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Abstract—This paper presents a framework for high-level
power estimation of multiprocessor systems-on-chip (MPSoC)
architectures on FPGA. The technique is based on abstract
execution profiles, called event signatures, and it operates at a
higher level of abstraction than, e.g., commonly-used instruction-
set simulator (ISS) based power estimation methods and should
thus be capable of achieving good evaluation performance. As
a consequence, the technique can be very useful in the context
of early system-level design space exploration. We integrated the
power estimation technique in a system-level MPSoC synthesis
framework. Subsequently, using this framework, we designed a
range of different candidate architectures which contain different
numbers of Microblaze processors and compared our power
estimation results to those from real measurements on a Virtex-6
FPGA board.

I. INTRODUCTION

The complexity of modern embedded systems, which are
increasingly based on MultiProcessor-SoC (MPSoC) architec-
tures, has led to the emergence of system-level design. System-
level design tries to cope with the design complexity by
raising the abstraction level of the design process. Here, a key
ingredient is the notion of high-level modeling and simulation
in which the models allow for capturing the behavior of system
components and their interactions at a high level of abstraction.
These high-level models minimize the modeling effort and are
optimized for execution speed. Consequently, they facilitate
early architectural design space exploration (DSE).

An important element of system-level design is the high-
level modeling for architectural power estimation. This allows
to verify that power budgets are approximately met by the
different parts of the design and the entire design, and evaluate
the effect of various high-level optimizations, which have been
shown to have much more significant impact on power than
low-level optimizations [10].

The traditional practice for embedded systems evaluation
often combines two types of simulators, one for simulating
the programmable components running the software and one
for the dedicated hardware parts. However, using such a
hardware/software co-simulation environment during the early
design stages has major drawbacks: (i) it requires too much
effort to build them, (ii) they are often too slow for exhaustive
explorations, and (iii) they are inflexible in quickly evaluating
different hardware/software partitionings. To overcome these
shortcomings, a number of high-level modeling and simulation
environments have been proposed in recent years. An example
is our Sesame system-level modeling and simulation environ-
ment [19], which aims at efficient design space exploration of

embedded multimedia system architectures.

Until now, the Sesame framework has mainly focused on
the system-level performance analysis of multimedia MPSoC
architectures. So, it did not include system-level power mod-
eling and estimation capabilities. In [20], we initiated a first
step towards this end, however, by introducing the concept
of computational event signatures, allowing for high-level
power modeling of microprocessors (and their local memory
hierarchy). This signature-based power modeling operates at a
higher level of abstraction than commonly-used instruction-set
simulator (ISS) based power models and is capable of achiev-
ing good evaluation performance. This is important since ISS-
based power estimation generally is not suited for early DSE
as it is too slow for evaluating a large design space: the
evaluation of a single design point via ISS-based simulation
with a realistic benchmark program may take in the order
of seconds to hundreds of seconds. Moreover, unlike many
other high-level power estimation techniques, the signature-
based power modeling technique still incorporates an explicit
micro-architecture model of a processor, and thus is able to
perform micro-architectural DSE as well.

In this paper, we extend the aforementioned signature-based
power modeling work, and we present a full system-level
MPSoC power estimation framework based on the Sesame
framework, in which the power consumption of all the system
components is modeled using signature-based models. The
MPSoC power model has been incorporated into Daedalus,
which is a system-level design flow for the design of MPSoC
based embedded multimedia systems [14], [17]. Daedalus
offers a fully integrated tool-flow in which system-level syn-
thesis and FPGA-based system prototyping of MPSoCs are
highly automated. This allows us to quickly validate our high-
level power models against real MPSoC implementations on
FPGA.

