

Faculdade de Engenharia da Universidade do Porto

Reinforcement Learning for Production
Scheduling Applications

João Pedro Silva Casal

Dissertação realizada no âmbito do
Mestrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Catarina Moreira Marques
Co-supervisor: Jorge Manuel Pinho de Sousa

ii

30/6/2023

iii

© João Pedro Silva Casal, 2023

iv

v

Resumo

A Revolução Industrial 4.0 teve um impacto significativo nos processos produtivos,

impulsionado pela convergência da tecnologia digital, automação avançada e inteligência

artificial. No contexto dos ambientes job-shop, onde a programação da produção é complexa e

altamente dinâmica, o impacto desta revolução tem sido especialmente notável. Nesta nova

era, a aprendizagem por reforço surge como uma abordagem promissora para otimizar a

programação da produção, oferecendo soluções adaptáveis e eficientes em tempo real. A este

respeito, as novas técnicas de planeamento e programação devem considerar não só a dinâmica

na fábrica, mas também a colaboração interfuncional e a integração de dados.

O projeto será construído com base num caso de estudo, que corresponde a um sistema de

produção em ambiente de produção job-shop, criado para atender às características chaves de

um ambiente industrial real.

Neste contexto, o objetivo desta dissertação é a combinação de técnicas de Reinforcement

Learning com abordagens de simulação para a otimização de um problema de agendamento de

tarefas, relativamente à produtividade e a sua comparação com um algoritmo baseado em

técnicas de otimização tradicionais, como as meta heurísticas.

Para além de concluir que a abordagem baseada em Reinforcement Learning proporcionou

ótimos resultados de produtividade, esta dissertação também tirou conclusões sobre a robustez

destes modelos, a fim de avaliar a sua adaptabilidade quando sujeitos a contextos diferentes,

simulando um ambiente do mundo real.

vi

vii

Abstract

The Fourth Industrial Revolution has had a significant impact on production processes, driven

by the convergence of digital technology, advanced automation, and artificial intelligence. In

the context of job-shop environments, where production scheduling is complex and highly

dynamic, the impact of this revolution has been particularly noteworthy. In this new era,

reinforcement learning emerges as a promising approach to optimize production scheduling,

offering adaptable and efficient real-time solutions. In this regard, new planning and scheduling

techniques must consider not only the dynamics within the factory but also interfunctional

collaboration and data integration.

The project will be built based on a case study, which corresponds to a production system

in a job-shop environment created to meet the key characteristics of a real industrial setting.

In this context, the objective of this dissertation is to combine Reinforcement Learning

techniques with simulation approaches for optimizing a task scheduling problem in terms of

productivity, comparing it with an algorithm based on traditional optimization techniques such

as metaheuristics.

Besides concluding that the Reinforcement Learning-based approach yielded excellent

productivity results, this dissertation also drew conclusions about the robustness of these

models to assess their adaptability when subjected to different contexts, simulating a real-

world environment.

viii

ix

Acknowledgements

Thank you to Engineers Romão Santos, Catarina Marques, and Professor José Pinho de Sousa

for their availability, comprehension, and support during the completion of this master's thesis.

I am extremely appreciative of their assistance throughout this entire procedure.

In this section, I would also like to thank INESC-TEC, in particular the Centre for Enterprise

Systems Engineering and all of its members, for the outstanding facilities and environment

provided throughout the dissertation.

I would like to thank the University of Porto's Faculty of Engineering and its professors for

everything they have taught me over the past five years, both academically and personally.

In closing, I would like to express my gratitude to all my friends and family for their support

and encouragement throughout this period of my life, both in the difficult and the happy times.

x

xi

Contents

Resumo .. v

Abstract .. vii

Acknowledgements ... ix

Contents .. xi

List of figures .. xiii

List of tables .. xv

Abbreviations and Symbols ...xvii

Introduction ... 19
1.1 - Contextualization ... 19
1.2 - Motivation ... 20
1.3 - Objectives and Methodology .. 21
1.4 - Structure of the thesis ... 21

Literature Review ... 23
2.1 - The role of Scheduling ... 23
2.2 - Reinforcement Learning ... 29
2.3 - Simulation ... 33

Problem and Simulation Base Model ... 37
3.1 - Job Shop Scheduling Problem ... 37
3.2 - Discrete-Event Simulation Model – FlexSim ... 39

Adopted Methodology ... 45
4.1 - Contextualization of the RL implementation ... 45
4.2 - Neural Network General Architecture ... 46
4.3 - Makespan Minization using RL ... 48
4.4 - Makespan Minization using OptQuest .. 50

Design of Experiments and Results Analysis .. 51
5.1 - Results of makespan minimization using OptQuest 51
5.2 - Preliminary Experiments ... 52
5.3 - Results of makespan minimization using RL .. 54
5.4 - Robustness of RL Agent .. 60

Conclusions and Future Work ... 63
6.1 - Conclusions .. 63
6.2 - Future Work ... 64

xii

References .. 65

xiii

List of figures

Figure 2.1 - Agent-Environment interaction diagram, adapted from [14] 31

Figure 3.1 - Block diagram of the problem .. 38

Figure 3.2 - Diagram of the model used in FlexSim .. 38

Figure 3.3 - Properties of an entity in FlexSim .. 40

Figure 3.4 - Library in FlexSim .. 41

Figure 3.5 - Graphical representation of a Machine in FlexSim 41

Figure 3.6 - Representation of the "Parts Creation" Block ... 42

Figure 3.7 - Representation of the "Transportation and Parts Processing" Block 43

Figure 3.8 - Routings Table .. 43

Figure 3.9 – Model 3D in FlexSim .. 44

Figure 4.1 - Agent-Server-FlexSim relationships, adapted from [13] 46

Figure 4.2 - SLP Architecture .. 47

Figure 4.3 - Action Sorting Example .. 48

Figure 4.4 - Representation of the block that assigns values to makespan, reward and
done ... 48

Figure 4.5 - Representation of the block that update the "totalPenChangeover" 49

Figure 4.6 – FlexSim RL module ... 50

Figure 5.1 - Settings of OptQuest in FlexSim .. 51

Figure 5.2 - Makespan minimization in FlexSim using OptQuest 52

Figure 5.3 - Reward related to Experiment 1, for a total of 250k time steps 54

Figure 5.4 - Reward related to Experiment 2, for a total of 250k time steps " 54

Figure 5.5 - Reward related to Experiment 3, for a total of 250k time steps " 56

Figure 5.6 - Reward related to Experiment 4, for a total of 250k time steps " 57

Figure 5.7 - Parameters of an actions in FlexSim ... 57

xiv

Figure 5.8 - Reward related to Experiment 5, for a total of 100k time steps 58

Figure 5.9 - Parameters of an action in FlexSim .. 58

Figure 5.10 - Action Space of Reinforcement Learning in FlexSim 59

Figure 5.11 - Reward related to Experiment 6, for a total of 100k time steps 59

Figure 5.12 - Variation of observations by 20% ... 60

Figure 5.13 - Reward study, for a total of 100k time steps ... 61

xv

List of tables

Table 2.1 - The entities, the corresponding attributes, and their options or values in JSSP,
adapted from [6] ... 25

Table 2.2 - The JSSP basic types, subtypes, adapted from [5] 26

Table 3.1 - Duration (in minutes) of the operation to be carried out on each machine,
according to the type of product .. 39

Table 3.2 - Duration (in minutes) of the total changeover to be carried out on all
machines, according to the type of product ... 39

Table 3.3 - Parts Transportation (based on destination machine). 39

Table 5.1 - List of Experiments ... 52

Table 5.2 - Table of parameters tests ... 53

Table 5.3 - Numerical analyse of makespan referring to Experiment 1 (in seconds) 55

Table 5.4 - Numerical analyse of makespan referring to Experiment 2 (in seconds) 55

Table 5.5 - Numerical analyse of makespan referring to Experiment 3 (in seconds) 56

Table 5.6 - Numerical analyse of makespan referring to Experiment 4 (in seconds) 57

Table 5.7 - Numerical analyse of makespan referring to Experiment 5 (in seconds) 58

Table 5.8 - Numerical analyse of makespan referring to Experiment 6 (in seconds) 59

Table 5.9 - Numerical analyse of makespan .. 61

xvi

xvii

Abbreviations and Symbols

List of abbreviations

AI Artificial intelligence

DL Deep Learning

DRL Deep Reinforcement Learning

DRs Dispatching Rules

IoT Internet of Things

JSSP Job Shop Scheduling Problem

ML Machine Learning

MLP Multi Layer Perceptron

PPO Proximal Policy Optimisation

RL Reinforcement Learning

SLP Single Layer Perceptron

xviii

Chapter 1

 Introduction

This introductory chapter presents a contextualisation, the motivation, the objectives and

methodologies and the structure of this dissertation.

1.1 - Contextualization

One of the oldest and most significant combinatorial optimization issues in operational

research and management science is a Job Shop Scheduling Problem. Scholars in engineering

and academic sectors have given JSSP a great deal of attention due to the extraordinarily

diverse engineering and social application backgrounds [1].

The focus of traditional job shop scheduling is on centralized or semi-distributed scheduling.

