215 research outputs found

    Toward Small-Scale Wind Energy Harvesting: Design, Enhancement, Performance Comparison, and Applicability

    Get PDF

    Advances in Piezoelectric Systems: An Application-Based Approach.

    Get PDF

    Power delivery mechanisms for asynchronous loads in energy harvesting systems

    Get PDF
    PhD ThesisFor systems depending on methods, a fundamental contradiction in the power delivery chain has existed between conventional to supply it. DC/DC conversion (e.g.) has therefore been an integral part of such systems to resolve this contradiction. be made tolerant to a much wider range of Vdd variance. This may open up opportunities for much more energy efficient methods of power delivery. performance of different power delivery mechanisms driving both asynchronous and synchronous loads directly from a harvester source bypassing bulky energy method, which employs a energy from a EH circuit depending on load and source conditions, is developed. through comprehensive comparative analysis. Based on the novel CBB power delivery method, an asynchronous controller is circuits to work with tasks. The successful asynchronous control design drives a case study that is meant to explore relations between power path and task path. To deal with different tasks with variable harvested power, systems may have a range of operation conditions and thus dynamically call for CBB or SCC type power set of capacitors to form CBB or SCC is implemented with economic system size. This work presents an unconventional way of designing a compact-size, quick- circuit overcome large voltage variation in EH systems and implement smart power management for harsh EH environment. The power delivery mechanisms (SCC, employed to help asynchronous- logic-based chip testing and micro-scale EH system demonstrations

    Energy Academic Group Compilation of Abstracts 2012-2016

    Get PDF
    This report highlights the breadth of energy-related student research at NPS and reinforces the importance of energy as an integral aspect of today's Naval enterprise. The abstracts provided are from theses and a capstone project report completed by December 2012-March 2016 graduates.http://archive.org/details/energyacademicgr109454991

    FULLY AUTONOMOUS SELF-POWERED INTELLIGENT WIRELESS SENSOR FOR REAL-TIME TRAFFIC SURVEILLANCE IN SMART CITIES

    Get PDF
    Reliable, real-time traffic surveillance is an integral and crucial function of the 21st century intelligent transportation systems (ITS) network. This technology facilitates instantaneous decision-making, improves roadway efficiency, and maximizes existing transportation infrastructure capacity, making transportation systems safe, efficient, and more reliable. Given the rapidly approaching era of smart cities, the work detailed in this dissertation is timely in that it reports on the design, development, and implementation of a novel, fully-autonomous, self-powered intelligent wireless sensor for real-time traffic surveillance. Multi-disciplinary, innovative integration of state-of-the-art, ultra-low-power embedded systems, smart physical sensors, and the wireless sensor network—powered by intelligent algorithms—are the basis of the developed Intelligent Vehicle Counting and Classification Sensor (iVCCS) platform. The sensor combines an energy-harvesting subsystem to extract energy from multiple sources and enable sensor node self-powering aimed at potentially indefinite life. A wireless power receiver was also integrated to remotely charge the sensor’s primary battery. Reliable and computationally efficient intelligent algorithms for vehicle detection, speed and length estimation, vehicle classification, vehicle re-identification, travel-time estimation, time-synchronization, and drift compensation were fully developed, integrated, and evaluated. Several length-based vehicle classification schemes particular to the state of Oklahoma were developed, implemented, and evaluated using machine learning algorithms and probabilistic modeling of vehicle magnetic length. A feature extraction employing different techniques was developed to determine suitable and efficient features for magnetic signature-based vehicle re-identification. Additionally, two vehicle re-identification models based on matching vehicle magnetic signature from a single magnetometer were developed. Comprehensive system evaluation and extensive data analyses were performed to fine-tune and validate the sensor, ensuring reliable and robust operation. Several field studies were conducted under various scenarios and traffic conditions on a number of highways and urban roads and resulted in 99.98% detection accuracy, 97.4782% speed estimation accuracy, and 97.6951% classification rate when binning vehicles into four groups based on their magnetic length. Threshold-based, re-identification results revealed 65.25%~100% identification rate for a window of 25~500 vehicles. Voting-based, re-identification evaluation resulted in 90~100% identification rate for a window of 25~500 vehicles. The developed platform is portable and cost-effective. A single sensor node costs only $30 and can be installed for short-term use (e.g., work zone safety, traffic flow studies, roadway and bridge design, traffic management in atypical situations), as well as long-term use (e.g., collision avoidance at intersections, traffic monitoring) on highways, roadways, or roadside surfaces. The power consumption assessment showed that the sensor is operational for several years. The iVCCS platform is expected to significantly supplement other data collection methods used for traffic monitoring throughout the United States. The technology is poised to play a vital role in tomorrow’s smart cities

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research

    Investigation of methods for data communication and power delivery through metals

    Get PDF
    PhD ThesisThe retrieval of data from a sensor, enclosed by a metallic structure, such as a naval vessel, pipeline or nuclear flask is often very challenging. To maintain structural integrity it is not desirable to penetrate the wall of the structure, preventing any hard-wired solution. Furthermore, the conductive nature of the structure prevents the use of radio communications. Applications involving sealed containers also have a requirement for power delivery, as the periodic changing of batteries is not possible. Ultrasound has previously been identified as an attractive approach but there are two key challenges: efficient/reliable ultrasonic transduction and a method of overcoming the inherent multipath distortion resulting from boundary reflections. Previous studies have utilised piezoelectric contact transducers, however, they are impractical due to their reliance on coupling, i.e. the bond between the transducer and the metal surface, which leads to concerns over long term reliability. A non-contact transducer overcomes this key drawback, thus highlighting the electromagnetic acoustic transducer (EMAT) as a favourable alternative. This thesis presents the design and testing of an EMAT with appropriate characteristics for through-metal data communications. A low cost, low power data transmission scheme is presented for overcoming acoustic multipath based on pulse position modulation (PPM). Due to the necessary guard time, the data rate is limited to 50kbps. A second solution is presented employing continuous wave, Quadrature phase shift keying (QPSK) modulation, allowing data rates in excess of 1Mbps to be achieved. Equalisation is required to avoid intersymbol interference (ISI) and a decision feedback equaliser (DFE) is shown to be adept at mitigating this effect. The relatively low efficiency of an EMAT makes it unsuitable for power delivery, consequently, an alternative non-contact approach, utilising inductive coupling, is explored. Power transfer efficiency of ≈ 4% is shown to be achievable through 20mm thick stainless steel.ICS department of BAE Systems Submarine Solutions, EPSR

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017
    • …
    corecore