In the next section, we briefly describe the Sesame frame-
work. Section 3 introduces the concept of event signatures
and explains how they are used in the power modeling of
architectures. Section 4 gives an overview of our MPSoC
power modeling framework and the different components
used for modeling processors, memories and communication
channels. Section 5 presents a number of experiments in
which we compare the results from our models against real
measurements of real MPSoC implementations on a Virtex-6
FPGA board. In Section 6, we describe related work, after
which Section 7 concludes the paper.
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Fig. 1. The Sesame system-level simulation environment

II. THE SESAME ENVIRONMENT

Sesame is a modeling and simulation environment for the
efficient design space exploration of heterogeneous embedded
systems. Using Sesame, a designer can model embedded
applications and MPSoC architectures at the system level, map
the former onto the latter, and perform application-architecture
co-simulations for rapid performance evaluations. Based on
these evaluations, the designer can further refine (parts of)
the design, experiment with a different hardware/software
partitionings, perform simulations at multiple levels of abstrac-
tion, or even have mixed-level simulations where architecture
model components operate at different levels of abstraction. To
achieve this flexibility, the Sesame environment uses separate
application and architectures models. According to the Y-
chart approach [19], an application model – derived from a
target application domain – describes the functional behavior
of an application in an architecture-independent manner. This
model correctly expresses the functional behavior, but is
free from architectural issues, such as timing characteristics,
resource utilization, or bandwidth constraints. Next, a platform
architecture model – defined with the application domain
in mind – defines architecture resources and captures their
performance constraints. Finally, an explicit mapping step
maps an application model onto an architecture model for
co-simulation, after which the system performance can be
evaluated quantitatively. The layered infrastructure of Sesame
is illustrated in Figure 1.

For application modeling, Sesame uses the Kahn Process
Network (KPN) model of computation [9] in which parallel
processes implemented in a high-level language communicate
with each other via unbounded FIFO channels. Hence, the
KPN model unveils the inherent task-level parallelism avail-
able in the application and makes the communication explicit.
Furthermore, the code of each Kahn process is instrumented
with annotations describing the application’s computational
actions, which allows to capture the computational behavior of

an application. The reading from and writing to FIFO channels
represent the communication behavior of a process within
the application model. When the Kahn model is executed,
each process records its computational and communication
actions, and generates a trace of application events. These
application events are an abstract representation of the appli-
cation behavior and are necessary for driving an architecture
model. Application events are generally coarse grained, such
as read(channel id, pixel block) or execute(DCT).

An architecture model simulates the performance conse-
quences of the computation and communication events gen-
erated by an application model. It solely accounts for archi-
tectural (performance) constraints and does not need to model
functional behavior. This is possible because the functional
behavior is already captured by the application model, which
drives the architecture simulation. The timing consequences
of application events are simulated by parameterizing each
architecture model component with an event table containing
operation latencies. The table entries could include, for ex-
ample, the latency of an execute(DCT) event, or the latency
of a memory access in the case of a memory component.
With respect to communication, issues such as synchronization
and contention on shared resources are also captured in the
architecture model.

To realize trace-driven co-simulation of application and
architecture models, Sesame has an intermediate mapping
layer with two main functions. First, it controls the mapping
of Kahn processes (i.e., their event traces) onto architecture
model components by dispatching application events to the
correct architecture model component. Second, it makes sure
that no communication deadlocks occur when multiple Kahn
processes are mapped onto a single architecture model com-
ponent. In this case, the dispatch mechanism also provides
various strategies for application event scheduling.

Extending the Sesame framework to also support power
modeling of MPSoCs could be done fairly easily by adding
power consumption numbers to the event tables. So, this means
that a component in the architecture model not only accounts
for the timing consequences of an incoming application event,
but also accounts for the power that is consumed by the
execution of this application event (which is specified in the
event tables now). The power numbers that need to be stored
in the event tables can, of course, be retrieved from lower-level
power simulators or from (prototype) implementations of com-
ponents. However, simply adding fixed power numbers to the
event tables would be a rigid solution in terms of DSE: these
numbers would only be valid for the specific implementation
used for measuring the power numbers. Therefore, we propose
a high-level power estimation method based on so-called event
signatures that allows for more flexible power estimation
in the scope of system-level DSE. As will be explained in
the next sections, signature-based power estimation provides
an abstraction of processor activity and communication in
comparison to traditional ISS-based power models, while still
incorporating an explicit micro-architecture model and thus
being able to perform micro-architectural DSE.
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Fig. 2. System-level Power estimation framework