A smart, distributed production system supported by cutting-edge manufacturing technologies

including mass customization, Cyber-Physical Systems, Digital Twin, and SMAC should be the

focus of scheduling under Industry 4.0. [2]. The modelling and optimization of intelligent

distributed scheduling must become the primary focus of scheduling research.

JSSP is a type of production scheduling problem that involves scheduling the processing of

a series of jobs on a set of machines or resources. In a job shop, each job consists of a series

of tasks that must be performed in a specific order, and each task requires the use of a specific

machine or resource. The goal of JSSP is to find a schedule that minimizes the overall

completion time for all the jobs, subject to any constraints on the available resources and the

order in which tasks must be completed [3].

Reinforcemnt Learning is a type of machine learning that involves training an agent to make

decisions in an environment in order to maximize a reward. In the context of production

scheduling, RL can be used to optimize the scheduling of production processes in order to meet

demand while minimizing costs and maximizing efficiency. RL algorithms learn through trial

20

and error, continuously adjusting their actions based on the feedback received from the

environment [1].

In a production scheduling application, the RL agent can be trained to consider various

factors such as equipment utilization, raw material availability, and lead times in order to

make decisions about when and how to schedule production. By learning from past experiences,

the RL agent can improve its decision-making over time and adapt to changing conditions in

the production environment [4].

RL has the potential to significantly improve the efficiency and effectiveness of production

scheduling, leading to cost savings and increased competitiveness for businesses. However,

implementing RL in a production environment can be challenging and requires careful

consideration of the goals, constraints, and resources of the organization. Overall, RL has the

potential to be a valuable tool for optimizing production scheduling in a variety of industries

[1].

RL can be used to solve job shop scheduling problems by training an agent to make decisions

about which tasks to schedule on which machines at each time step. The RL agent can consider

factors such as the availability of machines, the processing time for each task, and the

dependencies between tasks in order to make scheduling decisions that minimize the overall

completion time for all the jobs [5].

One challenge in using RL for job shop scheduling is that the environment may be highly

dynamic, with new jobs and tasks arriving and resources becoming unavailable at unpredictable

times. RL algorithms are suitable for changing environments, but they may require frequent

updates and retraining in order to maintain their performance in a dynamic job shop setting.

As a basis for comparison with the results obtained through RL, a method based on meta-

heuristics, called OptQuest, was used.

1.2 - Motivation

There are several reasons why RL may be a useful approach for solving production scheduling

problems, including job shop scheduling.

One motivation for using RL in production scheduling is to improve efficiency and reduce

costs. By optimizing the scheduling of production processes, businesses can minimize the time

it takes to complete jobs and reduce the idle time of machines and other resources. This can

lead to cost savings in terms of both labour and materials, as well as increased competitiveness

in the market.

Another motivation for using RL in production scheduling is to increase flexibility and

adaptability. RL algorithms are able to learn from experience and adapt to changing conditions

in the environment, making them well-suited to handle unpredictable events such as equipment

failures or changes in demand. This can be particularly valuable in a job shop setting, where

21

new jobs and tasks may arrive at any time and resources may become unavailable

unexpectedly.

An additional motivation is the use of a new FlexSim module, which will be explained in

subchapter 5.1.

Finally, RL can be a powerful method for improving the overall performance of production

systems. By continuously learning and adapting to new information, RL algorithms can help

businesses identify and optimize bottlenecks in their production processes, leading to increased

productivity and improved quality.

Overall, the use of RL in production scheduling can provide significant benefits in terms of

efficiency, adaptability, and performance, making it a valuable tool for businesses in a variety

of industries.

1.3 - Objectives and Methodology

The main goal of this dissertation is the optimization of JSSPs by exploring the application

of machine learning techniques, in particular RL, and heuristics-based strategies.

Firstly, it is necessary to make a literature review on JSSP and main methods used to answer

the problem and respective characterization/definition of the problem that will be addressed.

In a second phase the work will focus on the development of a simulation model to represent

the real system, in FlexSim.

Next, directly apply the OptQuest algorithm to the FlexSim model, representing traditional

optimization methods. Then, the development of the model prepared for the implementation

of RL methods and their respective application.

Finally, the developed models are validated considering specific case studies, comparing

results in several scenarios.

1.4 - Structure of the thesis

Regarding the structure and arrangement of this work, it is separated into six chapters.

The first chapter pretends to introduce the theme of the dissertation, including its

contextualization, motivation, objectives and methodology.

Chapter 2 presents the state-of-the-art of the subjects covered by the dissertation, like the

production scheduling, in particular the job-shop problem, its types and approaches, the

Industry 4.0, and finally machine learning techniques, especially deep reinforcement learning

and its applications.

The description and characteristics of the problem, as well as the description of its

methodology, are covered in chapter 3, even as the implementation of the optimisation model.

Chapter 4 reflects the implementation of Reinforcement Learning in combination with

simulation approaches.

22

The obtained results are presented and discussed in Chapter 5.

Chapter 6 concludes the dissertation with its conclusions and recommendations for future

research.

23

Chapter 2

 Literature Review

The purpose of this chapter is to present the results of a bibliographic search in order to

facilitate a simple internalisation of the concepts that will be discussed throughout the

dissertation.

Scheduling is a decision-making procedure utilized often in several manufacturing and

service industries. The purpose is to maximize one or more objectives by the allocation of

resources to activities across specified time intervals.

2.1 - The role of Scheduling

A variety of resources and tasks might exist inside an organization. The resources may

consist of machinery at a workshop, runways at an airport, building workers, processing units

in a computing environment, etc. The duties may include production process activities, airport

takeoffs and landings, building project phases, computer program executions, etc. Each job

may be assigned a particular priority level, earliest feasible start time, and deadline date.

Furthermore, objectives might take on a variety of shapes. One target may be the reduction of

the time required to finish the final assignment, while another may be the minimization of the

number of tasks done past their respective due dates [6].

Scheduling, as a decision-making process, plays a significant part in most of the

manufacturing and production systems, as well as in most of information processing settings

[6]. It is also essential in the transportation and distribution sectors, as well as other service

businesses.

In a production system or service organization, the scheduling function must interact with

several other processes. These interactions are system-dependent and may vary considerably

between situations. They frequently occur inside a company-wide information system.

24

Consider the following generic production setting and the significance of its scheduling. In

a production environment, orders must be converted into tasks with corresponding due dates.

Frequently, these tasks must be executed on the computers in a workcenter in sequential

order. Occasionally, the processing of jobs may be delayed if machines are occupied, and pre-

emptions may occur when high priority jobs arrive at busy machines. Unanticipated occurrences

on the shop floor, such as machine breakdowns or longer-than-anticipated processing times,

must also be accounted for since they may have a significant influence on the schedules. In

such a setting, the formulation of a precise job plan aids in maintaining operational efficiency

and command.

2.1.1 - Production Scheduling

In order to give the appropriate background for our JSSP, this part investigates a number

of scheduling issues, variations, and solution techniques.

Production scheduling [6] is a major topic in operations management. It is necessary to

establish when and on which machine a work should be processed. The manufacturing

environment may be exposed to a variety of uncertainties, such as dynamic job arrivals,

variations in execution time, and machine failures. The idea is to schedule jobs so that they

are as efficient as feasible in terms of some fitness parameter.

Our primary problem will be the JSSP.

According to [2] a scheduling problem may be defined by the triplet {𝛼, 𝛽, 𝛾}, 𝛼 is the

machine environment, 𝛽 is the process characteristics and 𝛾 is the objective to be optimized.

The goal is to schedule a job and assign a machine to optimise 𝛾 , providing that all restrictions

𝛽 are satisfied.

The machine environments represented by 𝛼 can be:

• Single machine: It refers to a single machine. It is the simplest scenario.

• Identical machines in Parallel (𝑷𝒎): There are 𝑀 identical machines. A job 𝑗 needs

a single operation and can be performed on any machine or a subset of machines.

• Machines in parallel with different speeds (𝑸𝒎): There are m machines in parallel

with different speeds. The speed of machine 𝑖 denoted by 𝑣𝑖. So the speed only

depends on the machine.

• Unrelated machines in parallel (𝑹𝒎): There are m different machines in

parallel. The machine 𝑖 can process job 𝑗 at speed 𝑣𝑖𝑗. The speed depends on the

machine and the job.

• Flow shop (𝑭𝒎): There are 𝑀 machines in series. Each job has to be processed

on each machine. All jobs must follow a given route. A job goes to the next

machine queue after its completion on the machine it was [7].

The preceding contexts serve as building blocks for our primary concerns.

25

2.1.2 - JSSP Characterization and Definition

• Job Shop (𝑱𝒎): Each job 𝑗 has its own set of operations 𝑂𝑗, which are executed in a

specified sequence. In addition, each operation must be executed on a predetermined

machine and has a specific processing time 𝑝𝑖𝑗. The 𝛽 can differentiate between job

shops where a job can visit a machine just once or several times. In the latter case, 𝛽

has the recirculating parameter rcrc. Moreover, a machine can only process a job at a

time [7].

The goal of the problem is to build a scheduler that maximizes a specified objective

function for each of the preceding machine settings.

