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Resumo 

 

A Revolução Industrial 4.0 teve um impacto significativo nos processos produtivos, 

impulsionado pela convergência da tecnologia digital, automação avançada e inteligência 

artificial. No contexto dos ambientes job-shop, onde a programação da produção é complexa e 

altamente dinâmica, o impacto desta revolução tem sido especialmente notável. Nesta nova 

era, a aprendizagem por reforço surge como uma abordagem promissora para otimizar a 

programação da produção, oferecendo soluções adaptáveis e eficientes em tempo real. A este 

respeito, as novas técnicas de planeamento e programação devem considerar não só a dinâmica 

na fábrica, mas também a colaboração interfuncional e a integração de dados. 

O projeto será construído com base num caso de estudo, que corresponde a um sistema de 

produção em ambiente de produção job-shop, criado para atender às características chaves de 

um ambiente industrial real. 

Neste contexto, o objetivo desta dissertação é a combinação de técnicas de Reinforcement 

Learning com abordagens de simulação para a otimização de um problema de agendamento de 

tarefas, relativamente à produtividade e a sua comparação com um algoritmo baseado em 

técnicas de otimização tradicionais, como as meta heurísticas.  

Para além de concluir que a abordagem baseada em Reinforcement Learning proporcionou 

ótimos resultados de produtividade, esta dissertação também tirou conclusões sobre a robustez 

destes modelos, a fim de avaliar a sua adaptabilidade quando sujeitos a contextos diferentes, 

simulando um ambiente do mundo real. 

 

 

 

 

 

  



vi 

 

 

 

 

 

 

  
  



vii 

 

Abstract 

The Fourth Industrial Revolution has had a significant impact on production processes, driven 

by the convergence of digital technology, advanced automation, and artificial intelligence. In 

the context of job-shop environments, where production scheduling is complex and highly 

dynamic, the impact of this revolution has been particularly noteworthy. In this new era, 

reinforcement learning emerges as a promising approach to optimize production scheduling, 

offering adaptable and efficient real-time solutions. In this regard, new planning and scheduling 

techniques must consider not only the dynamics within the factory but also interfunctional 

collaboration and data integration. 

The project will be built based on a case study, which corresponds to a production system 

in a job-shop environment created to meet the key characteristics of a real industrial setting. 

In this context, the objective of this dissertation is to combine Reinforcement Learning 

techniques with simulation approaches for optimizing a task scheduling problem in terms of 

productivity, comparing it with an algorithm based on traditional optimization techniques such 

as metaheuristics. 

Besides concluding that the Reinforcement Learning-based approach yielded excellent 

productivity results, this dissertation also drew conclusions about the robustness of these 

models to assess their adaptability when subjected to different contexts, simulating a real-

world environment. 
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Chapter 1 

 

 Introduction 

This introductory chapter presents a contextualisation, the motivation, the objectives and 

methodologies and the structure of this dissertation. 

1.1 - Contextualization 

One of the oldest and most significant combinatorial optimization issues in operational 

research and management science is a Job Shop Scheduling Problem. Scholars in engineering 

and academic sectors have given JSSP a great deal of attention due to the extraordinarily 

diverse engineering and social application backgrounds [1]. 

The focus of traditional job shop scheduling is on centralized or semi-distributed scheduling. 

A smart, distributed production system supported by cutting-edge manufacturing technologies 

including mass customization, Cyber-Physical Systems, Digital Twin, and SMAC should be the 

focus of scheduling under Industry 4.0. [2]. The modelling and optimization of intelligent 

distributed scheduling must become the primary focus of scheduling research. 

JSSP is a type of production scheduling problem that involves scheduling the processing of 

a series of jobs on a set of machines or resources. In a job shop, each job consists of a series 

of tasks that must be performed in a specific order, and each task requires the use of a specific 

machine or resource. The goal of JSSP is to find a schedule that minimizes the overall 

completion time for all the jobs, subject to any constraints on the available resources and the 

order in which tasks must be completed [3]. 

Reinforcemnt Learning is a type of machine learning that involves training an agent to make 

decisions in an environment in order to maximize a reward. In the context of production 

scheduling, RL can be used to optimize the scheduling of production processes in order to meet 

demand while minimizing costs and maximizing efficiency. RL algorithms learn through trial 
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and error, continuously adjusting their actions based on the feedback received from the 

environment [1]. 

In a production scheduling application, the RL agent can be trained to consider various 

factors such as equipment utilization, raw material availability, and lead times in order to 

make decisions about when and how to schedule production. By learning from past experiences, 

the RL agent can improve its decision-making over time and adapt to changing conditions in 

the production environment [4]. 

RL has the potential to significantly improve the efficiency and effectiveness of production 

scheduling, leading to cost savings and increased competitiveness for businesses. However, 

implementing RL in a production environment can be challenging and requires careful 

consideration of the goals, constraints, and resources of the organization. Overall, RL has the 

potential to be a valuable tool for optimizing production scheduling in a variety of industries 

[1]. 

RL can be used to solve job shop scheduling problems by training an agent to make decisions 

about which tasks to schedule on which machines at each time step. The RL agent can consider 

factors such as the availability of machines, the processing time for each task, and the 

dependencies between tasks in order to make scheduling decisions that minimize the overall 

completion time for all the jobs [5]. 

One challenge in using RL for job shop scheduling is that the environment may be highly 

dynamic, with new jobs and tasks arriving and resources becoming unavailable at unpredictable 

times. RL algorithms are suitable for changing environments, but they may require frequent 

updates and retraining in order to maintain their performance in a dynamic job shop setting. 

As a basis for comparison with the results obtained through RL, a method based on meta-

heuristics, called OptQuest, was used. 

1.2 - Motivation 

There are several reasons why RL may be a useful approach for solving production scheduling 

problems, including job shop scheduling. 

One motivation for using RL in production scheduling is to improve efficiency and reduce 

costs. By optimizing the scheduling of production processes, businesses can minimize the time 

it takes to complete jobs and reduce the idle time of machines and other resources. This can 

lead to cost savings in terms of both labour and materials, as well as increased competitiveness 

in the market. 

Another motivation for using RL in production scheduling is to increase flexibility and 

adaptability. RL algorithms are able to learn from experience and adapt to changing conditions 

in the environment, making them well-suited to handle unpredictable events such as equipment 

failures or changes in demand. This can be particularly valuable in a job shop setting, where 
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new jobs and tasks may arrive at any time and resources may become unavailable 

unexpectedly. 

An additional motivation is the use of a new FlexSim module, which will be explained in 

subchapter 5.1. 

Finally, RL can be a powerful method for improving the overall performance of production 

systems. By continuously learning and adapting to new information, RL algorithms can help 

businesses identify and optimize bottlenecks in their production processes, leading to increased 

productivity and improved quality. 

Overall, the use of RL in production scheduling can provide significant benefits in terms of 

efficiency, adaptability, and performance, making it a valuable tool for businesses in a variety 

of industries. 

1.3 - Objectives and Methodology 

The main goal of this dissertation is the optimization of JSSPs by exploring the application 

of machine learning techniques, in particular RL, and heuristics-based strategies. 

Firstly, it is necessary to make a literature review on JSSP and main methods used to answer 

the problem and respective characterization/definition of the problem that will be addressed. 

In a second phase the work will focus on the development of a simulation model to represent 

the real system, in FlexSim. 

Next, directly apply the OptQuest algorithm to the FlexSim model, representing traditional 

optimization methods. Then, the development of the model prepared for the implementation 

of RL methods and their respective application. 

Finally, the developed models are validated considering specific case studies, comparing 

results in several scenarios. 

1.4 - Structure of the thesis 

Regarding the structure and arrangement of this work, it is separated into six chapters. 

The first chapter pretends to introduce the theme of the dissertation, including its 

contextualization, motivation, objectives and methodology. 