III. EVENT SIGNATURES

An event signature is an abstract execution profile of an
application event that describes the computational complexity
of an application event (in the case of computational events) or
provides information about the data that is communicated (in
the case of communication events). Hence, it can be considered
as meta-data about an application event.

A. Computational events signatures

A computational signature describes the complexity of
computational events in a (micro-)architecture independent
fashion using an Abstract Instruction Set (AIS) [20]. Currently,
our AIS is based on a load-store architecture and consists of
instruction classes, such as Simple Integer Arithmetic, Simple
Integer Arithmetic Immediate, Integer Multiply, Branch, Load,
and Store. The high level of abstraction of the AIS should
allow for capturing the computational behavior of a wide range
of processors with different instruction-set architectures. To
construct the signatures, the real machine instructions of the
application code represented by an application event (derived
from an instruction set simulator as will be explained below)
are first mapped onto the various AIS instruction classes, after
which a compact execution profile is made. This means that the
resulting signature is a vector containing the instruction counts
of the different AIS instruction classes. Here, each index in
this vector specifies the number of executed instructions of a
certain AIS class in the application event. We note that the
generation of signatures for each application event is a one-
time effort, unless e.g. an algorithmic change is made to an
application event’s implementation.

To generate computational signatures, each Kahn applica-
tion process is simulated using a particular Instruction Set
Simulator (ISS), depending on the class of target processor
the application will be mapped on. For example, we currently
use ISSs from the SimpleScalar simulator suite [2] for the
more complex multiple-issue processors, while we deploy the
Microblaze cycle-accurate instruction-set simulator provided
by Xilinx for the more simple soft cores. Using these ISSs,
the event signatures are constructed – by mapping the executed
machine instructions onto the AIS as explained above – for
every computational application event that can be generated
by the Kahn process in question. The event signatures act
as input to our parameterized microprocessor power model,
which will be described in more detail in the next section.
For each signature, the ISS may also provide the power
model with some additional micro-architectural information,
such as cache miss-rates, branch misprediction rates, etc.
In our case, only instruction and data cache miss-rates are
used. As will be explained later on, the microprocessor power
model subsequently uses a micro-architecture description file
in which the mapping of AIS instructions to usage counts of
micro-processor components is described.

B. Communication event signatures

In Sesame, the Kahn processes generate read and write
communication events as a side effect of reading data from
or writing data to ports. Hence, communication events are
automatically generated. For the sake of power estimation,
the communication events are also extended with a signature,
as shown in Figure 3. A communication signature describes
the complexity of transmitting data through a communication



channel (e.g., FIFO, Memory Bus, PLB Bus) based on the
dimension of the transmitted data and the statistical distri-
bution of the contents of the data itself. For the latter, we
use the average Hamming distance of the coarse-grained data
communications. More specifically, we calculate the average
Hamming distance of the data words within the data chunk
communicated by a read or write event (which could be,
e.g., a pixel block, or even an entire image frame), after
which the result is again averaged with Hamming distance
of the previous data transaction on the same communication
channel. In this way, we can get information of the usage of
the channel and the switching factor, which is related to the
data distribution.

type of instruction
id of the comm. channel
transmitted data size
communication id

statistics on data 
distribution

comm. 
signature

communication event

{

Fig. 3. Structure of communication events.