Some common objective functions in production scheduling [8]:

• Makespan: completion time of the last job that leaves the system.

• Maximum flowtime: maximum flowtime achieved by any of the jobs.

• Maximum tardiness: is the maximum tardiness achieved by any of the jobs.

• Total weighted completion time: denotes the weighted sum of all completion times.

• Total weighted tardiness: is the weighted sum of tardiness values of all jobs.

• Mean tardiness: is the mean of the tardiness of all jobs.

• Total flowtime: is the sum of flow times of all jobs.

• Weighted number of tardy jobs: is the weighted sum of all tardy jobs.

• Weighted earliness, and weighted tardiness: is the sum of the total weighted

tardiness and the total weighted earliness.

• Machine utilization: the difference between the maximum utilization and minimum

utilization of all machines.

2.1.3 - JSSP Types

As with other types of machine scheduling challenges, JSSP requires two distinct entities. One

is the tasks to be processed (e.g., mechanical parts, electrical components, or other objects),

which are commonly referred to as jobs; the other is the facilities used to process jobs. In

addition to these, the production activities of manufacturing systems frequently involve one or

more of the supplemental resources listed below: operators, transportation devices, industrial

robots, auxiliary equipment and appliances, warehouses, buffers, and containers [9].

All this is represented in table 2.1.

Table 2.1 - The entities, the corresponding attributes, and their options or values in JSSP, adapted from

[10]

Entity Attribute

Job Release time Due date Processing

Time

Auxiliary

time

Categorical

attribute

26

Batch

attribute

Weight

attribute

(priority)

Technological

attribute

Release

mode

Delivery

mode

Machine Functional attribute Availability Categorical

Attribute

Affiliation attribute Energy

consumption

attribute

Carbon emission

attribute

Job-Machine Processing

suitability

Processing model Processing successive

attribute

Precessing

preemption

Processing reentracy Processing overlap

Supplementary

resources

Operator-involved Robot-involved

Buffer size Other supplementary resources

The attributes of entities are the primary aspects that reflect the distinctions and features

of a JSSP model. Furthermore, any of the criteria may often be applied to different JSSP models

[9], visible in table 2.2.

Table 2.2 - The JSSP basic types, subtypes, adapted from [9]

JSSP types Subtypes

Classical JSSP

Dynamic JSSP Related to

time attributes

of jobs

Related to the number of

jobs

Related to

qualities of

jobs

JSSP considering the

machine availability

Considering

machine

breakdown

Considering periodic

maintenance

Considering

state-based

maintenance

Flexible JSSP With machine independent

processing times

With mahine dependet

processing times

JSSP considering

batches

Parallel batch Batch decision

JSSP considering

setup times

With sequence dependente

setup time

With sequence independente

setup tim

JSSP with

nondeterministic or

With start time

depedent

With

controllable

With random

distribution

With fuzzy

processing times

27

nonconstant

processing time

deteriorating

jobs

processing

times

processing

times

Distributed JSSP In different cells

In different lines

In different

factories

JSSP with dual-

resource constraints

Considering availabilities of machines and operators

2.1.4 - JSSP Approaches

The problem can be described as follows: Let 𝑀 define a collection of machines and 𝐽 a set of

to-be-processed jobs. Each job 𝑗 ∈ 𝐽 consists of several operations (set 𝑂𝑗) that must be

performed on a particular machine. In addition, each operation (𝑖 ∈ 𝑂𝑗) has its own

processing time 𝑝𝑖𝑗 [6]. Also, we assume that a machine cannot be pre-empted and include

setup time in the processing time. In the dynamic variant, the production setup may be

exposed to many uncertainties, such as the dynamic arrival of jobs, fluctuations in execution

time, and machine problems. We will not examine variance in processing times, however

dynamic job arrivals will be considered (i.e. the jobs arrival time are unknown in advance)

[7].

Multiple strategies were explored to address this problem. Approaches that are proactive

generate an offline schedule that is resistant to the variance of execution time events [10].

Therefore, the jobs will be sent according to the offline scheduler's set sequence at the time

of execution. However, its performance is heavily dependent on the data collected during

offline scheduler production. There is a hybrid predictive-reactive scheduling method in

which a portion of the production system is continually modified during operations.

Furthermore, there are reactive approaches that make no decisions in advance. When a task

arises in real time, a local choice is taken. Usually, this uses simple and constructive

heuristics such as Dispatching Rules, Insert algorithms or Bottleneck base heuristics methods

to prioritize jobs.

Use priority dispatch rules such as the shortest processing time, the longest remaining total

processing time, the earliest delivery time, and the selection of the same machine for the first

working process. All operations are sent according to their respective priorities, with the

operation with the greatest priority being scheduled first. Therefore, the key technology

focuses on finding the optimal priority rules for various real-world challenges. For instance, if

minimizing the average flow time of all tasks is the top priority, we may select the rules with

the quickest processing time. But if minimizing the maximum delay is of the utmost

importance, the earliest delivery time regulations should be utilized. Typically, many priority

dispatch rules are constructed concurrently to get a satisfactory solution [1].

28

The Insert algorithm was created to address the travelling salesman problem. Inserting

operations or jobs sequentially into partial schedules might often outperform priority rules.

Later, an improved inserting algorithm (IA) was developed, in which a heuristic approach

was used to generate a pre-schedule, and then maintenance tasks were inserted into the pre-

schedule scheme to provide dynamic scheduling [1].

Bottleneck-based heuristics methods, such as the Shifting Bottleneck Process and the Bean

Search, are more advanced techniques for balancing good outcomes and time consumption.

With Shifting Bottleneck Process (SBP), the original problem was simplified and broken into the

subproblems of single machine scheduling, each of which was later handled independently. In

each round of iterations, one bottle machine was selected and the process order of all the jobs

on that bottle machine was set, allowing the procedure to be repeated until full machine orders

were determined [1].

Sometimes, constructive methods, such as dispatching rules, insert algorithms, and

bottleneck-based heuristics, can acquire a JSSP solution extremely fast, but when the issue is

complex, infeasible solutions may be developed. Complex heuristic criteria are typically

required in order to increase the quality of results. For a complex system, there are so many

rules that constrain each other and are sometimes conflicting or caught in a loop. Therefore,

it is challenging to discover a workable solution that satisfies all rules.

2.1.5 - The impact of Industry 4.0

Industry 4.0, also known as the Fourth Industrial Revolution, refers to the current trend of

automation and data exchange in manufacturing technologies, including developments in

artificial intelligence, the Internet of Things, and cloud computing. These technologies have

the potential to greatly impact production scheduling, particularly in JSSP[6].

One key aspect of Industry 4.0 that can impact job shop scheduling is the use of real-time

data and analytics. With the ability to collect and analyse data from all aspects of the

production process, companies can make more informed and accurate scheduling decisions.

For example, data on machine utilization, production rates, and worker productivity can be

used to optimize the scheduling of tasks and resources.

Another aspect of Industry 4.0 that can impact job shop scheduling is the use of advanced

technologies such as robotics and machine learning. These technologies can help automate

certain tasks and processes, improving efficiency and freeing up human workers to focus on

more complex and value-added tasks. This can also allow companies to schedule production in

a more flexible and responsive manner, as they can quickly adjust to changing demand or other

factors [6].

Overall, the impact of Industry 4.0 on production scheduling in JSSP can be significant, as

it allows companies to make more informed and efficient decisions about how to allocate tasks

29

and resources. This can help increase productivity and competitiveness, as well as reduce costs

and improve customer satisfaction.

2.2 - Reinforcement Learning

In this subchapter, will be explored the rich body of literature surrounding reinforcement

learning techniques.

2.2.1 - Machine Learning

The fact that JSSP is an NP-hard problem makes it difficult to solve using conventional

optimizers [11]; as a result, typical optimizers are unable to find an optimal solution in a

reasonable amount of time[12]. Consequently, scheduling strategies are utilised rather than

complete optimizers.

As previously demonstrated, Dispatching rules (DRs) have attracted considerable interest

as a result, although they are difficult to manually construct. It is challenging to obtain a rule

with good performance since DRs tend to be myotic [13]. Consequently, Machine Learning is

employed to achieve these DRs, overcoming the obstacles associated with manually developing

one.

Basically, Machine Learning aims to learn based on previous data and make predictions or

decisions for the future [14].

Enumerating some of its applications:

• Analyse product images on a production line to automatically classify them;

• Detect tumours thought brain scans;

• Summarize long documents automatically.

In accordance with their learning methods, Machine Learning systems may be divided into

three categories:

• Supervised Learning: An external supervising Agent provides a sequence of

samples (inputs) with the correct response (outputs), and then, based on training,

the implemented algorithm generalises the correct answer to another set of inputs

[15].

• Unsupervised Learning: The developed algorithm attempts to find similarities

between inputs and classify them accordingly. Clustering is one of the most well-

known procedures [15].

• Reinforcement Learning: Between Supervised Learning and Unsupervised

Learning. The algorithm is informed about the response's quality, but not how to

improve it. So, it is vital for the Agent to research and test alternatives until he or

she learns how to generate a higher quality answer [15]

30

In this dissertation, it is pertinent to analyse, essentially, the Reinforcement Learning field.