Chapter 2 presents the state-of-the-art of the subjects covered by the dissertation, like the 

production scheduling, in particular the job-shop problem, its types and approaches, the 

Industry 4.0, and finally machine learning techniques, especially deep reinforcement learning 

and its applications. 

The description and characteristics of the problem, as well as the description of its 

methodology, are covered in chapter 3, even as the implementation of the optimisation model. 

Chapter 4 reflects the implementation of Reinforcement Learning in combination with 

simulation approaches. 
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The obtained results are presented and discussed in Chapter 5. 

Chapter 6 concludes the dissertation with its conclusions and recommendations for future 

research. 
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Chapter 2 

 Literature Review 

The purpose of this chapter is to present the results of a bibliographic search in order to 

facilitate a simple internalisation of the concepts that will be discussed throughout the 

dissertation. 

Scheduling is a decision-making procedure utilized often in several manufacturing and 

service industries. The purpose is to maximize one or more objectives by the allocation of 

resources to activities across specified time intervals. 

2.1 - The role of Scheduling 

A variety of resources and tasks might exist inside an organization. The resources may 

consist of machinery at a workshop, runways at an airport, building workers, processing units 

in a computing environment, etc. The duties may include production process activities, airport 

takeoffs and landings, building project phases, computer program executions, etc. Each job 

may be assigned a particular priority level, earliest feasible start time, and deadline date. 

Furthermore, objectives might take on a variety of shapes. One target may be the reduction of 

the time required to finish the final assignment, while another may be the minimization of the 

number of tasks done past their respective due dates [6]. 

Scheduling, as a decision-making process, plays a significant part in most of the 

manufacturing and production systems, as well as in most of information processing settings 

[6]. It is also essential in the transportation and distribution sectors, as well as other service 

businesses. 

In a production system or service organization, the scheduling function must interact with 

several other processes. These interactions are system-dependent and may vary considerably 

between situations. They frequently occur inside a company-wide information system.  
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Consider the following generic production setting and the significance of its scheduling. In 

a production environment, orders must be converted into tasks with corresponding due dates. 

Frequently, these tasks must be executed on the computers in a workcenter in sequential 

order. Occasionally, the processing of jobs may be delayed if machines are occupied, and pre-

emptions may occur when high priority jobs arrive at busy machines. Unanticipated occurrences 

on the shop floor, such as machine breakdowns or longer-than-anticipated processing times, 

must also be accounted for since they may have a significant influence on the schedules. In 

such a setting, the formulation of a precise job plan aids in maintaining operational efficiency 

and command. 

2.1.1 - Production Scheduling 

In order to give the appropriate background for our JSSP, this part investigates a number 

of scheduling issues, variations, and solution techniques. 

Production scheduling [6] is a major topic in operations management. It is necessary to 

establish when and on which machine a work should be processed. The manufacturing 

environment may be exposed to a variety of uncertainties, such as dynamic job arrivals, 

variations in execution time, and machine failures. The idea is to schedule jobs so that they 

are as efficient as feasible in terms of some fitness parameter. 

Our primary problem will be the JSSP. 

According to [2] a scheduling problem may be defined by the triplet {𝛼, 𝛽, 𝛾}, 𝛼 is the 

machine environment, 𝛽 is the process characteristics and 𝛾 is the objective to be optimized. 

The goal is to schedule a job and assign a machine to optimise 𝛾 , providing that all restrictions 

𝛽 are satisfied. 

The machine environments represented by 𝛼 can be: 

• Single machine: It refers to a single machine. It is the simplest scenario. 

• Identical machines in Parallel (𝑷𝒎): There are 𝑀 identical machines. A job 𝑗 needs 

a single operation and can be performed on any machine or a subset of machines. 

• Machines in parallel with different speeds (𝑸𝒎): There are m machines in parallel 

with different speeds. The speed of machine 𝑖 denoted by 𝑣𝑖. So the speed only 

depends on the machine. 

• Unrelated machines in parallel (𝑹𝒎): There are m different machines in 

parallel. The machine 𝑖 can process job 𝑗 at speed 𝑣𝑖𝑗. The speed depends on the 

machine and the job. 

• Flow shop (𝑭𝒎): There are 𝑀 machines in series. Each job has to be processed 

on each machine. All jobs must follow a given route. A job goes to the next 

machine queue after its completion on the machine it was [7]. 

 

The preceding contexts serve as building blocks for our primary concerns. 
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2.1.2 - JSSP Characterization and Definition 

• Job Shop (𝑱𝒎): Each job 𝑗 has its own set of operations 𝑂𝑗, which are executed in a 

specified sequence. In addition, each operation must be executed on a predetermined 

machine and has a specific processing time 𝑝𝑖𝑗. The 𝛽 can differentiate between job 

shops where a job can visit a machine just once or several times. In the latter case, 𝛽 

has the recirculating parameter rcrc. Moreover, a machine can only process a job at a 

time [7]. 

The goal of the problem is to build a scheduler that maximizes a specified objective 

function for each of the preceding machine settings. 

Some common objective functions in production scheduling [8]: 

• Makespan: completion time of the last job that leaves the system. 

• Maximum flowtime: maximum flowtime achieved by any of the jobs. 

• Maximum tardiness: is the maximum tardiness achieved by any of the jobs. 

• Total weighted completion time: denotes the weighted sum of all completion times. 

• Total weighted tardiness: is the weighted sum of tardiness values of all jobs. 

• Mean tardiness: is the mean of the tardiness of all jobs. 

• Total flowtime: is the sum of flow times of all jobs. 

• Weighted number of tardy jobs: is the weighted sum of all tardy jobs. 

• Weighted earliness, and weighted tardiness: is the sum of the total weighted 

tardiness and the total weighted earliness. 

• Machine utilization: the difference between the maximum utilization and minimum 

utilization of all machines. 

2.1.3 - JSSP Types 

As with other types of machine scheduling challenges, JSSP requires two distinct entities. One 

is the tasks to be processed (e.g., mechanical parts, electrical components, or other objects), 

which are commonly referred to as jobs; the other is the facilities used to process jobs. In 

addition to these, the production activities of manufacturing systems frequently involve one or 

more of the supplemental resources listed below: operators, transportation devices, industrial 

robots, auxiliary equipment and appliances, warehouses, buffers, and containers [9]. 

All this is represented in table 2.1. 

 
Table 2.1 - The entities, the corresponding attributes, and their options or values in JSSP, adapted from 

[10] 

Entity Attribute 

Job Release time Due date Processing 

Time 

Auxiliary 

time 

Categorical 

attribute 
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Batch 

attribute 

Weight 

attribute 

(priority) 

Technological 

attribute 

Release 

mode 

Delivery 

mode 

Machine Functional attribute Availability Categorical 

Attribute 

Affiliation attribute Energy 

consumption 

attribute 

Carbon emission 

attribute 

Job-Machine Processing 

suitability 

Processing model Processing successive 

attribute 

Precessing 

preemption 

Processing reentracy Processing overlap 

Supplementary 

resources 

Operator-involved Robot-involved 

Buffer size Other supplementary resources 

 

The attributes of entities are the primary aspects that reflect the distinctions and features 

of a JSSP model. Furthermore, any of the criteria may often be applied to different JSSP models 

[9], visible in table 2.2. 