C. Signature-based, system-level power estimation

In Figure 2, the entire signature-based power modeling
framework is illustrated. More specifically, a Kahn application
model is mapped onto a given architecture model, and simu-
lated with Sesame; during this stage, each process generates
its own trace of application events, representing the workload
that is imposed on the underlying MPSoC architecture model.
The communication signature generation is mapping depen-
dent: communication patterns change with different mappings.
For every read/write event, the average Hamming distance,
as explained in the previous subsection, is computed. This
information is then integrated in the trace events, forming
the communication signature. On the other side, the Kahn
application processes for which a power estimation needs to
be performed, are simulated using the ISS, constructing the
event signatures (as explained in the previous section) for
every computational application event that can be generated
by the Kahn process in question. As will be explained in the
next section, the microprocessor power model uses a micro-
architecture description file in which the mapping of AIS
instructions to usage counts of micro-processor components
is described. The Sesame architecture model simulates the
performance and power consequences of the computation and
communication events generated by the application model.
To this end, each architecture model component is param-
eterized with an event table containing the latencies of the
application events it can execute (as explained in Section 2).
Moreover, each architecture model component now also has
an underlying signature-based power model. These models are
activity-based for which the activity counts are derived from
the different application events in the event traces as well as

TABLE I
DIFFERENT POSSIBILITIES OF REUSING SIGNATURES IN DSE

comp. signatures comm. signatures
µ-architectural exploration µ-architectural exploration

mapping exploration (limited) architectural exploration

the signature information of the separate events. The total
power consumption is then obtained by simply adding the
average power contributions of microprocessor(s), memories
and interconnect(s).

The structure of the entire system-level power model is
composed by separate and independent modules, which allow
for the reuse of the different underlying component models
as well as the generated signatures (as shown in Table I).
For example, once computational signatures are generated for
application events, it is possible to explore different micro-
architectures executing the same application with the same
mapping. Moreover, given the computational event signatures,
it is also possible to do mapping exploration, limited to
the case of homogenous systems. Regarding communication
signatures, they can be reused for both micro-architectural and
architectural exploration.

IV. POWER MODEL

We propose a high-level power estimation method based
on the previously discussed event signatures that allows for
flexible power estimation in the scope of system-level DSE.
As will be explained in the subsequent subsections, signature-
based power estimation provides an abstraction of processor
(and communication) activity in comparison to e.g. traditional
ISS-based power models, while still incorporating an explicit
micro-architecture model and thus being able to perform
micro-architectural DSE. The power models are based on
FPGA technology, since we have incorporated these models
in our system-level MPSoC synthesis framework Daedalus
[17], which targets FPGA-based (prototype) implementations.
The MPSoC power model is formed by three main building
blocks, modeling the microprocessors, the memory hierarchy
and the interconnections respectively. The model is based on
the activity counts that can be derived from the application
events and their signatures as described before, and on the
power characteristics of the components themselves, measured
in terms of LUTs used. In particular, we estimate through
synthesis on FPGA the maximum number of LUTs used for
each component. The resulting model is therefore a composi-
tional power model, consisting of the various components (for
which the models are described below) used in the MPSoC
under study. In the remainder of this paper, we will focus on
homogeneous systems, but the used techniques do allow the
modeling and simulation of heterogeneous systems as well.

A. Interconnection Power model

In this section, we derive architectural-level parameterized,
activity based power models for major network building blocks
within our targeted MPSoCs. These include FIFO buffers,
crossbar switches, buses and arbiters. The currently modeled



building blocks – network components as well as processor
and memory components – are all part of the IP library of
our Daedalus synthesis framework [17], which allows the con-
struction of a large variety of MPSoC systems. Consequently,
all our modeled MPSoCs can actually be rapidly synthesized
to and prototyped on FPGA, allowing us to easily validate our
power models.