2.2.2 - Reinforcement Learning Concepts

One of RL's enduring issues is learning how to manage Agents directly from high-level sensory

input, such as vision and voice.

Contrary to other kinds of Machine Learning, such as Supervised Learning, the Agent is not

explicitly instructed on what actions to perform[16]. Therefore, at the conclusion of the

learning phase, the Agent will need to determine which of his previously deliberated acts

resulted in bigger rewards. Intriguingly, the present activities will effect the relevant reward

as well as future rewards.

The two most significant aspects of RL are "trial-and-error search" and "delayed reward".

Unlike Supervised Learning, which is a way of learning based on examples provided taking

into account the knowledge of an external supervisor, this is not appliable to an interactive

learning[16]. This is because, for most interactive issues, it is hard to acquire samples of the

required behaviour that are both right and representative of all situations in which the Agent

must operate.

• Agent: The Agent is the entity responsible for making decisions, and it is referred to

as the "learner" and "decision maker". In particular, the Agent and the environment

interact in discrete time intervals (𝑡 = 0, 1, 2, …). As shown in figure 2.1, the Agent

gets, for each 𝑡, a representation of the environment's state, 𝑠𝑡, such that 𝑠𝑡 ∈ 𝑆

represents the set of all conceivable states. The Agent receives a reaction in the form

of a reward 𝑟𝑡+1 ∈ 𝑅 and a new state of the environment, 𝑠𝑡+1, which serves as

feedback for the subsequent decision 𝑎𝑡+1 [17].

• Environment: The environment is responsible for informing the Agent about the

current condition and the reward earned for the action conducted earlier. It also

provides a list of all potential states to the Agent [16].

• Action: The action is the consequence of the Agent's decision. The purpose is to

identify the optimal solution, which equates to selecting the action that will yield the

greatest reward given that each action generates varying reward values [16].

• Reward: The reward is a form of feedback that allows the Agent to evaluate the results

of his actions in the previous stage. It is essential to reiterate that the purpose is to

achieve the highest possible accumulation of rewards, bearing in mind that obtaining

a large reward in one condition does not always indicate that the eventual

accumulation of rewards would be the best. This is because, despite the fact that a

certain reward in a given condition is the biggest, it may lead to a less-than-ideal

scenario in the future and negatively impact subsequent rewards [18].

31

• Policy 𝝅: It is a mapping approach that enables the Agent to determine the next action

to do in order to accrue a substantial reward over time. The RL explains how the Agent

might modify its policy, taking its experience into consideration.

In addition to policy, value function, and model, The Agent can also be classed. A

policy, 𝜋, is a mapping of states 𝑠 ∈ 𝑆 and actions 𝑎 ∈ 𝐴(𝑠) for the probability 𝜋(𝑠, 𝑎)

of performing an action at the time of a state 𝑠. 𝑉𝜋(𝑠) continues to represent the worth

of the state 𝑠 according to a policy 𝜋 [17].

Figure 2.1 - Agent-Environment interaction diagram, adapted from [17]

Therefore, the RL lets the Agent to determine what action to take, taking his own

experience into consideration. So that he may subsequently carry out his action, the Agent will

have to review his prior judgements and determine if he actually received a favourable payoff.

In this way, a new paradigm emerges in which the Agent, in addition to exploring his existing

knowledge from past scenarios, must also explore new, never-before-made options to

determine if receives a greater benefit. Because in both circumstances, the Agent will fail (get

a lower reward) and the answer lies within the Agent's critical capacity, he must do several

tests in order to locate the solution that yields a final value matching to the greatest reward

[17].

2.2.3 - Deep Reinforcement Learning

Deep reinforcement learning (DRL) is an extension of reinforcement learning (RL) that

incorporates deep neural networks with traditional RL algorithms. DRL introduces deep

learning techniques to manage high-dimensional input spaces, such as images or raw sensor

data, by leveraging neural networks for representation learning, whereas RL concentrates on

learning optimal actions in a given environment[19].

The incorporation of deep neural networks into DRL offers a number of significant

advantages over conventional RL approaches:

• Representation Learning: Deep neural networks can autonomously learn valuable

features from unprocessed input data, allowing DRL algorithms to directly process

complex observations. This eliminates the requirement for manual feature

engineering, making DRL more adaptable and applicable to a wider variety of

problems [20].

32

• Function Approximation: As function approximators, DRL uses deep neural

networks to estimate action-value functions or policies. These networks are

capable of capturing intricate patterns and nonlinear relationships, enabling DRL

agents to model complex behaviours and make accurate predictions [20].

• End-to-End Learning: By combining representation learning and function

approximation, DRL agents can generate actions directly from unprocessed sensory

input, facilitating end-to-end learning. This simplifies the training pipeline and

reduces reliance on components designed by specialists [20].

In the realm of DRL, numerous algorithms have been proposed to tackle the challenges of

high-dimensional state spaces, complex action spaces, and sample efficiency. Some notable

algorithms include Deep Q-Networks (DQN), Trust Region Policy Optimization (TRPO), and

Asynchronous Advantage Actor-Critic (A3C). These algorithms have demonstrated impressive

results in different tasks and have contributed to the success of DRL. Among the wide array of

DRL algorithms, Proximal Policy Optimization (PPO) has gained significant attention and

emerged as one of the most widely used and effective algorithms.

2.2.4 - Proximal Policy Optimisation

PPO is an on-policy algorithm that maximizes the expected cumulative reward by optimizing

a policy function. It employs a trust region strategy to ensure that policy revisions are

relatively conservative, thereby preventing radical changes that could destabilise the

learning process [21].

The key characteristics of PPO include:

• Policy Optimisation: PPO optimizes the policy function explicitly in order to

maximize the expected reward. It accomplishes this by accumulating data

iteratively through interactions with the environment and using this information to

update the policy parameters [22].

• Proximal Policy Optimization: PPO employs a substitute objective function with

a proximity constraint. This constraint prevents policy updates from deviating too

significantly from the original policy, thereby assuring more stable and reliable

updates [22].

• Multiple Epochs: On the collected data, PPO performs multiple iterations of

policy updates. It repeatedly samples mini-batch sizes from the data and

executes multiple optimization steps, which serves to further stabilize the

learning procedure and enhance sample efficiency [21].

• Clipped Surrogate Objective: PPO includes a clipping mechanism in the

substitute objective function to limit the extent of the update. This clipping

33

prevents substantial policy modifications that could result in unstable training or

calamitous forgetting of previously learned behaviours [21].

PPO is a popular and effective algorithm in the field of DRL as a result of its stability,

simplicity, and strong empirical performance. It achieves a balance between sample efficacy

and policy optimisation, making it applicable to a broad array of RL problems.

2.3 - Simulation

Modelling is a method for solving real-world context issues. The majority of the time, we

cannot afford to conduct experiments and tests on actual products in order to find the

optimal answer, as these objects are generally expensive and even uncommon. Thus,

simulation assumes a fundamental role in this context [23].

In addition to the objective of modelling, this strategy has other advantages, such as [24]:

• Simulation models enable us to analyse systems and identify solutions where

analytical models fall short;

• It permits the testing of new policies, operational processes, decision rules, and

information flows without modifying the actual system;

• Discover the bottlenecks.

Unfortunately, despite all of these advancements, it might be difficult to understand the

final results at times. The fact that the simulation takes extensive training is one of the

simulation's negative aspects.

2.3.1 - Simulation Modelling

This section covers the fundamental components of a simulation system so that its

composition may be better comprehended [25]

• System: A set of things that interact in order to fulfil the specified goals.

• Model: A system model is an abstract representation of a system that describes its

state, entities, processes, events, and activities, among others.

• System State: A set of variables required to describe the system.

• Entity: A set of variables required to describe the system.

• Attribute: An entity property.

• Event: An entity property.

• Activity: The amount of time a task requires to be completed, which is known before

it begins.

• Delay: The extra time interval, whose endpoint is solely known.

• Clock: A variable that reflects the duration of simulation.

34

A method is a framework for representing real-world systems in simulation models. Agent-

Based, System Dynamics, and Discrete-Event Modelling are the three classifications applicable

to simulation modelling approaches. The application of each of these techniques relies on the

system to be created and its goals [26].

2.3.2 - Simulation Modelling Paradigms

• Agent-based: It belongs to the category of computer models used to simulate the

behaviours and interactions of autonomous Agents (individual or collective). Despite a

lack of understanding of the system's behaviour and the inability to describe the

process flow, the primary aim is to verify and analyse the impact of the Agents on the

system as a whole [27].

• System Dynamics: This model is a perspective and a collection of conceptual tools

that enable the comprehension of the structure and dynamics of complex systems.

This model is also a rigorous modelling technique that permits the construction of

formal simulations of complex systems and their use in the formulation of more

effective policies and organisations [27].

• Discrete-Event Modelling: It makes it possible to represent a system as a discrete

series of occurrences in time. Each event occurs at a predetermined time and alters

the state of the system. This system demands that modelling be seen as a process

consisting of a series of Agent-performed activities [27].

The paradigm used in this dissertation was the Discrete-Event Modelling.

