI-driven threat intelligence, the review accentuates the transformative influence of AI and machine learning on conventional threat intelligence practices. It elucidates the conceptual framework underpinning autonomous threat hunting, spotlighting its components, and the seamless integration of AI algorithms within threat hunting processes.. Insightful discussions on challenges encompassing scalability, interpretability, and ethical considerations in AI-driven models enrich the discourse. Moreover, through illuminating case studies and evaluations, this paper showcases real-world implementations, underscoring success stories and lessons learned by organizations adopting AI-driven threat intelligence. In conclusion, this review consolidates key insights, emphasizing the substantial implications of autonomous threat hunting for the future of cybersecurity. It underscores the significance of continual research and collaborative efforts in harnessing the potential of AI-driven approaches to fortify cyber defenses against evolving threats
    • …
    corecore