Our network power models are composed of models for the
aforementioned network building blocks, for which each of
them we have derived parameterized power equations. These
equations are all based on the common power equation for
CMOS circuits:

Pinterconnect = V 2
dd fCα (1)

where f is the clock frequency, Vdd the operating voltage, C the
capacitance of the component and α is the average switching
activity of the component respectively. The capacitance values
for our component models are obtained through an estimation
of the number of LUTs used for the component in question as
well as the capacitance of a LUT itself. Here, we estimate
the number of LUTs needed for every component through
synthesis, after which the capacitance is obtained using the
X-Power tool from Xilinx. The activity rate α is primarily
based on the read and write events from the application event
traces that involve the component in question. For example,
for an arbiter component of a bus, the total time of read and
write transactions to the bus (i.e., the number of read and
write events that involve the bus) as a fraction of the total
execution time is taken as the access rate (i.e., activity rate).
Consequently, the power consumption of an arbiter is modeled
as follows:

Parbiter = β×V 2
dd× f ×CLUT ×nLUTs×access rate (2)

where CLUT , nLUTs, f , Vdd are respectively the estimated
capacitance of a LUT, the estimated number of LUTs needed
to build the arbiter, the clock frequency and the operating
voltage. β is a scaling factor obtained through pre-calibration
of the model, and

access rate =
Treads + Twrites

Ttotal exec

Here, Treads and Twrites are the total times spend on the
execution of read and write transactions, respectively, and
Ttotal exec is the total execution time.

For communication channels like busses, not only the
number of read and write events play a role to determine
the activity factor, but also the data that is actually com-
municated. To this end, we consider the Hamming Distance
distribution between the data transactions, as explained in the
previous section on communication signatures. Thus, every
communication trace event is carrying the statistical activity-
based information of the channel from/to which the data is
read/written. Consequently, for any activity (read/write of data)
in the channel, the dynamic power of the interconnection
is calculated according to technology parameters and the
statistical distribution of the data transmitted. Hence, for every

packet transmitted over the channel, the estimated power is
computed in the following way:

Pchan = β×V 2
dd×f×Cchan×nLUTs×Hamm dist(e) (3)

where β, Cchan, f , Vdd, nLUTs are again the scaling factor,
estimated capacitance of the communication channel, clock
frequency, the operating voltage, and number of LUTs needed
to build the interconnection channel. The Hamm dist(e)
parameter is the average Hamming distance of the data trans-
mitted in the read/write events. In our models, leakage power
is calculated according to the estimated look-up tables needed
to build a particular interconnection.

B. Memory Power model

For on-chip memory (level 1 and 2 caches, register file,
etc.) and main memory, we use the analytical energy model
developed in CACTI 6.5 [16] to determine the power con-
sumption of read and write accesses to these structures. These
power estimates include leakage power. The access rates for
the processor-related memories, such as caches and register
file, are derived from the computational signatures, as will be
explained in the next subsection. Moreover, we use the cache
missrate information provided by the ISS used to generate
the computational signatures to derive the access counts for
structures like the level-2 cache and the processor’s load/store
queue.

For the main memory and communication buffers, we
calculate the access rate in the same fashion as for a network
arbiter component as explained above: the communication
application events are used to track the number of accesses
to the memory. That is, the total time taken by read and
write accesses (represented by the communication application
events) to a memory as a fraction of the total execution
time is taken as the access rate. Subsequently, the signal rate
represents the switching probability of the signals. For every
read/write event to the memory, the average Hamming distance
contained in the communication event signature is extracted
and the signal rate is calculated as follows:

signal rate = γ ×Hamm dist(e)

where the γ is again a scaling factor obtained through pre-
calibration of the model.

C. Microprocessor Power model

The microprocessor model that underlies our power model
is based on [20]. It assumes a dynamic pipelined machine,
consisting of one arithmetic logical unit, one floating point
unit, a multiplier and two levels of caches. However, this
model can easily be extended to other processor models, by
simply introducing new units. For the power model of the
clock component, three sub-components are recognized: the
clock distribution wiring, the clock buffering and the clocked
node capacitance. We assume a H-tree based clock network
using a distributed driver scheme (i.e. applying clock buffers).