2.3.3 - Construction Steps of a Simulation Model

• Problem Formulation: The problem must be clearly stated so that there is no room

for ambiguity. There are still instances in which an entire or partial reformulation of

the problem is required [24].

• Establishment of Objectives and General Project Plan: The objectives will be the

questions to be answered through the simulation. After deciding which simulation

method is the most suitable, it is necessary to list a series of alternatives to the

simulation and find ways to evaluate the effectiveness of these same solutions.

Besides the objectives defined for the end of each state, it is also important to

mention in the plan the number of people involved, as well as the associated costs

and the estimated time for each phase of the project [24].

• Model Conceptualisation: It is not feasible to establish a priori the instructions that

would result in a good model, but there are some viewpoints that must be adhered to

in order for the model to be successful. To get good outcomes, it is vital to define a

simple model and then make the required modifications step by step [24].

35

• Data Collection: The collecting of data is closely related to the creation of the

model, since the acquired data will serve as model input. While data collection

consumes significant amounts of time, and as this is a crucial element of the model's

development, it is crucial to begin it as soon as feasible [24].

• Model Translation: During this phase, the model is translated into a simulation

language using specialised software. In the specific case of this dissertation, the

software used is the FlexSim program [24].

• Verification and Validation: This stage allows verification and debugging tests to be

run to determine whether the software is ready for the simulation model. By

comparing the model to the existing system's behaviour, it is beneficial to use this

feedback to enhance the model. The procedure is done repeatedly until a good

outcome is achieved [24].

• Experimental Design: The previously defined options from the "Establishment of

Goals and General Project Plan" phase that must be simulated must be identified

[24].

• Production and Analysis of results: Following several testing of the model with

various data, the resulting analyses are utilised to estimate the performance of the

simulated system [24].

• Documentation: It is important to submit two sorts of data following the simulation:

programme and progress. In the event that others utilise the programme in the

future, the programme documentation describes its operation and behaviour, as well

as other basic characteristics. This is crucial for the model's legitimacy and

certification in terms of the progress report [24].

• Implementation: The implementation's success will depend on each of the preceding

phases [24].

36

37

Chapter 3

Problem and Simulation Base Model

This chapter defines the essential information for testing a RL technique in a JSSP instance by

describing the problem and providing a full analysis of it. This chapter also defines the

simulation elements common to the collection of to-be-executed implementations.

3.1 - Job Shop Scheduling Problem

Operations scheduling is the process of planning and organising the activities and resources

required to complete the production of goods or services. This includes determining the

sequence of operations, assigning adequate resources to each operation, and estimating the

time and cost required for each step.

In a factory, operations scheduling usually involves dividing the production process into

different modules or process into different modules or departments, each of which is

responsible for execution of a specific set of operations on the product. For example, a factory

producing automobiles may have a module for welding, another for painting, and another for

assembly. However, car factories organise these modules into a production line in order to

maximise line the profitability of the production line.

Once the product has undergone each of the necessary operations in a particular module,

it is then transported to the next module for further processing. In the scenario introduced

above, transportation introduces an additional logistical challenge, as the plant has to ensure

that the product is moved efficiently and on time to avoid delays in the overall to avoid delays

in the overall production process.

In this case, the manufacturing process is divided into 3 non-contiguous factory modules:

department A, the initial module of the factory; department B and department C.

The first department consists of 2 machines in parallel (M1 and M2). Machine 1 (M1) uses 3

different tools (F1, F2 and F3). Machine 2 (M2) uses 2 different tools (F4 and F5).

The department B is composed of Machine 3 (M3), using 2 tools (F6 and F7).

Finally, the department C packages the products produced so that they can be transported

directly to the shops for sale, according to the orders placed by each retailer. Machine 4 (M4)

is used for packaging.

As the various modules are not in the same place it is necessary to transport the product

to the module where it will have to operate next. For this there are 3 transport services:

operator A, B and C. There is only one operator to directly connect two modules, so it will

38

always be necessary to consider the return time of the operator before it can make a new

journey. The structure of the plant is summarized in the diagram represented in Figure 3.1.

Figure 3.1 - Diagram Representing the Factory Structure

The model used in FlexSim that represents the diagram of the previous figure, is shown in the

following figure.

Figure 3.1 – Block diagram of the problem

3.1.1 - Problem Instance

The factory produces essentially 4 products for sale to retailers. The sequence of operations

required to produce each of these products can be summarised by:

• Product 1: M1F1 – M2F4 – M3F6 – M4;

• Product 2: M1F2 – M2F4 – M3F7 – M4;

• Product 3: M1F3 – M2F5 – M4;

• Product 4: M1F3 – M2F5 – M3F7 – M4;

Firstly, the operation times and the setup costs for each machine necessary to produce

each of the 4 types of products were defined.

39

Table 3.1 - Duration (in minutes) of the operation to be carried out on each machine, according to the
type of product

Type of

product

Machine

1

Machine

2

Machine

3

Machine

4

1 10 3 9 5

2 8 3 7 5

3 7 4 5 -

4 7 4 7 5

Then, tool changeover results in costs and machine downtimes with fixed durations. Thus,

tool changeover brings with it an interval in which the machine may not be performing useful

work.

Table 3.2 - Duration (in minutes) of the total changeover to be carried out on all machines, according to

the type of product

Type of

product

1 2 3 4

1 - 3 4,5 6,5

2 3 - 2,5 2,5

3 4,5 2,5 - -

4 6,5 2,5 - -

Finally, each operator has fixed machines with which they can move.

Table 3.3 - Parts Transportation (based on destination machine)

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

Operator 1 Operator 1 Operator 2 Operator 3/

Operator 4

Operator 5

It was considered that only one order of 3 pieces of each product type was made, that is

12 pieces in total.

The objective function used will be the minimization of the makespan.

3.2 - Discrete-Event Simulation Model – FlexSim

Following the steps outlined in section 2.8.2 to construct a simulation model, it is possible to

simulate the behaviour of the investigated system using the discrete event simulation category

of the FlexSim software utility.

40

This software programme enables for a highly accurate and realistic simulation of the

factory's behaviour. Thus, it is possible to simulate the release timings of a component as well

as the processing of each machine, allowing us to draw accurate conclusions concerning the

system's behaviour.

3.2.1 - Entitites

These objects represent the parts that run through each one of the machines. As shown in

figure 3.3, by selecting an object, you can access its part type (type) and order posting number

(Sequence).

Figure 3.3 - Properties of an entity in FlexSim

41

3.2.2 - Resources

The FlexSim Library provides a vast assortment of resources, as shown in figure 3.4 below. In

this JSS problem, the resources will specifically represent the machines.

Figure 3.4 - Library in FlexSim

3.2.3 - Machines

The machines are reflected by Fixed Resources and it is important to mention that they will be

represented by native Processor resources, illustrated in figure 3.5. It is also possible to obtain

concrete information about the inputs and outputs of the parts in each machine.

Figure 3.5 - Graphical representation of a Machine in FlexSim

42

3.2.4 - Transport

Transport times were not considered for the simulations to simplify them.

3.2.5 - Load

All components enter the system via the Source; however, in this instance, this resource has

been supplanted with a Queue, which permits the same behaviour. The primary advantage of

employing a Queue object rather than a Source is the ability to observe the accumulation of

components throughout the simulation.

3.2.6 - Unload

Sink is the location of the final discharge of items.

3.2.7 - Process Flow

3D model and Process Flow are the two most important instruments for creating simulation

models. Regarding Process Flow, it overlaps the 3D model under all conditions.

However, cooperation between the two is essential, although in this instance, the transfer of

entities and resources will be defined in the Process flow.

In general, all transport systems consist of two major components: the parts creation (figure

3.6), and the transportation and parts processing (figure 3.7). The phases of creation and

processing are shared by all models discussed in this dissertation [16].

• Parts Creation

This block causes the parts to be created according to the sequence established before

starting the whole process.

Figure 3.6 - Representation of the "Parts Creation" Block

• Transportation and Parts Processing

43

Figure 3.7 - Representation of the "Transportation and Parts Processing" Block

Depending on the type of the current part, the block permits accessing the Routings Table

(figure 3.8) and identifying the correct line in order to follow the machine sequence for the

type of part in question. However, it must be noted that the part will be just moved from the

current machine to the next one if there are no parts in the respective machine, because its

maximum capacity is unitary. These restrictions are defined by the creation of zones, focused

on each one of the existing machines. Processing times and changeover times are also defined

in tables, which are read by the model machines depending on the current part type.

Figure 3.8 - Routings Table

3.2.8 - 3D Model

In the next figure, it is possible to see the 3D model of the problem under analysis. By

visualizing the 3D model in FlexSim, users can observe the dynamics of the simulated system,

44

the flow of materials, the interactions between elements, and perform analyses to optimize

system performance. 3D simulation provides a more realistic and interactive representation of

the system, allowing users to identify bottlenecks, test different scenarios, and make informed

decisions to improve efficiency and productivity.

Figure 3.9 - Model 3D in FlexSim

45

Chapter 4

Adopted Methodology

This chapter provides insight into the implementation of the RL model in this problem, but

also into the implementation of OptQuest.