 
Table 2.2 - The JSSP basic types, subtypes, adapted from [9] 

JSSP types Subtypes 

Classical JSSP  

Dynamic JSSP Related to 

time attributes 

of jobs 

Related to the number of 

jobs 

Related to 

qualities of 

jobs 

JSSP considering the 

machine availability 

Considering 

machine 

breakdown 

Considering periodic 

maintenance 

Considering 

state-based 

maintenance 

Flexible JSSP With machine independent 

processing times 

With mahine dependet 

processing times 

JSSP considering 

batches 

Parallel batch Batch decision 

JSSP considering 

setup times 

With sequence dependente 

setup time 

With sequence independente 

setup tim 

JSSP with 

nondeterministic or 

With start time 

depedent 

With 

controllable 

With random 

distribution 

With fuzzy 

processing times 
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nonconstant 

processing time 

deteriorating 

jobs 

processing 

times 

processing 

times 

 

Distributed JSSP In different cells 

 

In different lines 

 

In different 

factories 

 

JSSP with dual-

resource constraints 

Considering availabilities of machines and operators 

 

2.1.4 - JSSP Approaches 

The problem can be described as follows: Let 𝑀 define a collection of machines and 𝐽 a set of 

to-be-processed jobs. Each job 𝑗 ∈  𝐽 consists of several operations (set 𝑂𝑗) that must be 

performed on a particular machine. In addition, each operation (𝑖 ∈  𝑂𝑗) has its own 

processing time 𝑝𝑖𝑗 [6]. Also, we assume that a machine cannot be pre-empted and include 

setup time in the processing time. In the dynamic variant, the production setup may be 

exposed to many uncertainties, such as the dynamic arrival of jobs, fluctuations in execution 

time, and machine problems. We will not examine variance in processing times, however 

dynamic job arrivals will be considered (i.e. the jobs arrival time are unknown in advance) 

[7]. 

Multiple strategies were explored to address this problem. Approaches that are proactive 

generate an offline schedule that is resistant to the variance of execution time events [10]. 

Therefore, the jobs will be sent according to the offline scheduler's set sequence at the time 

of execution. However, its performance is heavily dependent on the data collected during 

offline scheduler production. There is a hybrid predictive-reactive scheduling method in 

which a portion of the production system is continually modified during operations. 

Furthermore, there are reactive approaches that make no decisions in advance. When a task 

arises in real time, a local choice is taken. Usually, this uses simple and constructive 

heuristics such as Dispatching Rules, Insert algorithms or Bottleneck base heuristics methods 

to prioritize jobs. 

Use priority dispatch rules such as the shortest processing time, the longest remaining total 

processing time, the earliest delivery time, and the selection of the same machine for the first 

working process. All operations are sent according to their respective priorities, with the 

operation with the greatest priority being scheduled first. Therefore, the key technology 

focuses on finding the optimal priority rules for various real-world challenges. For instance, if 

minimizing the average flow time of all tasks is the top priority, we may select the rules with 

the quickest processing time. But if minimizing the maximum delay is of the utmost 

importance, the earliest delivery time regulations should be utilized. Typically, many priority 

dispatch rules are constructed concurrently to get a satisfactory solution [1]. 
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The Insert algorithm was created to address the travelling salesman problem. Inserting 

operations or jobs sequentially into partial schedules might often outperform priority rules. 

Later, an improved inserting algorithm (IA) was developed, in which a heuristic approach 

was used to generate a pre-schedule, and then maintenance tasks were inserted into the pre-

schedule scheme to provide dynamic scheduling [1]. 

Bottleneck-based heuristics methods, such as the Shifting Bottleneck Process and the Bean 

Search, are more advanced techniques for balancing good outcomes and time consumption. 

With Shifting Bottleneck Process (SBP), the original problem was simplified and broken into the 

subproblems of single machine scheduling, each of which was later handled independently. In 

each round of iterations, one bottle machine was selected and the process order of all the jobs 

on that bottle machine was set, allowing the procedure to be repeated until full machine orders 

were determined [1]. 

 

Sometimes, constructive methods, such as dispatching rules, insert algorithms, and 

bottleneck-based heuristics, can acquire a JSSP solution extremely fast, but when the issue is 

complex, infeasible solutions may be developed. Complex heuristic criteria are typically 

required in order to increase the quality of results. For a complex system, there are so many 

rules that constrain each other and are sometimes conflicting or caught in a loop. Therefore, 

it is challenging to discover a workable solution that satisfies all rules. 

2.1.5 - The impact of Industry 4.0 

Industry 4.0, also known as the Fourth Industrial Revolution, refers to the current trend of 

automation and data exchange in manufacturing technologies, including developments in 

artificial intelligence, the Internet of Things, and cloud computing. These technologies have 

the potential to greatly impact production scheduling, particularly in JSSP[6]. 

One key aspect of Industry 4.0 that can impact job shop scheduling is the use of real-time 

data and analytics. With the ability to collect and analyse data from all aspects of the 

production process, companies can make more informed and accurate scheduling decisions. 

For example, data on machine utilization, production rates, and worker productivity can be 

used to optimize the scheduling of tasks and resources. 

Another aspect of Industry 4.0 that can impact job shop scheduling is the use of advanced 

technologies such as robotics and machine learning. These technologies can help automate 

certain tasks and processes, improving efficiency and freeing up human workers to focus on 

more complex and value-added tasks. This can also allow companies to schedule production in 

a more flexible and responsive manner, as they can quickly adjust to changing demand or other 

factors [6]. 

Overall, the impact of Industry 4.0 on production scheduling in JSSP can be significant, as 

it allows companies to make more informed and efficient decisions about how to allocate tasks 
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and resources. This can help increase productivity and competitiveness, as well as reduce costs 

and improve customer satisfaction. 

2.2 - Reinforcement Learning 

In this subchapter, will be explored the rich body of literature surrounding reinforcement 

learning techniques. 

2.2.1 - Machine Learning 

The fact that JSSP is an NP-hard problem makes it difficult to solve using conventional 

optimizers [11]; as a result, typical optimizers are unable to find an optimal solution in a 

reasonable amount of time[12]. Consequently, scheduling strategies are utilised rather than 

complete optimizers. 

As previously demonstrated, Dispatching rules (DRs) have attracted considerable interest 

as a result, although they are difficult to manually construct. It is challenging to obtain a rule 

with good performance since DRs tend to be myotic [13]. Consequently, Machine Learning is 

employed to achieve these DRs, overcoming the obstacles associated with manually developing 

one. 

Basically, Machine Learning aims to learn based on previous data and make predictions or 

decisions for the future [14]. 

Enumerating some of its applications: 

• Analyse product images on a production line to automatically classify them; 

• Detect tumours thought brain scans; 

• Summarize long documents automatically. 

 

In accordance with their learning methods, Machine Learning systems may be divided into 

three categories: 

• Supervised Learning: An external supervising Agent provides a sequence of 

samples (inputs) with the correct response (outputs), and then, based on training, 

the implemented algorithm generalises the correct answer to another set of inputs 

[15]. 

• Unsupervised Learning: The developed algorithm attempts to find similarities 

between inputs and classify them accordingly. Clustering is one of the most well-

known procedures [15]. 

• Reinforcement Learning: Between Supervised Learning and Unsupervised 

Learning. The algorithm is informed about the response's quality, but not how to 

improve it. So, it is vital for the Agent to research and test alternatives until he or 

she learns how to generate a higher quality answer [15] 
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In this dissertation, it is pertinent to analyse, essentially, the Reinforcement Learning field. 

2.2.2 - Reinforcement Learning Concepts 

One of RL's enduring issues is learning how to manage Agents directly from high-level sensory 

input, such as vision and voice. 

Contrary to other kinds of Machine Learning, such as Supervised Learning, the Agent is not 

explicitly instructed on what actions to perform[16]. Therefore, at the conclusion of the 

learning phase, the Agent will need to determine which of his previously deliberated acts 

resulted in bigger rewards. Intriguingly, the present activities will effect the relevant reward 

as well as future rewards. 

The two most significant aspects of RL are "trial-and-error search" and "delayed reward". 

Unlike Supervised Learning, which is a way of learning based on examples provided taking 

into account the knowledge of an external supervisor, this is not appliable to an interactive 

learning[16]. This is because, for most interactive issues, it is hard to acquire samples of the 

required behaviour that are both right and representative of all situations in which the Agent 

must operate. 