The power consumption of a computational application
event is calculated by accumulating the power consumption
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of each of the components that constitute the micro-processor
power model, as shown in Figure 4. More specifically, the first
step to calculate an application event’s power consumption is
to map its signature to usage counts of the various processor
components. So, here it is determined how often e.g. the ALU
(see Other Units in Figure 4), the register file and the level-1
instruction and data caches are accessed during the execution
of an application event. The microprocessor power model uses
an XML-based micro-architecture description file in which the
mapping of AIS instructions to usage counts of microprocessor
components is described. This micro-architecture description
file also contains the parameters for our microprocessor power
model, such as e.g. the dimensions and organization of mem-
ory structures (caches, register file, etc.) in the microprocessor,
clock frequency, and so on. Clearly, this micro-architecture
description allows for easily extending the AIS and facilitates
the modeling of different micro-architecture implementations.

The above ingredients (the event signatures, additional
micro-architectural information per signature such as cache
statistics, and the micro-architecture description of the proces-
sor) subsequently allow the power model to produce power
consumption estimates for each computational application
event by accumulating the power consumption of the processor
components used by the application event.

V. VALIDATION

As mentioned before, we have integrated our power model
into the Daedalus system-level design flow for the design of
MPSoC based embedded multimedia systems [14], [17]. This
allows for direct validation and calibration of our power model.
By deploying Daedalus, we have designed several different
candidate MPSoC configurations and compared our power
estimates for these architectures with the real measurements.
The studied MPSoCs contain different numbers of Microblaze
processors that are interconnected using a crossbar network.
The validation environment is formed by the architecture itself
and an extra Microblaze. This extra Microblaze polls the
power values in the internal measurement registers in our
target Virtex-6 FPGA, and interfaces an I2C controller in the

FPGA design with the I2C interface of the PMBus controller
chip [1]. As we introduced an extra Microblaze in the design,
the resulting power consumption of the system is scaled by a
fixed factor, which is dependent on the measurement infras-
tructure. This is, however, not a problem since our primary
aim is to provide high-fidelity rankings in terms of power
behavior (which is key to early design space exploration)
rather than obtaining near-perfect absolute power estimations
[8]. Evidently, the additional power consumed by the extra
Microblaze does not affect the fidelity of the rankings (i.e., the
extra Microblaze exists in every MPSoC configuration), while
the power measurements obtained are much more accurate
compared to e.g. using a simulator [4].

The results of the validation experiments are shown in
Figures 5 and 6. In these experiments, we mapped three
different parallel multimedia applications onto the target MP-
SoCs: a Motion-JPEG encoder (Mjpeg), a Periodogram, which
is an estimate of the spectral density of a signal, and a
Sobel filter for edge detection in images. In addition, for
each of the applications, we also investigated two different
task mappings onto the target architectures. Here, we selected
one ”good” mapping, in terms of task communication, as
well as a ”poor” one for each application. That is, in the
”good” mapping we minimize task communications, while
in the ”poor” one we maximize task communications. The
experiments in Figures 5 and 6 apply the following notation:
appname nproc mappingtype, where appname is the applica-
tion considered, nproc indicates the number of processors used
in the architecture (e.g., ”3mb” indicates an MPSoC with 3
MicroBlaze processors), and mappingtype refers to the type of
mapping used. With respect to the latter, the tag mp1 indicates
the good mapping, while mp2 refers to the poor mapping. For
the Motion-JPEG application, we also considered two different
data input sets: the first input set (ds1) is characterized by
a high data-correlation, while the second input set (ds2) has
a very low data correlation, in terms of measured average
Hamming distance distribution of the input data. The power
values in Figures 5 and 6 are scaled by a factor of 2W for the
sake of improved visibility.

