1,079 research outputs found

    Energy-Efficient NoC for Best-Effort Communication

    Get PDF
    A Network-on-Chip (NoC) is an energy-efficient on-chip communication architecture forMulti-Processor System-on-Chip (MPSoC) architectures. In an earlier paper we proposed a energy-efficient reconfigurable circuit-switched NoC to reduce the energy consumption compared to a packetswitched NoC. In this paper we investigate a chordal slotted ring and a bus architecture that can be used to handle the best-effort traffic in the system and configure the circuitswitched network. Both architectures are compared on their latency behavior and power consumption. At the same clock frequency, the chordal ring has the major benefit of a lower latency and higher throughput. But the bus has a lower overall power consumption at the same frequency. However, if we tune the frequency of the network to meet the throughput requirements of control network, we see that the ring consumes less energy per transported bit

    Development of Energy Models for Design Space Exploration of Embedded Many-Core Systems

    Full text link
    This paper introduces a methodology to develop energy models for the design space exploration of embedded many-core systems. The design process of such systems can benefit from sophisticated models. Software and hardware can be specifically optimized based on comprehensive knowledge about application scenario and hardware behavior. The contribution of our work is an automated framework to estimate the energy consumption at an arbitrary abstraction level without the need to provide further information about the system. We validated our framework with the configurable many-core system CoreVA-MPSoC. Compared to a simulation of the CoreVA-MPSoC on gate level in a 28nm FD-SOI standard cell technology, our framework shows an average estimation error of about 4%.Comment: Presented at HIP3ES, 201

    dReDBox: Materializing a full-stack rack-scale system prototype of a next-generation disaggregated datacenter

    Get PDF
    Current datacenters are based on server machines, whose mainboard and hardware components form the baseline, monolithic building block that the rest of the system software, middleware and application stack are built upon. This leads to the following limitations: (a) resource proportionality of a multi-tray system is bounded by the basic building block (mainboard), (b) resource allocation to processes or virtual machines (VMs) is bounded by the available resources within the boundary of the mainboard, leading to spare resource fragmentation and inefficiencies, and (c) upgrades must be applied to each and every server even when only a specific component needs to be upgraded. The dRedBox project (Disaggregated Recursive Datacentre-in-a-Box) addresses the above limitations, and proposes the next generation, low-power, across form-factor datacenters, departing from the paradigm of the mainboard-as-a-unit and enabling the creation of function-block-as-a-unit. Hardware-level disaggregation and software-defined wiring of resources is supported by a full-fledged Type-1 hypervisor that can execute commodity virtual machines, which communicate over a low-latency and high-throughput software-defined optical network. To evaluate its novel approach, dRedBox will demonstrate application execution in the domains of network functions virtualization, infrastructure analytics, and real-time video surveillance.This work has been supported in part by EU H2020 ICTproject dRedBox, contract #687632.Peer ReviewedPostprint (author's final draft

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    Dynamic Power Management for Neuromorphic Many-Core Systems

    Full text link
    This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28 nm SLP CMOS technology has been implemented. It includes 4 PEs which can be scaled from 0.7 V to 1.0 V with frequencies from 125 MHz to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second generation SpiNNaker neuromorphic many core system

    A high-level power model for MPSoC on FPGA

    Get PDF

    MPSoCBench : um framework para avaliação de ferramentas e metodologias para sistemas multiprocessados em chip

    Get PDF
    Orientador: Rodolfo Jardim de AzevedoTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Recentes metodologias e ferramentas de projetos de sistemas multiprocessados em chip (MPSoC) aumentam a produtividade por meio da utilização de plataformas baseadas em simuladores, antes de definir os Ășltimos detalhes da arquitetura. No entanto, a simulação sĂł Ă© eficiente quando utiliza ferramentas de modelagem que suportem a descrição do comportamento do sistema em um elevado nĂ­vel de abstração. A escassez de plataformas virtuais de MPSoCs que integrem hardware e software escalĂĄveis nos motivou a desenvolver o MPSoCBench, que consiste de um conjunto escalĂĄvel de MPSoCs incluindo quatro modelos de processadores (PowerPC, MIPS, SPARC e ARM), organizado em plataformas com 1, 2, 4, 8, 16, 32 e 64 nĂșcleos, cross-compiladores, IPs, interconexĂ”es, 17 aplicaçÔes paralelas e estimativa de consumo de energia para os principais componentes (processadores, roteadores, memĂłria principal e caches). Uma importante demanda em projetos MPSoC Ă© atender Ă s restriçÔes de consumo de energia o mais cedo possĂ­vel. Considerando que o desempenho do processador estĂĄ diretamente relacionado ao consumo, hĂĄ um crescente interesse em explorar o trade-off entre consumo de energia e desempenho, tendo em conta o domĂ­nio da aplicação alvo. TĂ©cnicas de escalabilidade dinĂąmica de freqĂŒĂȘncia e voltagem fundamentam-se em gerenciar o nĂ­vel de tensĂŁo e frequĂȘncia da CPU, permitindo que o sistema alcance apenas o desempenho suficiente para processar a carga de trabalho, reduzindo, consequentemente, o consumo de energia. Para explorar a eficiĂȘncia energĂ©tica e desempenho, foram adicionados recursos ao MPSoCBench, visando explorar escalabilidade dinĂąmica de voltaegem e frequĂȘncia (DVFS) e foram validados trĂȘs mecanismos com base na estimativa dinĂąmica de energia e taxa de uso de CPUAbstract: Recent design methodologies and tools aim at enhancing the design productivity by providing a software development platform before the definition of the final Multiprocessor System on Chip (MPSoC) architecture details. However, simulation can only be efficiently performed when using a modeling and simulation engine that supports system behavior description at a high abstraction level. The lack of MPSoC virtual platform prototyping integrating both scalable hardware and software in order to create and evaluate new methodologies and tools motivated us to develop the MPSoCBench, a scalable set of MPSoCs including four different ISAs (PowerPC, MIPS, SPARC, and ARM) organized in platforms with 1, 2, 4, 8, 16, 32, and 64 cores, cross-compilers, IPs, interconnections, 17 parallel version of software from well-known benchmarks, and power consumption estimation for main components (processors, routers, memory, and caches). An important demand in MPSoC designs is the addressing of energy consumption constraints as early as possible. Whereas processor performance comes with a high power cost, there is an increasing interest in exploring the trade-off between power and performance, taking into account the target application domain. Dynamic Voltage and Frequency Scaling techniques adaptively scale the voltage and frequency levels of the CPU allowing it to reach just enough performance to process the system workload while meeting throughput constraints, and thereby, reducing the energy consumption. To explore this wide design space for energy efficiency and performance, both for hardware and software components, we provided MPSoCBench features to explore dynamic voltage and frequency scalability (DVFS) and evaluated three mechanisms based on energy estimation and CPU usage rateDoutoradoCiĂȘncia da ComputaçãoDoutora em CiĂȘncia da Computaçã
    • 

    corecore