• Agent: The Agent is the entity responsible for making decisions, and it is referred to 

as the "learner" and "decision maker". In particular, the Agent and the environment 

interact in discrete time intervals (𝑡 = 0, 1, 2, …).  As shown in figure 2.1, the Agent 

gets, for each 𝑡, a representation of the environment's state, 𝑠𝑡, such that 𝑠𝑡  ∈  𝑆 

represents the set of all conceivable states. The Agent receives a reaction in the form 

of a reward 𝑟𝑡+1  ∈  𝑅 and a new state of the environment, 𝑠𝑡+1, which serves as 

feedback for the subsequent decision 𝑎𝑡+1 [17]. 

• Environment: The environment is responsible for informing the Agent about the 

current condition and the reward earned for the action conducted earlier. It also 

provides a list of all potential states to the Agent [16]. 

• Action: The action is the consequence of the Agent's decision. The purpose is to 

identify the optimal solution, which equates to selecting the action that will yield the 

greatest reward given that each action generates varying reward values [16]. 

• Reward: The reward is a form of feedback that allows the Agent to evaluate the results 

of his actions in the previous stage. It is essential to reiterate that the purpose is to 

achieve the highest possible accumulation of rewards, bearing in mind that obtaining 

a large reward in one condition does not always indicate that the eventual 

accumulation of rewards would be the best. This is because, despite the fact that a 

certain reward in a given condition is the biggest, it may lead to a less-than-ideal 

scenario in the future and negatively impact subsequent rewards [18]. 
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• Policy 𝝅: It is a mapping approach that enables the Agent to determine the next action 

to do in order to accrue a substantial reward over time. The RL explains how the Agent 

might modify its policy, taking its experience into consideration. 

In addition to policy, value function, and model, The Agent can also be classed. A 

policy, 𝜋, is a mapping of states 𝑠 ∈  𝑆 and actions 𝑎 ∈  𝐴(𝑠) for the probability 𝜋(𝑠, 𝑎) 

of performing an action at the time of a state 𝑠. 𝑉𝜋(𝑠) continues to represent the worth 

of the state 𝑠 according to a policy 𝜋 [17]. 

 

 
Figure 2.1 - Agent-Environment interaction diagram, adapted from [17] 

Therefore, the RL lets the Agent to determine what action to take, taking his own 

experience into consideration. So that he may subsequently carry out his action, the Agent will 

have to review his prior judgements and determine if he actually received a favourable payoff. 

In this way, a new paradigm emerges in which the Agent, in addition to exploring his existing 

knowledge from past scenarios, must also explore new, never-before-made options to 

determine if receives a greater benefit. Because in both circumstances, the Agent will fail (get 

a lower reward) and the answer lies within the Agent's critical capacity, he must do several 

tests in order to locate the solution that yields a final value matching to the greatest reward 

[17]. 

2.2.3 - Deep Reinforcement Learning 

Deep reinforcement learning (DRL) is an extension of reinforcement learning (RL) that 

incorporates deep neural networks with traditional RL algorithms. DRL introduces deep 

learning techniques to manage high-dimensional input spaces, such as images or raw sensor 

data, by leveraging neural networks for representation learning, whereas RL concentrates on 

learning optimal actions in a given environment[19]. 

The incorporation of deep neural networks into DRL offers a number of significant 

advantages over conventional RL approaches: 

• Representation Learning: Deep neural networks can autonomously learn valuable 

features from unprocessed input data, allowing DRL algorithms to directly process 

complex observations. This eliminates the requirement for manual feature 

engineering, making DRL more adaptable and applicable to a wider variety of 

problems [20]. 



32 

• Function Approximation: As function approximators, DRL uses deep neural 

networks to estimate action-value functions or policies. These networks are 

capable of capturing intricate patterns and nonlinear relationships, enabling DRL 

agents to model complex behaviours and make accurate predictions [20]. 

• End-to-End Learning: By combining representation learning and function 

approximation, DRL agents can generate actions directly from unprocessed sensory 

input, facilitating end-to-end learning. This simplifies the training pipeline and 

reduces reliance on components designed by specialists [20]. 

 

In the realm of DRL, numerous algorithms have been proposed to tackle the challenges of 

high-dimensional state spaces, complex action spaces, and sample efficiency. Some notable 

algorithms include Deep Q-Networks (DQN), Trust Region Policy Optimization (TRPO), and 

Asynchronous Advantage Actor-Critic (A3C). These algorithms have demonstrated impressive 

results in different tasks and have contributed to the success of DRL. Among the wide array of 

DRL algorithms, Proximal Policy Optimization (PPO) has gained significant attention and 

emerged as one of the most widely used and effective algorithms. 

2.2.4 - Proximal Policy Optimisation 

PPO is an on-policy algorithm that maximizes the expected cumulative reward by optimizing 

a policy function. It employs a trust region strategy to ensure that policy revisions are 

relatively conservative, thereby preventing radical changes that could destabilise the 

learning process [21]. 

The key characteristics of PPO include: 

• Policy Optimisation: PPO optimizes the policy function explicitly in order to 

maximize the expected reward. It accomplishes this by accumulating data 

iteratively through interactions with the environment and using this information to 

update the policy parameters [22]. 

• Proximal Policy Optimization: PPO employs a substitute objective function with 

a proximity constraint. This constraint prevents policy updates from deviating too 

significantly from the original policy, thereby assuring more stable and reliable 

updates [22]. 

• Multiple Epochs: On the collected data, PPO performs multiple iterations of 

policy updates. It repeatedly samples mini-batch sizes from the data and 

executes multiple optimization steps, which serves to further stabilize the 

learning procedure and enhance sample efficiency [21]. 

• Clipped Surrogate Objective: PPO includes a clipping mechanism in the 

substitute objective function to limit the extent of the update. This clipping 
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prevents substantial policy modifications that could result in unstable training or 

calamitous forgetting of previously learned behaviours [21]. 

 

PPO is a popular and effective algorithm in the field of DRL as a result of its stability, 

simplicity, and strong empirical performance. It achieves a balance between sample efficacy 

and policy optimisation, making it applicable to a broad array of RL problems. 

2.3 - Simulation 

Modelling is a method for solving real-world context issues. The majority of the time, we 

cannot afford to conduct experiments and tests on actual products in order to find the 

optimal answer, as these objects are generally expensive and even uncommon. Thus, 

simulation assumes a fundamental role in this context [23].  

In addition to the objective of modelling, this strategy has other advantages, such as [24]: 

• Simulation models enable us to analyse systems and identify solutions where 

analytical models fall short; 

• It permits the testing of new policies, operational processes, decision rules, and 

information flows without modifying the actual system; 

• Discover the bottlenecks. 

 

Unfortunately, despite all of these advancements, it might be difficult to understand the 

final results at times. The fact that the simulation takes extensive training is one of the 

simulation's negative aspects. 

2.3.1 - Simulation Modelling 

This section covers the fundamental components of a simulation system so that its 

composition may be better comprehended [25] 

• System: A set of things that interact in order to fulfil the specified goals. 

• Model: A system model is an abstract representation of a system that describes its 

state, entities, processes, events, and activities, among others. 

• System State: A set of variables required to describe the system. 

• Entity: A set of variables required to describe the system. 

• Attribute: An entity property. 

• Event: An entity property. 

• Activity: The amount of time a task requires to be completed, which is known before 

it begins. 

• Delay: The extra time interval, whose endpoint is solely known. 

• Clock: A variable that reflects the duration of simulation. 
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A method is a framework for representing real-world systems in simulation models. Agent-

Based, System Dynamics, and Discrete-Event Modelling are the three classifications applicable 

to simulation modelling approaches. The application of each of these techniques relies on the 

system to be created and its goals [26]. 

2.3.2 - Simulation Modelling Paradigms 

• Agent-based: It belongs to the category of computer models used to simulate the 

behaviours and interactions of autonomous Agents (individual or collective). Despite a 

lack of understanding of the system's behaviour and the inability to describe the 

process flow, the primary aim is to verify and analyse the impact of the Agents on the 

system as a whole [27]. 