4.1 - Contextualization of the RL implementation

The key difference between this implementation and the one presented in Section 4.4 is the

addition of a third element (Agent), which is responsible for decision making. The Agent is

educated with Reinforcement Learning algorithms to define, like the previous system, the

sequence of parts entering the simulation.

In addition to this capability, this Agent may also close and reset the FlexSim simulation

application.

As illustrated in figure 4.1, the Server is merely an intermediary between this third entity

and the Flexsim simulation environment. Similarly, to the simulation environment, which was

previously defined as a client, the Agent will also be a client, while the Server will serve as

the "go-between".

In other terms, the Agent is the programme that contains the code that executes certain

functionalities on the training environment (FlexSim) [16].

In this dissertation, the Server is already included in FlexSim, which is a new module of

this simulation programme.

Figure 4.1 - Agent-Server-FlexSim relationships, adapted from [16]

In accordance with this logic, there are 3 possible forms of interaction between the Agent

and the simulation environment:

• Reset: Its use enables the Agent to request a reset of the FlexSim;

• Close: Allows the FlexSim to be closed;

46

• Step: Grants the transmission of an action, representing the total production of the

12 parts. The action decision is modified and enhanced by RL algorithms of the

StableBaselines framework training a neural network. This framework is an improved,

more stable variant of the OpenAI Baselines algorithms [16].

The only distinction between the available RL algorithms is the strategy used to redefine

the policy defining the action to be taken for a given system state. The Proximal Policy

Optimization (PPO) algorithm is the current state-of-the-art in the domain of this

dissertation; therefore, it was deemed most suitable for the present problem. However, it is

possible to use other algorithms in the future with only minor modifications to the Agent's

source code.

This Agent comprises a neural network that receives simulation environment observations

as input data and outputs the representative action of the Production Sequence.

The sections 4.2 and 4.3 present the problems regarding Reinforcement Learning treated

in this dissertation.

Regarding the initial query regarding the Agent-Server-Flexsim relationships, it is

necessary to establish communication between the three entities, example code written in

Python was used, using the OpenAI Gym toolkit and the Stable-Baselines3 implementations of

reinforcement learning algorithms, provided by FlexSim itself.

The 3 python scripts used were:

• Flexsim_env.py: FlexSimEnv is a subclass of gym.Env that implements its customised

environment interface. This class contains methods and properties that use sockets to

launch and communicate with FlexSim.

• Flexsim_training.py: A single instance of the main() method demonstrating the use

of the FlexSimEnv class to train a stable_baselines3 reinforcement learning

algorithm, save the trained model, and evaluate the trained model through a direct

connection to the FlexSim environment.

• Flexsim_inference.py: A FlexSimInferenceServer class that implements methods for

handling HTTP requests and is a subclass of BaseHTTPRequestHandler. The main()

method demonstrates importing the trained model that was preserved during training

and hosting an HTTP server that can utilise the trained model to provide an action in

response to a system observation. This is a basic demonstration example that is not

recommended for use in production.

4.2 - Neural Network General Architecture

Originating from the study of the human nervous system, neural networks are distinguished

by their high complexity and nonlinearity. The human brain's remarkable adaptability stems

47

from its ability to aggregate and organise its neurons in order to accomplish quite complex

tasks [28]

The primary objective of the PPO algorithm is to ensure that the new policy is not

radically different from the previous one. The version in use is an implementation of Stable

Baselines, and in addition to supporting vectorized environments, it permits discrete, box,

multidiscrete, or multibinary types for observations and resulting actions. In this specific

case, the observation assumes the discrete type (0-27) and the action admits the

multidiscrete type (12). The next figure 4.2 represents the network architecture of input and

output layers, a single layer perceptron architecture, being the base of the NN of this

dissertation.

Figure 4.2 - SLP Architecture

Within the observation, the first 16 inputs [0-15] indicate the processing time, in seconds,

of each machine, according to the type of part (table 3.1). The last 12 [16-27] correspond to

the total changeover to be carried out on all machines, according to the type of product (table

3.3). The state is updated when the production of the 12 pieces is finished, which corresponds

to an episode of the simulation. Each output neuron represents a piece and its value

corresponds to a number in the interval [-1, 1] obtained by the RL agent. These are ordered in

descending order, leading to the production sequence of the next iteration. The next figure

4.3 represents an example.

48

Figure 4.3 - Action Sorting Example

4.3 - Makespan Minimization using RL

To verify the precise operation of the Reinforcement Learning algorithm PPO, the initial goal

was to minimize the makespan.

The total number of time steps associated with the Agent's learning process was defined as

250,000, which is believed to be sufficient for achieving the optimal solution.

The FlexSim will send the value corresponding to the makespan as a reward to the Server,

but with a negative signal (-makespan), once the 12 items have been produced and entered in

the sink, or once a step has been completed. This specificity is justified by the fact that the

PPO algorithm's objective is always to maximise something. In this instance, the objective is to

maximise (-) makespan, or to minimise makespan. The "done" parameter is also sent as a unit

in this scenario, as the 12 elements have already been inputted into the Sink and the simulation

is complete.

Figure 4.4 - Representation of the block that assigns values to makespan, reward and done

In the following subsections are presented the reward function, a penalty method for the

reward and a normalization.

• Reward Function without Penalty

𝑅𝑒𝑤𝑎𝑟𝑑 = − 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (4.1)

The negative signal is explained in the previous section (4.3).

• Reward Function with Penalty

𝑅𝑒𝑤𝑎𝑟𝑑 = − 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 – 𝑡𝑜𝑡𝑎𝑙𝑃𝑒𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟 (4.2)

49

The penalty “totalPenChangeover” corresponds to the total time used in changeovers by the

machines to produce the 12 pieces. This was intended to benefit iterations with shorter

changeover times, thus subtraction was used, in order to decrease the reward.

Figure 4.5 - Representation of the block that update the "totalPenChangeover"

• Normalization

The primary objective of normalisation is to determine if, by modifying the values of the

observations to values between [0, 1], the algorithm will be able to converge on a suitable

solution more quickly and improve its learning capacity. The expression used was:

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑚𝑖𝑛

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥−𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑚𝑖𝑛
 (4.3)

• FlexSim RL Module

In the next figure it is possible to see the new FlexSim RL module, where all the parameters

are inserted, so that the Agent implements what is intended.

Figure 4.6 - FlexSim RL module

50

4.4 - Makespan Minimization using OptQuest

To address makespan minimization, the OptQuest feature of the FlexSim softwarewas used.

OptQuest is an optimisation feature that integrates tabu search and local search techniques

to discover optimal or near-optimal solutions in FlexSim models. This algorithm is designed to

explore different combinations of values for the decision variables in the FlexSim model, to

find a solution that meets the defined objective, in this case, the minimization of makespan

[29].

The decision variable used was a vector called “ProductionSequence” with 12 positions,

which corresponds to the sequence of pieces entering the simulation, which are numbered from

0 to 12. OptQuest varies the position of these parts within the vector, obtaining and minimizing

the makespan value.

51

Chapter 5

Design of Experiments and Results
Analysis

The purpose of this chapter is to analyse the results obtained from the minimisation of the

makespan, with OptQuest or Reinforcement Learning techniques.

In the chapter's culminating section, important queries are posed to assess the robustness

of each simulation model.

In addition, it should be noted that Python 3.11 and FlexSim (Educational Version 2022)

served as the programming and simulation software development environments, respectively,

for the dissertation. In this section, all simulations were run on an HP OMEN computer equipped

with an Intel Core i7 processor, Quad-core up to 2.20 GHz, and 16 GB RAM.

5.1 - Results of makespan minimization using OptQuest

The settings used are represented in the next figure.

Figure 5.1 – Settings of OptQuest in FlexSim

As can be seen in the lower left corner of figure 5.2, Makespan = 7013,36 seconds was the

best iteration of the makespan optimization by OptQuest. This result will serve as basis for

comparison with the optimization scenarios using RL.

52

Figure 5.2 - Makespan minimization in FlexSim using OptQuest

5.2 - Preliminary Experiments

Some variations of the RL model were also evaluated, such as different hidden layer

configurations, with/without penalty, with/without normalization, varying the step size of

actions and varying the values and the types of actions, as can be seen in the following table.

Table 5.1 – List of Experiments

Experiment Time

steps

Hidden

layer

Penalty Normalization Step

size

Action

Type

Action space

1 250k 2 Yes Yes 0.1 Discrete MultiDiscrete

2 100k 1 Yes Yes 0.1 Discrete MultiDiscrete

3 100k 2 No Yes 0.1 Discrete MultiDiscrete

4 100k 2 Yes No 0.1 Discrete MultiDiscrete

5 100k 2 Yes Yes 0.01 Discrete MultiDiscrete

6 100k 2 Yes Yes 0.1 Continuous Box

53

5.2.1 - Multi Layer Perceptron Configuration

In order to choose the RL agent parameters best suited to solve this job shop problem, some

tests were performed, varying some hyper parameters, as can be seen in the table 5.2.