The results in Figures 5 and 6 show that our power model
performs quite decently in terms of absolute accuracy. We
observed an average error of our power estimations of around
7%, with a standard deviation of 5%. More important in
the context of early design space exploration, however, is
the fact that our power model appears to be very capable
of estimating the right power consumption trends for the
various MPSoC configurations, applications and mappings. We
explicitly checked the fidelity of our estimations in terms of
quality ranking of candidate architectures by ranking all design
instances according to their consumed power for a specific
application. Our estimates result in a ranking of the power
values that is correct for every application we considered,
therefore showing a high fidelity. This high-fidelity quality-
ranking of candidate architectures thus allows for a correct
candidate architecture generation and selection during the
process of design space exploration.
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Fig. 5. Mjpeg application with input set ds1 (left) and input set ds2 (right)
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Fig. 6. Sobel filter (left) and Periodogram application (right)

Since every design point evaluation takes only few seconds,
the presented power model offers remarkable potentials for
quickly experimenting with different MPSoC architectures and
exploring system-level design options during the very early
stages of design.

VI. RELATED WORK

There exists a fairly large body of related work on system-
level power modeling of MPSoCs. For example, in [6], a SoC
power estimation method has been presented that is based on
a SystemC TLM modeling strategy. It adopts multi-accuracy
models, supporting the switch between different models at run-
time according to the desired accuracy level. Atitallah et. al.
[3] use a stack of abstract models. The high-level Timed Pro-
grammer View model omits details related to the computation
and communication resources and is used to prune the design
space. The second Cycle-Accurate Bit-Accurate model is used
for power estimation and platform configuration. In [15],
a system-level cycle-based framework to model and design
MPSoCs is presented. C++/SystemC based IP system modules
can be wrapped to act as plug-ins, which are managed by the
simulation kernel in a TLM fashion. To estimate power during
a simulation, dedicated ports to each component are added,
which communicate with the corresponding power model. [21]
presents a simulation-based methodology for extending system
performance modeling frameworks to also include power

modeling. They demonstrate the use of this methodology with
a case study of a real, complex embedded system. In [12],
a power estimation framework for SoCs is presented, using
power profiles to produce cycle accurate results. The SoC
is divided in its building blocks (e.g. processors, memories,
communication and peripherals) and the power estimation is
based on the RTL analysis of each component.

Moreover, there also exist a considerable number of research
efforts that only focus on the power modeling of the on-
chip network of MPSoCs. Examples are [18], [7], [11], [13].
Many of the above approaches calibrate the high-level models
with parameters extracted from RTL implementations, using
low-level simulators for the architectural components. To the
best of our knowledge, none of the existing efforts have
incorporated the power models in a (highly automated) system-
level MPSoC synthesis framework, allowing for accurate and
flexible validation of the models. Instead, most existing works
either use simulation-based validation (e.g. [6], [7], [11], [5],
[18]), or validation by means of measurements on fixed target
platforms (e.g. [21], [12]). Consequently, in general, related
system-level MPSoC modeling efforts do also not target FPGA
technology in their system-level power models.

VII. CONCLUSION

We presented a framework for high-level power estimation
of multiprocessor systems-on-chip (MPSoC) architectures on



FPGA. The technique is based on abstract execution profiles
called ”event signatures”, and it operates at a higher level of
abstraction than, e.g., commonly-used instruction-set simulator
(ISS) based power estimation methods and should thus be ca-
pable of achieving good evaluation performance. The model is
based on the activity counts from the signatures, and from the
power characteristics of the components themselves, measured
in terms of LUTs used. The signature-based power modeling
technique has been integrated in our Daedalus system-level
MPSoC synthesis framework, which allows a direct validation
and calibration of the power model. We compared the results
from our signature-based power modeling to those from real
measurements on a Virtex 6 FPGA board. These validation
results indicate that our high-level power model achieves fairly
accurate power estimates. As future work, we plan to perform
more extensive validation experiments (e.g., using different
interconnects and memory hierarchies) as well as to deploy
the power model in real system-level DSE experiments.
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