• System Dynamics: This model is a perspective and a collection of conceptual tools 

that enable the comprehension of the structure and dynamics of complex systems. 

This model is also a rigorous modelling technique that permits the construction of 

formal simulations of complex systems and their use in the formulation of more 

effective policies and organisations [27]. 

• Discrete-Event Modelling: It makes it possible to represent a system as a discrete 

series of occurrences in time. Each event occurs at a predetermined time and alters 

the state of the system. This system demands that modelling be seen as a process 

consisting of a series of Agent-performed activities [27]. 

 

The paradigm used in this dissertation was the Discrete-Event Modelling. 

2.3.3 - Construction Steps of a Simulation Model 

• Problem Formulation: The problem must be clearly stated so that there is no room 

for ambiguity. There are still instances in which an entire or partial reformulation of 

the problem is required [24]. 

• Establishment of Objectives and General Project Plan: The objectives will be the 

questions to be answered through the simulation. After deciding which simulation 

method is the most suitable, it is necessary to list a series of alternatives to the 

simulation and find ways to evaluate the effectiveness of these same solutions. 

Besides the objectives defined for the end of each state, it is also important to 

mention in the plan the number of people involved, as well as the associated costs 

and the estimated time for each phase of the project [24]. 

• Model Conceptualisation: It is not feasible to establish a priori the instructions that 

would result in a good model, but there are some viewpoints that must be adhered to 

in order for the model to be successful. To get good outcomes, it is vital to define a 

simple model and then make the required modifications step by step [24]. 
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• Data Collection: The collecting of data is closely related to the creation of the 

model, since the acquired data will serve as model input. While data collection 

consumes significant amounts of time, and as this is a crucial element of the model's 

development, it is crucial to begin it as soon as feasible [24]. 

• Model Translation: During this phase, the model is translated into a simulation 

language using specialised software. In the specific case of this dissertation, the 

software used is the FlexSim program [24]. 

• Verification and Validation: This stage allows verification and debugging tests to be 

run to determine whether the software is ready for the simulation model. By 

comparing the model to the existing system's behaviour, it is beneficial to use this 

feedback to enhance the model. The procedure is done repeatedly until a good 

outcome is achieved [24]. 

• Experimental Design: The previously defined options from the "Establishment of 

Goals and General Project Plan" phase that must be simulated must be identified 

[24]. 

• Production and Analysis of results: Following several testing of the model with 

various data, the resulting analyses are utilised to estimate the performance of the 

simulated system [24]. 

• Documentation: It is important to submit two sorts of data following the simulation: 

programme and progress. In the event that others utilise the programme in the 

future, the programme documentation describes its operation and behaviour, as well 

as other basic characteristics. This is crucial for the model's legitimacy and 

certification in terms of the progress report [24]. 

• Implementation: The implementation's success will depend on each of the preceding 

phases [24]. 
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Chapter 3 

Problem and Simulation Base Model 

This chapter defines the essential information for testing a RL technique in a JSSP instance by 

describing the problem and providing a full analysis of it. This chapter also defines the 

simulation elements common to the collection of to-be-executed implementations. 

3.1 - Job Shop Scheduling Problem 

Operations scheduling is the process of planning and organising the activities and resources 

required to complete the production of goods or services. This includes determining the 

sequence of operations, assigning adequate resources to each operation, and estimating the 

time and cost required for each step. 

In a factory, operations scheduling usually involves dividing the production process into 

different modules or process into different modules or departments, each of which is 

responsible for execution of a specific set of operations on the product. For example, a factory 

producing automobiles may have a module for welding, another for painting, and another for 

assembly. However, car factories organise these modules into a production line in order to 

maximise line the profitability of the production line. 

Once the product has undergone each of the necessary operations in a particular module, 

it is then transported to the next module for further processing. In the scenario introduced 

above, transportation introduces an additional logistical challenge, as the plant has to ensure 

that the product is moved efficiently and on time to avoid delays in the overall to avoid delays 

in the overall production process. 

In this case, the manufacturing process is divided into 3 non-contiguous factory modules: 

department A, the initial module of the factory; department B and department C. 

The first department consists of 2 machines in parallel (M1 and M2). Machine 1 (M1) uses 3 

different tools (F1, F2 and F3). Machine 2 (M2) uses 2 different tools (F4 and F5). 

The department B is composed of Machine 3 (M3), using 2 tools (F6 and F7). 

Finally, the department C packages the products produced so that they can be transported 

directly to the shops for sale, according to the orders placed by each retailer. Machine 4 (M4) 

is used for packaging. 

As the various modules are not in the same place it is necessary to transport the product 

to the module where it will have to operate next. For this there are 3 transport services: 

operator A, B and C. There is only one operator to directly connect two modules, so it will 
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always be necessary to consider the return time of the operator before it can make a new 

journey. The structure of the plant is summarized in the diagram represented in Figure 3.1. 

 

 
Figure 3.1 - Diagram Representing the Factory Structure 

The model used in FlexSim that represents the diagram of the previous figure, is shown in the 

following figure. 

 

 
Figure 3.1 – Block diagram of the problem 

3.1.1 - Problem Instance 

The factory produces essentially 4 products for sale to retailers. The sequence of operations 

required to produce each of these products can be summarised by: 

• Product 1: M1F1 – M2F4 – M3F6 – M4; 

• Product 2: M1F2 – M2F4 – M3F7 – M4; 

• Product 3: M1F3 – M2F5 – M4; 

• Product 4: M1F3 – M2F5 – M3F7 – M4; 

 

Firstly, the operation times and the setup costs for each machine necessary to produce 

each of the 4 types of products were defined.  
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Table 3.1 - Duration (in minutes) of the operation to be carried out on each machine, according to the 
type of product 

Type of 

product 

Machine 

1 

Machine 

2 

Machine 

3 

Machine 

4 

1 10 3 9 5 

2 8 3 7 5 

3 7 4 5 - 

4 7 4 7 5 

 

Then, tool changeover results in costs and machine downtimes with fixed durations. Thus, 

tool changeover brings with it an interval in which the machine may not be performing useful 

work. 

 
Table 3.2 - Duration (in minutes) of the total changeover to be carried out on all machines, according to 

the type of product 

Type of 

product 

1 2 3 4 

1 - 3 4,5 6,5 

2 3 - 2,5 2,5 

3 4,5 2,5 - - 

4 6,5 2,5 - - 

 

Finally, each operator has fixed machines with which they can move. 

 
Table 3.3 - Parts Transportation (based on destination machine) 

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 

Operator 1 Operator 1 Operator 2 Operator 3/ 

Operator 4 

Operator 5 

 

It was considered that only one order of 3 pieces of each product type was made, that is 

12 pieces in total. 

The objective function used will be the minimization of the makespan. 

3.2 - Discrete-Event Simulation Model – FlexSim 

Following the steps outlined in section 2.8.2 to construct a simulation model, it is possible to 

simulate the behaviour of the investigated system using the discrete event simulation category 

of the FlexSim software utility. 
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This software programme enables for a highly accurate and realistic simulation of the 

factory's behaviour. Thus, it is possible to simulate the release timings of a component as well 

as the processing of each machine, allowing us to draw accurate conclusions concerning the 

system's behaviour. 

3.2.1 - Entitites 

These objects represent the parts that run through each one of the machines. As shown in 

figure 3.3, by selecting an object, you can access its part type (type) and order posting number 

(Sequence). 

 
Figure 3.3 - Properties of an entity in FlexSim 
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3.2.2 - Resources 

The FlexSim Library provides a vast assortment of resources, as shown in figure 3.4 below. In 

this JSS problem, the resources will specifically represent the machines. 

 

 
Figure 3.4 - Library in FlexSim 

3.2.3 - Machines 

The machines are reflected by Fixed Resources and it is important to mention that they will be 

represented by native Processor resources, illustrated in figure 3.5. It is also possible to obtain 

concrete information about the inputs and outputs of the parts in each machine. 