Table 5.2 – Table of parameters tests

Parameters learning_rate n_steps batch_size n_epochs policy_kwargs Reward

max

Makespan

min

Default 0,003 2048 64 10 none

1 0,003 2048 64 1 []
-9094,6 7627,9

2 0,003 2048 64 1 [8]
-9810,8 7578,1

3 0,003 2048 64 1 [16]
-10087,8 7929,2

4 0,003 2048 64 1 [8, 8]
-9935,2 7647,2

5 0,003 2048 64 1 [16, 16]
-9810,8 7494,2

6 0,003 2048 64 10 []
-9079,9 7657,9

7 0,003 2048 64 10 [8]
-9824,9 7334,9

8 0,003 2048 64 10 [16]
-9779,2 7719,3

9 0,003 2048 64 10 [8, 8]
-9079,9 7474,3

10 0,003 2048 64 10 [16, 16]
-10461,3 7937,4

11 0,003 2048 64 20 []
-9803,6 7674,0

12 0,003 2048 64 20 [8]
-9293,9 7308,6

13 0,003 2048 64 20 [16]
-9293,9 7308,6

14 0,003 2048 64 20 [8, 8]
-9125,0 7797,1

15 0,003 2048 64 20 [16, 16]
-9787,8 7443,4

Using default hyper parameters, the best results (maximum reward and minimum makespan)

are obtained when the "policy_kwargs" parameter is [8, 8], that is, Multi Layer Perceptron

(MLP).

According to the complexity of the job shop problem addressed in this dissertation, MLP has

several advantages over SLP, such as[30]:

• MLPs can manage complex nonlinear data relationships, whereas SLPs are limited

to basic linear relationships [31];

• High-level feature representations: MLPs can learn more complex and higher-level

feature representations, which enables the identification of complex patterns in

the data [31];

• Due to their stratified structure, MLPs are more versatile and adaptable to a

variety of problems than SLPs, which have a limited modelling capacity [31];

54

• The Universal Approximation Theorem states that MLPs can approximate any

continuous function with high precision, making them suitable for a vast array of

modelling applications [31];

• MLPs perform better on tasks involving intricate problems, such as image

recognition, natural language processing, and time series prediction [31].

These summarized benefits demonstrate why choosing an MLP over an SLP can be

advantageous for this dissertation.

5.3 - Results of makespan minimization using RL

As described in Section 4.3, the purpose of the makespan study was to analyse the PPO

algorithm's behaviour.

In this subsection, as said in the chapter 5 presentation, the reward was analysed in various

experiments.

5.3.1 - Experiment 1 – With 2 hidden layers, with penalty and with

normalization

In table 5.2, the experiment with 2 hidden layers was the best parameter with 2048 steps.

Here was used 250 000 steps to have a better analyse of the reward.

This experiment is represented by figure 5.3 and table 5.3 and is used as a default scenario.

The minimum value of makespan is equal to the one using OptQuest, which shows good signs

about the method under study.

Figure 5.3 - Reward related to Experiment 1, for a total of 250k time steps

55

Table 5.3 - Numerical analyse of makespan referring to Experiment 1 (in seconds)

Minimum value Maximum Value

7013,359 12010,910

5.3.2 - Experiment 2 – With 1 hidden layer, with penalty and with

normalization

According to the graph in figure 5.3, the algorithm reaches the maximum quickly, so it was

decided to change the 250k steps to 100k.

Comparing the values obtained in this experiment with the previous one, can be observed

that they are relatively equal, so it can be concluded that for a large number of steps, it is the

same to have 2 or 1 hidden layers for this problem.

Figure 5.4 - Reward related to Experiment 2, for a total of 100k time steps

Table 5.4 - Numerical analyse of makespan referring to Experiment 2 (in seconds)

Minimum value Maximum Value

7013,359 11959,729

5.3.3 - Experiment 3 – With 2 hidden layer, without penalty and with

normalization

As shown in figure 5.5, when the penalty isn’t applied, the maximum value of the reward is

reached later than the first experiment, and its value is higher, as expected according to the

reward function (4.2).

56

Despite this, the minimum makespan value is higher than in the previous experiments. In

conclusion, the introduction of penalty criteria was necessary for the model to progress towards

the optimal solution.

Figure 5.5 - Reward related to Experiment 3, for a total of 100k time steps

Table 5.5 - Numerical analyse of makespan referring to Experiment 3 (in seconds)

Minimum value Maximum Value

7174,298 12005,697

5.3.4 - Experiment 4 – With 2 hidden layer, with penalty and without

normalization

As illustrated in figure 5.6 and table 5.6, without normalisation the Agent reaches the best

reward later, but the makespan value its the same, comparing with the first experiment. It

can be concluded that, when the normalisation is applied, the Agent learns faster.

57

Figure 5.6 - Reward related to Experiment 4, for a total of 100k time steps

Table 5.6 - Numerical analyse of makespan referring to Experiment 4 (in seconds)

Minimum value Maximum Value

7013,359 11950,741

5.3.5 - Experiment 5 – Actions with a different step size

In this experiment, a step size of 0.01 instead of 0.1 was used, in each action.

Figure 5.7 - Parameters of an actions in FlexSim

Analysing the figure 5.8 and the table 5.7, can be concluded that with a lower step size in

actions, the model reaches later and worst results for the reward and the makespan.

Probably, for this experiment a larger number of time steps would be needed, in order to

equal the values of experiment 1.

58

Figure 5.8 - Reward related to Experiment 5, for a total of 100k time steps

Table 5.7 - Numerical analyse of makespan referring to Experiment 5 (in seconds)

Minimum value Maximum Value

7298,640 12010,911

5.3.6 - Experiment 6 – With different action space, and different type of

actions

In this experiment, actions with a continuous type and as action space with box type was

used, instead of discrete actions and MultiDescrete action space.

Figure 5.9 - Parameters of an action in FlexSim

59

Figure 5.10 - Action Space of Reinforcement Learning in FlexSim

This experiment aims to prove that the parameters chosen for the base experiment

(experiment 1) were the correct ones. What can be seen in figure 5.11 and table 5.8, where

the agent learns slower and achieves worst results, both for reward and makespan.

Figure 5.11 - Reward related to Experiment 6, for a total of 100k time steps

Table 1.8 - Numerical analyse of makespan referring to Experiment 6 (in seconds)

Minimum value Maximum Value

7174,298 11899,162

5.3.7 - Results Analysis

In short, it is possible to assert that the Reinforcement Learning PPO algorithm was

accurately implemented, given that the models adhere to their characteristic curves,

maximising reward and minimising makespan.

The minimum makespan value using OptQuest is equal to the value of some experiments (1,

2 and 4) which reveals that probably the optimal solution of the problem was obtained.

In addition, the results also indicate that the normalisation of rewards and application of

penalties enhance the model's capacity for learning.

60

5.4 - Robustness of RL Agent

After analysing the models' performance in deterministic environments, it is necessary to

examine their behaviour in other situations. Particularly, it is essential to investigate the

effect of the variation of observations in order to assess the adaptability of the models.

As can be seen in figure 5.12, the values of the variation limits of the observations have

been changed by 20%. The other parameters of the model are the same as in Experiment 1.

Figure 5.12 - Variation of observations by 20%

As expected, the RL’s Agent takes longer to reach the best reward, indicating a lower

learning rate. However, the difference between the minimum makespan values is quite small,

which represents a excellent indicator regarding the adaptability of the model under study.

61

Figure 5.13 - Reward study, for a total of 100k time steps

Table 5.9 - Numerical analyse of makespan

Minimum value Maximum Value

7014,137 11959,729

62

63

Chapter 6

Conclusions and Future Work

This chapter presents the conclusions resulting from the dissertation project at hand and

allows the reader to determine whether or not all the initial objectives have been met.

Lastly, future contributions to this initiative are also proposed.

6.1 - Conclusions

The primary objective of the project was to combine Reinforcement Learning techniques with

simulation approaches in order to optimise the productivity of a job-shop scheduling problem

through the use of RL and simulation. To this end, the metric used was the minimization of

the makespan.

At first, the construction of the job shop problem was done in the simulation environment,

using the FlexSim software, and, in order to obtain the best possible result, ordering the

production sequence of 12 orders and using traditional optimization methods, such as meta-

heuristics, a software feature, the OptQuest, was implemented.

In a later phase of the project, Reinforcement Learning techniques were implemented in

order to demonstrate that the addition of a third entity, Agent, which is equivalent to a neural

network, increases productivity values. As the network learning model, the PPO algorithm from

OpenAI Baselines was utilised.

Relatively to this third entity, with regard to productivity, the Agent receives an

observation, with all process and changeover times, and a reward. The state is updated when

the production of the 12 pieces is finished. Subsequently, it sends the action it considers most

suitable and which contains twelve neurons, where each one represents a part with a value in

the interval [-1, 1], which is ordered in order to build the vector of the production sequence.

It should also be noted that the neural network considered has 1 input layer and 1 output layer,

composed, respectively, by 28 and 12 neurons. After some tests, it was concluded that the

introduction of 2 hidden layers of 8 neurons each, improved the results.

Concerning the RL-based model, it was demonstrated that the normalisation of rewards is

a crucial factor in achieving improved results, as network learning would not have been as

effective without normalisation. The same happens with the penalty on changeover times.