 

 
Figure 3.5 - Graphical representation of a Machine in FlexSim 
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3.2.4 - Transport 

Transport times were not considered for the simulations to simplify them. 

3.2.5 - Load 

All components enter the system via the Source; however, in this instance, this resource has 

been supplanted with a Queue, which permits the same behaviour. The primary advantage of 

employing a Queue object rather than a Source is the ability to observe the accumulation of 

components throughout the simulation. 

3.2.6 - Unload 

Sink is the location of the final discharge of items. 

3.2.7 - Process Flow 

3D model and Process Flow are the two most important instruments for creating simulation 

models. Regarding Process Flow, it overlaps the 3D model under all conditions. 

However, cooperation between the two is essential, although in this instance, the transfer of 

entities and resources will be defined in the Process flow. 

In general, all transport systems consist of two major components: the parts creation (figure 

3.6), and the transportation and parts processing (figure 3.7). The phases of creation and 

processing are shared by all models discussed in this dissertation [16]. 

 

• Parts Creation 

This block causes the parts to be created according to the sequence established before 

starting the whole process. 

 

 
Figure 3.6 - Representation of the "Parts Creation" Block 

• Transportation and Parts Processing 
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Figure 3.7 - Representation of the "Transportation and Parts Processing" Block 

Depending on the type of the current part, the block permits accessing the Routings Table 

(figure 3.8) and identifying the correct line in order to follow the machine sequence for the 

type of part in question. However, it must be noted that the part will be just moved from the 

current machine to the next one if there are no parts in the respective machine, because its 

maximum capacity is unitary. These restrictions are defined by the creation of zones, focused 

on each one of the existing machines. Processing times and changeover times are also defined 

in tables, which are read by the model machines depending on the current part type. 

 

 
Figure 3.8 - Routings Table 

3.2.8 - 3D Model 

In the next figure, it is possible to see the 3D model of the problem under analysis. By 

visualizing the 3D model in FlexSim, users can observe the dynamics of the simulated system, 
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the flow of materials, the interactions between elements, and perform analyses to optimize 

system performance. 3D simulation provides a more realistic and interactive representation of 

the system, allowing users to identify bottlenecks, test different scenarios, and make informed 

decisions to improve efficiency and productivity. 

 

 
Figure 3.9 - Model 3D in FlexSim 
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Chapter 4 

Adopted Methodology 

This chapter provides insight into the implementation of the RL model in this problem, but 

also into the implementation of OptQuest. 

4.1 - Contextualization of the RL implementation 

The key difference between this implementation and the one presented in Section 4.4 is the 

addition of a third element (Agent), which is responsible for decision making. The Agent is 

educated with Reinforcement Learning algorithms to define, like the previous system, the 

sequence of parts entering the simulation. 

In addition to this capability, this Agent may also close and reset the FlexSim simulation 

application. 

As illustrated in figure 4.1, the Server is merely an intermediary between this third entity 

and the Flexsim simulation environment. Similarly, to the simulation environment, which was 

previously defined as a client, the Agent will also be a client, while the Server will serve as 

the "go-between". 

In other terms, the Agent is the programme that contains the code that executes certain 

functionalities on the training environment (FlexSim) [16]. 

In this dissertation, the Server is already included in FlexSim, which is a new module of 

this simulation programme. 

 

 
Figure 4.1 - Agent-Server-FlexSim relationships, adapted from [16] 

In accordance with this logic, there are 3 possible forms of interaction between the Agent 

and the simulation environment: 

• Reset: Its use enables the Agent to request a reset of the FlexSim; 

• Close: Allows the FlexSim to be closed; 
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• Step: Grants the transmission of an action, representing the total production of the 

12 parts. The action decision is modified and enhanced by RL algorithms of the 

StableBaselines framework training a neural network. This framework is an improved, 

more stable variant of the OpenAI Baselines algorithms [16]. 

 

The only distinction between the available RL algorithms is the strategy used to redefine 

the policy defining the action to be taken for a given system state. The Proximal Policy 

Optimization (PPO) algorithm is the current state-of-the-art in the domain of this 

dissertation; therefore, it was deemed most suitable for the present problem. However, it is 

possible to use other algorithms in the future with only minor modifications to the Agent's 

source code. 

This Agent comprises a neural network that receives simulation environment observations 

as input data and outputs the representative action of the Production Sequence. 

The sections 4.2 and 4.3 present the problems regarding Reinforcement Learning treated 

in this dissertation. 

Regarding the initial query regarding the Agent-Server-Flexsim relationships, it is 

necessary to establish communication between the three entities, example code written in 

Python was used, using the OpenAI Gym toolkit and the Stable-Baselines3 implementations of 

reinforcement learning algorithms, provided by FlexSim itself. 

The 3 python scripts used were: 

• Flexsim_env.py: FlexSimEnv is a subclass of gym.Env that implements its customised 

environment interface. This class contains methods and properties that use sockets to 

launch and communicate with FlexSim. 

• Flexsim_training.py: A single instance of the main() method demonstrating the use 

of the FlexSimEnv class to train a stable_baselines3 reinforcement learning 

algorithm, save the trained model, and evaluate the trained model through a direct 

connection to the FlexSim environment. 

• Flexsim_inference.py: A FlexSimInferenceServer class that implements methods for 

handling HTTP requests and is a subclass of BaseHTTPRequestHandler. The main() 

method demonstrates importing the trained model that was preserved during training 

and hosting an HTTP server that can utilise the trained model to provide an action in 

response to a system observation. This is a basic demonstration example that is not 

recommended for use in production. 

4.2 - Neural Network General Architecture 

Originating from the study of the human nervous system, neural networks are distinguished 

by their high complexity and nonlinearity. The human brain's remarkable adaptability stems 
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from its ability to aggregate and organise its neurons in order to accomplish quite complex 

tasks [28] 

The primary objective of the PPO algorithm is to ensure that the new policy is not 

radically different from the previous one. The version in use is an implementation of Stable 

Baselines, and in addition to supporting vectorized environments, it permits discrete, box, 

multidiscrete, or multibinary types for observations and resulting actions. In this specific 

case, the observation assumes the discrete type (0-27) and the action admits the 

multidiscrete type (12). The next figure 4.2 represents the network architecture of input and 

output layers, a single layer perceptron architecture, being the base of the NN of this 

dissertation. 

 
Figure 4.2 - SLP Architecture 

 

Within the observation, the first 16 inputs [0-15] indicate the processing time, in seconds, 

of each machine, according to the type of part (table 3.1). The last 12 [16-27] correspond to 

the total changeover to be carried out on all machines, according to the type of product (table 

3.3). The state is updated when the production of the 12 pieces is finished, which corresponds 

to an episode of the simulation. Each output neuron represents a piece and its value 

corresponds to a number in the interval [-1, 1] obtained by the RL agent. These are ordered in 

descending order, leading to the production sequence of the next iteration. The next figure 

4.3 represents an example. 
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Figure 4.3 - Action Sorting Example 

4.3 - Makespan Minimization using RL 

To verify the precise operation of the Reinforcement Learning algorithm PPO, the initial goal 

was to minimize the makespan. 

The total number of time steps associated with the Agent's learning process was defined as 

250,000, which is believed to be sufficient for achieving the optimal solution. 

The FlexSim will send the value corresponding to the makespan as a reward to the Server, 

but with a negative signal (-makespan), once the 12 items have been produced and entered in 

the sink, or once a step has been completed. This specificity is justified by the fact that the 

PPO algorithm's objective is always to maximise something. In this instance, the objective is to 

maximise (-) makespan, or to minimise makespan. The "done" parameter is also sent as a unit 

in this scenario, as the 12 elements have already been inputted into the Sink and the simulation 

is complete. 

 

 
Figure 4.4 - Representation of the block that assigns values to makespan, reward and done 

In the following subsections are presented the reward function, a penalty method for the 

reward and a normalization. 

• Reward Function without Penalty 

𝑅𝑒𝑤𝑎𝑟𝑑 =  − 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛     (4.1) 

 

The negative signal is explained in the previous section (4.3). 

• Reward Function with Penalty 

𝑅𝑒𝑤𝑎𝑟𝑑 =  − 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 –  𝑡𝑜𝑡𝑎𝑙𝑃𝑒𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟   (4.2) 
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The penalty “totalPenChangeover” corresponds to the total time used in changeovers by the 

machines to produce the 12 pieces. This was intended to benefit iterations with shorter 

changeover times, thus subtraction was used, in order to decrease the reward. 

 

 
Figure 4.5 - Representation of the block that update the "totalPenChangeover" 

• Normalization 

The primary objective of normalisation is to determine if, by modifying the values of the 

observations to values between [0, 1], the algorithm will be able to converge on a suitable 

solution more quickly and improve its learning capacity. The expression used was: 

 

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑚𝑖𝑛

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥−𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑚𝑖𝑛
   (4.3) 

 

• FlexSim RL Module 

In the next figure it is possible to see the new FlexSim RL module, where all the parameters 

are inserted, so that the Agent implements what is intended. 

 

 
Figure 4.6 - FlexSim RL module 
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4.4 - Makespan Minimization using OptQuest 

To address makespan minimization, the OptQuest feature of the FlexSim softwarewas used.  

OptQuest is an optimisation feature that integrates tabu search and local search techniques 

to discover optimal or near-optimal solutions in FlexSim models. This algorithm is designed to 

explore different combinations of values for the decision variables in the FlexSim model, to 

find a solution that meets the defined objective, in this case, the minimization of makespan 

[29]. 

The decision variable used was a vector called “ProductionSequence” with 12 positions, 

which corresponds to the sequence of pieces entering the simulation, which are numbered from 

0 to 12. OptQuest varies the position of these parts within the vector, obtaining and minimizing 

the makespan value. 
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Chapter 5 

Design of Experiments and Results 
Analysis 

The purpose of this chapter is to analyse the results obtained from the minimisation of the 

makespan, with OptQuest or Reinforcement Learning techniques. 

In the chapter's culminating section, important queries are posed to assess the robustness 

of each simulation model. 

In addition, it should be noted that Python 3.11 and FlexSim (Educational Version 2022) 

served as the programming and simulation software development environments, respectively, 

for the dissertation. In this section, all simulations were run on an HP OMEN computer equipped 

with an Intel Core i7 processor, Quad-core up to 2.20 GHz, and 16 GB RAM. 

5.1 - Results of makespan minimization using OptQuest 

The settings used are represented in the next figure. 

 

 
Figure 5.1 – Settings of OptQuest in FlexSim 

 

As can be seen in the lower left corner of figure 5.2, Makespan = 7013,36 seconds was the 

best iteration of the makespan optimization by OptQuest. This result will serve as basis for 

comparison with the optimization scenarios using RL. 
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Figure 5.2 - Makespan minimization in FlexSim using OptQuest 

5.2 - Preliminary Experiments 

Some variations of the RL model were also evaluated, such as different hidden layer 

configurations, with/without penalty, with/without normalization, varying the step size of 

actions and varying the values and the types of actions, as can be seen in the following table. 

 
Table 5.1 – List of Experiments 

Experiment Time 

steps 

Hidden 

layer 

Penalty Normalization Step 

size 

Action 

Type 

Action space 

1 250k 2 Yes Yes 0.1 Discrete MultiDiscrete 

2 100k 1 Yes Yes 0.1 Discrete MultiDiscrete 

3 100k 2 No Yes 0.1 Discrete MultiDiscrete 

4 100k 2 Yes No 0.1 Discrete MultiDiscrete 

5 100k 2 Yes Yes 0.01 Discrete MultiDiscrete 

6 100k 2 Yes Yes 0.1 Continuous Box 
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5.2.1 - Multi Layer Perceptron Configuration 

In order to choose the RL agent parameters best suited to solve this job shop problem, some 

tests were performed, varying some hyper parameters, as can be seen in the table 5.2. 

 
Table 5.2 – Table of parameters tests 

Parameters learning_rate n_steps batch_size n_epochs policy_kwargs Reward 

max 

Makespan 

min 

Default 0,003 2048 64 10 none   

1 0,003 2048 64 1 [] 
-9094,6 7627,9 

2 0,003 2048 64 1 [8] 
-9810,8 7578,1 

3 0,003 2048 64 1 [16] 
-10087,8 7929,2 

4 0,003 2048 64 1 [8, 8] 
-9935,2 7647,2 

5 0,003 2048 64 1 [16, 16] 
-9810,8 7494,2 

6 0,003 2048 64 10 [] 
-9079,9 7657,9 

7 0,003 2048 64 10 [8] 
-9824,9 7334,9 

8 0,003 2048 64 10 [16] 
-9779,2 7719,3 

9 0,003 2048 64 10 [8, 8] 
-9079,9 7474,3 

10 0,003 2048 64 10 [16, 16] 
-10461,3 7937,4 

11 0,003 2048 64 20 [] 
-9803,6 7674,0 

12 0,003 2048 64 20 [8] 
-9293,9 7308,6 

13 0,003 2048 64 20 [16] 
-9293,9 7308,6 

14 0,003 2048 64 20 [8, 8] 
-9125,0 7797,1 

15 0,003 2048 64 20 [16, 16] 
-9787,8 7443,4 

 

Using default hyper parameters, the best results (maximum reward and minimum makespan) 

are obtained when the "policy_kwargs" parameter is [8, 8], that is, Multi Layer Perceptron 

(MLP). 

According to the complexity of the job shop problem addressed in this dissertation, MLP has 

several advantages over SLP, such as[30]: 

• MLPs can manage complex nonlinear data relationships, whereas SLPs are limited 

to basic linear relationships [31]; 

• High-level feature representations: MLPs can learn more complex and higher-level 

feature representations, which enables the identification of complex patterns in 

the data [31]; 

• Due to their stratified structure, MLPs are more versatile and adaptable to a 

variety of problems than SLPs, which have a limited modelling capacity [31]; 
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• The Universal Approximation Theorem states that MLPs can approximate any 

continuous function with high precision, making them suitable for a vast array of 

modelling applications [31]; 

• MLPs perform better on tasks involving intricate problems, such as image 

recognition, natural language processing, and time series prediction [31]. 

 

These summarized benefits demonstrate why choosing an MLP over an SLP can be 

advantageous for this dissertation. 

5.3 - Results of makespan minimization using RL 

As described in Section 4.3, the purpose of the makespan study was to analyse the PPO 

algorithm's behaviour. 

In this subsection, as said in the chapter 5 presentation, the reward was analysed in various 

experiments. 

5.3.1 - Experiment 1 – With 2 hidden layers, with penalty and with 

normalization 

In table 5.2, the experiment with 2 hidden layers was the best parameter with 2048 steps. 

Here was used 250 000 steps to have a better analyse of the reward. 

This experiment is represented by figure 5.3 and table 5.3 and is used as a default scenario. 

The minimum value of makespan is equal to the one using OptQuest, which shows good signs 

about the method under study. 

 
Figure 5.3 - Reward related to Experiment 1, for a total of 250k time steps 
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Table 5.3 - Numerical analyse of makespan referring to Experiment 1 (in seconds) 

Minimum value Maximum Value 

7013,359 12010,910 

 

5.3.2 - Experiment 2 – With 1 hidden layer, with penalty and with 

normalization 

According to the graph in figure 5.3, the algorithm reaches the maximum quickly, so it was 

decided to change the 250k steps to 100k. 