In order to verify and demonstrate the adaptability and robustness of the productivity

model, the original production mix was altered, and the model was subsequently introduced

into a stochastic environment in terms of processing and changeover times. It is possible to

64

assert that the model has a level of robustness that allows it to be applied in the real world

due to the encouraging results.

Finally, comparing the results of the model using OptQuest and RL techniques, which were

equal, it is possible to conclude that the use of these new RL algorithms in scheduling problems

may be very useful in real contexts.

In conclusion, it should be noted that all the initial objectives proposed were fully respected

and achieved, and that the project's results and conclusions may serve as an analysis and study

tool for future work involving the application of RL techniques in job-shop environments.

6.2 - Future Work

Looking forward, there are many opportunities for further research and development in this

area. For example, additional work could be done to investigate the potential for applying

these techniques in other manufacturing contexts, or to explore the integration of

reinforcement learning with other decision-support tools. These efforts will help to fully

realize the potential of intelligent and flexible production systems, and bring the world closer

to the industry 4.0 vision of decentralized decision-making and self-organizing systems.

In this context, it would be interesting to develop a simpler neural network, where the step

corresponds to the production of only 1 piece. The observation and the action were only one

neuron each, corresponding to the type of piece previously produced, and the piece that would

be produced next, respectively.

Another possible development, would be to add more parts, as well as more types of parts,

so that it would be more difficult to reach an optimal solution, allowing to get a more accurate

learning of the RL agent.

Finally, a further development concerning the robustness of the model using RL techniques

would be interesting, in order to prove that these algorithms will have a significant importance

in the future of scheduling problems.

65

References

[1] J. Zhang, G. Ding, Y. Zou, S. Qin, and J. Fu, ‘Review of job shop scheduling research

and its new perspectives under Industry 4.0’, J Intell Manuf, vol. 30, no. 4, pp. 1809–

1830, Apr. 2019, doi: 10.1007/s10845-017-1350-2.

[2] M. A. Mediavilla, F. Dietrich, and D. Palm, ‘Review and analysis of artificial

intelligence methods for demand forecasting in supply chain management’, Procedia

CIRP, vol. 107, pp. 1126–1131, 2022.

[3] C. Stephanidis et al., ‘Integration of Internet of Things Devices in Manufacturing

Workspaces: A Systematic Literature Review’, in HCI International 2021 - Late

Breaking Papers: HCI Applications in Health, Transport, and Industry, vol. 13097.

Switzerland: Springer International Publishing AG, 2021.

[4] S. Tian, T. Wang, L. Zhang, and X. Wu, ‘The Internet of Things enabled manufacturing

enterprise information system design and shop floor dynamic scheduling optimisation’,

Enterp Inf Syst, vol. 14, no. 9–10, pp. 1238–1263, 2020, doi:

10.1080/17517575.2019.1609703.

[5] T. M. Choi, S. Kumar, X. Yue, and H. L. Chan, ‘Disruptive Technologies and Operations

Management in the Industry 4.0 Era and Beyond’, Prod Oper Manag, vol. 31, no. 1, pp.

9–31, Jan. 2022, doi: 10.1111/POMS.13622.

[6] M. L. Pinedo, ‘Scheduling: Theory, Algorithms, and Systems, 4th Edition’, 2012.

[7] Á. Manuel and F. Pereira Da Silva, ‘Using Dimensionally Aware Genetic Programming to

find interpretable Dispatching Rules for the Job Shop Scheduling Problem’.

[8] M. Ðurasević and D. Jakobović, ‘Automatic design of dispatching rules for static

scheduling conditions’, Neural Comput Appl, vol. 33, no. 10, pp. 5043–5068, May 2021,

doi: 10.1007/S00521-020-05292-W.

[9] H. Xiong, S. Shi, D. Ren, and J. Hu, ‘A survey of job shop scheduling problem: The

types and models’, Computers and Operations Research, vol. 142. Elsevier Ltd, Jun.

01, 2022. doi: 10.1016/j.cor.2022.105731.

[10] J. C. Beck, ‘Proactive Algorithms for Job Shop Scheduling with Probabilistic

Durations’, 2007.

[11] M. R. Garey, D. S. Johnson, and R. Sethi, ‘COMPLEXITY OF FLOWSHOP AND JOBSHOP

SCHEDULING.’, Mathematics of Operations Research, vol. 1, no. 2, pp. 117–129, 1976,

doi: 10.1287/MOOR.1.2.117.

[12] D. H. Wolpert and W. G. Macready, ‘No free lunch theorems for optimization’, IEEE

Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997, doi:

10.1109/4235.585893.

66

[13] Y. Zhou, J. jun Yang, and Z. Huang, ‘Automatic design of scheduling policies for

dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution

genetic programming’, Int J Prod Res, vol. 58, no. 9, pp. 2561–2580, May 2020, doi:

10.1080/00207543.2019.1620362.

[14] Y. Li, ‘Deep Reinforcement Learning: An Overview’, Jan. 2017, doi:

10.48550/arxiv.1701.07274.

[15] M. Kubat, ‘An Introduction to Machine Learning’, An Introduction to Machine Learning,

pp. 1–348, Sep. 2017, doi: 10.1007/978-3-319-63913-0.

[16] F. Alexandre, L. Maia, J. P. Tavares, and V. Basto, ‘Hybrid Machine

Learning/Simulation Approaches for Logistics Systems Optimization’, 2020.

[17] A. M. Andrew, ‘REINFORCEMENT LEARNING: AN INTRODUCTION by Richard S. Sutton

and Andrew G. Barto, Adaptive Computation and Machine Learning series, MIT Press

(Bradford Book), Cambridge, Mass., 1998, xviii + 322 pp, ISBN 0-262-19398-1,

(hardback, £31.95).’, Robotica, vol. 17, no. 2, pp. 229–235, Mar. 1999, doi:

10.1017/S0263574799211174.

[18] V. Hugo et al., ‘Abordagens híbridas de “machine learning”/simulação para sistemas

logísticos dinâmicos’, Jul. 2019, Accessed: Jun. 27, 2023. [Online]. Available:

https://repositorio-aberto.up.pt/handle/10216/121197

[19] V. Mnih et al., ‘Human-level control through deep reinforcement learning’, Nature,

vol. 518, no. 7540, pp. 529–533, Feb. 2015, doi: 10.1038/NATURE14236.

[20] T. P. Lillicrap et al., ‘Continuous control with deep reinforcement learning’, 4th

International Conference on Learning Representations, ICLR 2016 - Conference Track

Proceedings, Sep. 2015, Accessed: Jun. 21, 2023. [Online]. Available:

https://arxiv.org/abs/1509.02971v6

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. K. Openai, ‘Proximal Policy

Optimization Algorithms’, Jul. 2017, Accessed: Jun. 21, 2023. [Online]. Available:

https://arxiv.org/abs/1707.06347v2

[22] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, ‘Trust Region Policy

Optimization’, 32nd International Conference on Machine Learning, ICML 2015, vol. 3,

pp. 1889–1897, Feb. 2015, Accessed: Jun. 27, 2023. [Online]. Available:

https://arxiv.org/abs/1502.05477v5

[23] G. A. Wainer, ‘Discrete-event modeling and simulation: A practitioner’s approach’,

Discrete-Event Modeling and Simulation: A Practitioner’s Approach, pp. 1–494, Jan.

2017, doi: 10.1201/9781420053371/DISCRETE-EVENT-MODELING-SIMULATION-GABRIEL-

WAINER.

[24] J. Banks, J. S. Carson II, and B. L. Nelson, Discrete-event system simulation, 2nd ed.

Upper Saddle River, New Jersey: Prentice-Hall, 1984.

67

[25] M. Munsamy and A. Telukdarie, ‘Discrete event modelling for evaluation and

optimisation of power utility energy demand’, Journal of Industrial Engineering and

Management, vol. 15, no. 1, pp. 124–141, Feb. 2022, doi: 10.3926/JIEM.3606.

[26] A. K. da Silva, ‘Método para avaliação e seleção de softwares de simulação de eventos

discretos aplicados à análise de sistemas logísticos.’, Feb. 2007, doi:

10.11606/D.3.2007.TDE-09052007-160956.

[27] S. Mostafa, N. Chileshe, and T. Abdelhamid, ‘Lean and agile integration within offsite

construction using discrete event simulation A systematic literature review’,

Construction Innovation, vol. 16, no. 4, pp. 483–525, 2016, doi: 10.1108/CI-09-2014-

0043/FULL/XML.

[28] A. Cruz and P. Cortez, ‘Data Mining via Redes euronais Artificiais e Máquinas de

Vectores de Suporte’, Revista de Estudos Politécnicos Polytechnical Studies Review,

vol. 12, pp. 99–118, 2009.

[29] X. Linwei and Z. X. Li, ‘Simulation and optimization of logistics collaborative operation

based on flexsim’, Advances in Intelligent and Soft Computing, vol. 125 AISC, pp. 453–

457, 2012, doi: 10.1007/978-3-642-27329-2_62/COVER.

[30] C. M. Bishop, Neural networks for pattern recognition. Oxford: Oxford University

Press, 1995.

[31] S. S. Haykin, Neural networks and learning machines, 3rd, international ed. Upper

Saddle River: Pearson, 2009.