Comparing the values obtained in this experiment with the previous one, can be observed 

that they are relatively equal, so it can be concluded that for a large number of steps, it is the 

same to have 2 or 1 hidden layers for this problem. 

 
Figure 5.4 - Reward related to Experiment 2, for a total of 100k time steps 

 
Table 5.4 - Numerical analyse of makespan referring to Experiment 2 (in seconds) 

Minimum value Maximum Value 

7013,359 11959,729 

 

5.3.3 - Experiment 3 – With 2 hidden layer, without penalty and with 

normalization 

As shown in figure 5.5, when the penalty isn’t applied, the maximum value of the reward is 

reached later than the first experiment, and its value is higher, as expected according to the 

reward function (4.2). 
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Despite this, the minimum makespan value is higher than in the previous experiments. In 

conclusion, the introduction of penalty criteria was necessary for the model to progress towards 

the optimal solution. 

 
Figure 5.5 - Reward related to Experiment 3, for a total of 100k time steps 

 
Table 5.5 - Numerical analyse of makespan referring to Experiment 3 (in seconds) 

Minimum value Maximum Value 

7174,298 12005,697 

 

5.3.4 - Experiment 4 – With 2 hidden layer, with penalty and without 

normalization 

As illustrated in figure 5.6 and table 5.6, without normalisation the Agent reaches the best 

reward later, but the makespan value its the same, comparing with the first experiment. It 

can be concluded that, when the normalisation is applied, the Agent learns faster. 
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Figure 5.6 - Reward related to Experiment 4, for a total of 100k time steps 

 
Table 5.6 - Numerical analyse of makespan referring to Experiment 4 (in seconds) 

Minimum value Maximum Value 

7013,359 11950,741 

 

5.3.5 - Experiment 5 – Actions with a different step size 

In this experiment, a step size of 0.01 instead of 0.1 was used, in each action. 

 

 
Figure 5.7 - Parameters of an actions in FlexSim 

Analysing the figure 5.8 and the table 5.7, can be concluded that with a lower step size in 

actions, the model reaches later and worst results for the reward and the makespan. 

Probably, for this experiment a larger number of time steps would be needed, in order to 

equal the values of experiment 1. 
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Figure 5.8 - Reward related to Experiment 5, for a total of 100k time steps 

 
Table 5.7 - Numerical analyse of makespan referring to Experiment 5 (in seconds) 

Minimum value Maximum Value 

7298,640 12010,911 

 

5.3.6 - Experiment 6 – With different action space, and different type of 

actions 

In this experiment, actions with a continuous type and as action space with box type was 

used, instead of discrete actions and MultiDescrete action space. 

 

 
Figure 5.9 - Parameters of an action in FlexSim 
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Figure 5.10 - Action Space of Reinforcement Learning in FlexSim 

This experiment aims to prove that the parameters chosen for the base experiment 

(experiment 1) were the correct ones. What can be seen in figure 5.11 and table 5.8, where 

the agent learns slower and achieves worst results, both for reward and makespan. 

 
Figure 5.11 - Reward related to Experiment 6, for a total of 100k time steps 

 
Table 1.8 - Numerical analyse of makespan referring to Experiment 6 (in seconds) 

Minimum value Maximum Value 

7174,298 11899,162 

 

5.3.7 - Results Analysis 

In short, it is possible to assert that the Reinforcement Learning PPO algorithm was 

accurately implemented, given that the models adhere to their characteristic curves, 

maximising reward and minimising makespan. 

The minimum makespan value using OptQuest is equal to the value of some experiments (1, 

2 and 4) which reveals that probably the optimal solution of the problem was obtained. 

In addition, the results also indicate that the normalisation of rewards and application of 

penalties enhance the model's capacity for learning. 
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5.4 - Robustness of RL Agent 

After analysing the models' performance in deterministic environments, it is necessary to 

examine their behaviour in other situations. Particularly, it is essential to investigate the 

effect of the variation of observations in order to assess the adaptability of the models. 

As can be seen in figure 5.12, the values of the variation limits of the observations have 

been changed by 20%. The other parameters of the model are the same as in Experiment 1. 

 

 
Figure 5.12 - Variation of observations by 20% 

As expected, the RL’s Agent takes longer to reach the best reward, indicating a lower 

learning rate. However, the difference between the minimum makespan values is quite small, 

which represents a excellent indicator regarding the adaptability of the model under study. 
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Figure 5.13 - Reward study, for a total of 100k time steps 

 
Table 5.9 - Numerical analyse of makespan 

Minimum value Maximum Value 

7014,137 11959,729 
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Chapter 6 

Conclusions and Future Work 

This chapter presents the conclusions resulting from the dissertation project at hand and 

allows the reader to determine whether or not all the initial objectives have been met. 

Lastly, future contributions to this initiative are also proposed. 

6.1 - Conclusions 

The primary objective of the project was to combine Reinforcement Learning techniques with 

simulation approaches in order to optimise the productivity of a job-shop scheduling problem 

through the use of RL and simulation. To this end, the metric used was the minimization of 

the makespan. 

At first, the construction of the job shop problem was done in the simulation environment, 

using the FlexSim software, and, in order to obtain the best possible result, ordering the 

production sequence of 12 orders and using traditional optimization methods, such as meta-

heuristics, a software feature, the OptQuest, was implemented. 

In a later phase of the project, Reinforcement Learning techniques were implemented in 

order to demonstrate that the addition of a third entity, Agent, which is equivalent to a neural 

network, increases productivity values. As the network learning model, the PPO algorithm from 

OpenAI Baselines was utilised. 

Relatively to this third entity, with regard to productivity, the Agent receives an 

observation, with all process and changeover times, and a reward. The state is updated when 

the production of the 12 pieces is finished. Subsequently, it sends the action it considers most 

suitable and which contains twelve neurons, where each one represents a part with a value in 

the interval [-1, 1], which is ordered in order to build the vector of the production sequence. 

It should also be noted that the neural network considered has 1 input layer and 1 output layer, 

composed, respectively, by 28 and 12 neurons. After some tests, it was concluded that the 

introduction of 2 hidden layers of 8 neurons each, improved the results. 

Concerning the RL-based model, it was demonstrated that the normalisation of rewards is 

a crucial factor in achieving improved results, as network learning would not have been as 

effective without normalisation. The same happens with the penalty on changeover times. 

In order to verify and demonstrate the adaptability and robustness of the productivity 

model, the original production mix was altered, and the model was subsequently introduced 

into a stochastic environment in terms of processing and changeover times. It is possible to 
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assert that the model has a level of robustness that allows it to be applied in the real world 

due to the encouraging results. 

Finally, comparing the results of the model using OptQuest and RL techniques, which were 

equal, it is possible to conclude that the use of these new RL algorithms in scheduling problems 

may be very useful in real contexts. 

In conclusion, it should be noted that all the initial objectives proposed were fully respected 

and achieved, and that the project's results and conclusions may serve as an analysis and study 

tool for future work involving the application of RL techniques in job-shop environments. 

6.2 - Future Work 

Looking forward, there are many opportunities for further research and development in this 

area. For example, additional work could be done to investigate the potential for applying 

these techniques in other manufacturing contexts, or to explore the integration of 

reinforcement learning with other decision-support tools. These efforts will help to fully 

realize the potential of intelligent and flexible production systems, and bring the world closer 

to the industry 4.0 vision of decentralized decision-making and self-organizing systems. 

In this context, it would be interesting to develop a simpler neural network, where the step 

corresponds to the production of only 1 piece. The observation and the action were only one 

neuron each, corresponding to the type of piece previously produced, and the piece that would 

be produced next, respectively. 

Another possible development, would be to add more parts, as well as more types of parts, 

so that it would be more difficult to reach an optimal solution, allowing to get a more accurate 

learning of the RL agent. 

Finally, a further development concerning the robustness of the model using RL techniques 

would be interesting, in order to prove that these algorithms will have a significant importance 

in the future of scheduling problems. 
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