7,060 research outputs found

    A survey of variants and extensions of the resource-constrained project scheduling problem

    Get PDF
    The resource-constrained project scheduling problem (RCPSP) consists of activities that must be scheduled subject to precedence and resource constraints such that the makespan is minimized. It has become a well-known standard problem in the context of project scheduling which has attracted numerous researchers who developed both exact and heuristic scheduling procedures. However, it is a rather basic model with assumptions that are too restrictive for many practical applications. Consequently, various extensions of the basic RCPSP have been developed. This paper gives an overview over these extensions. The extensions are classified according to the structure of the RCPSP. We summarize generalizations of the activity concept, of the precedence relations and of the resource constraints. Alternative objectives and approaches for scheduling multiple projects are discussed as well. In addition to popular variants and extensions such as multiple modes, minimal and maximal time lags, and net present value-based objectives, the paper also provides a survey of many less known concepts. --project scheduling,modeling,resource constraints,temporal constraints,networks

    An overview of recent research results and future research avenues using simulation studies in project management

    Get PDF
    This paper gives an overview of three simulation studies in dynamic project scheduling integrating baseline scheduling with risk analysis and project control. This integration is known in the literature as dynamic scheduling. An integrated project control method is presented using a project control simulation approach that combines the three topics into a single decision support system. The method makes use of Monte Carlo simulations and connects schedule risk analysis (SRA) with earned value management (EVM). A corrective action mechanism is added to the simulation model to measure the efficiency of two alternative project control methods. At the end of the paper, a summary of recent and state-of-the-art results is given, and directions for future research based on a new research study are presented

    A modied branch and cut procedure for resource portfolio problem under relaxed resource dedication policy

    Get PDF
    Multi-project scheduling problems are characterized by the way resources are managed in the problem environment. The general approach in multi-project scheduling literature is to consider resource capacities as a common pool that can be shared among all projects without any restrictions or costs. The way the resources are used in a multi-project environment is called resource management policy and the aforementioned assumption is called Resource Sharing Policy in this study. The resource sharing policy is not a generalization for multi-project scheduling environments and different resource management policies maybe defined to identify characteristics of different problem environments. In this study, we present a resource management policy which prevents sharing of resources among projects but allows resource transfers when a project starts after the completion of another one. This policy is called the Relaxed Resource Dedication (RRD) Policy in this study. The general resource capacities might or might not be decision variables. We will treat here the case where the general available amounts of resources are decision variables to be determined subject to a limited budget. We call this problem as the Resource Portfolio Problem (RPP). In this study, RPP is investigated under RRD policy and a modified Branch and Cut (B&C)procedure based on CPLEX is proposed. The B&C procedure of CPLEX is modified with different branching strategies, heuristic solution approaches and valid inequalities. The computational studies presented demonstrate the effectiveness of the proposed solution approaches

    Different resource management policies in multi-mode resource constrained multi-project scheduling

    Get PDF
    This study investigates different resource management policies in resource constrained multi-project problem environments. The problem environment under investigation has alternative modes for activities, a set of renewable and nonrenewable resources used by activities and further considerations such as general resource budget. The characterization of the way resources are used by individual projects in the multiproject environment is called resource management policy in this study. The solution approaches in the literature for multi-project problems generally defines the resources as a pool that can be shared by all the projects which in fact creates a general assumption for the resource usage characteristics. This resource management policy is referred as resource sharing policy in this study. Resource sharing policy can be invalid in some certain cases where sharing assumption is not feasible because of some characteristics of resources and/or projects which require different resource management policies for the multi-project environment. According to the characteristics of resources and projects, resource management policies such as resource dedication, relaxed resource dedication and generalized resource management policies can be defined. In this paper, these resource management policies will be defined and their mathematical formulations will be presented and discussed

    Resource-constrained project scheduling.

    Get PDF
    Abstract: Resource-constrained project scheduling involves the scheduling of project activities subject to precedence and resource constraints in order to meet the objective(s) in the best possible way. The area covers a wide variety of problem types. The objective of this paper is to provide a survey of what we believe are important recent in the area . Our main focus will be on the recent progress made in and the encouraging computational experience gained with the use of optimal solution procedures for the basic resource-constrained project scheduling problem (RCPSP) and important extensions. The RCPSP involves the scheduling of a project its duration subject to zero-lag finish-start precedence constraints of the PERT/CPM type and constant availability constraints on the required set of renewable resources. We discuss recent striking advances in dealing with this problem using a new depth-first branch-and-bound procedure, elaborating on the effective and efficient branching scheme, bounding calculations and dominance rules, and discuss the potential of using truncated branch-and-bound. We derive a set of conclusions from the research on optimal solution procedures for the basis RCPSP and subsequently illustrate how effective and efficient branching rules and several of the strong dominance and bounding arguments can be extended to a rich and realistic variety of related problems. The preemptive resource-constrained project scheduling problem (PRCPSP) relaxes the nonpreemption condition of the RCPSP, thus allowing activities to be interrupted at integer points in time and resumed later without additional penalty cost. The generalized resource-constrained project scheduling (GRCPSP) extends the RCPSP to the case of precedence diagramming type of precedence constraints (minimal finish-start, start-start, start-finish, finish-finish precedence relations), activity ready times, deadlines and variable resource availability's. The resource-constrained project scheduling problem with generalized precedence relations (RCPSP-GPR) allows for start-start, finish-start and finish-finish constraints with minimal and maximal time lags. The MAX-NPV problem aims at scheduling project activities in order to maximize the net present value of the project in the absence of resource constraints. The resource-constrained project scheduling problem with discounted cash flows (RCPSP-DC) aims at the same non-regular objective in the presence of resource constraints. The resource availability cost problem (RACP) aims at determining the cheapest resource availability amounts for which a feasible solution exists that does not violate the project deadline. In the discrete time/cost trade-off problem (DTCTP) the duration of an activity is a discrete, non-increasing function of the amount of a single nonrenewable resource committed to it. In the discrete time/resource trade-off problem (DTRTP) the duration of an activity is a discrete, non-increasing function of the amount of a single renewable resource. Each activity must then be scheduled in one of its possible execution modes. In addition to time/resource trade-offs, the multi-mode project scheduling problem (MRCPSP) allows for resource/resource trade-offs and constraints on renewable, nonrenewable and doubly-constrained resources. We report on recent computational results and end with overall conclusions and suggestions for future research.Scheduling; Optimal;

    Dynamic resource constrained multi-project scheduling problem with weighted earliness/tardiness costs

    Get PDF
    In this study, a conceptual framework is given for the dynamic multi-project scheduling problem with weighted earliness/tardiness costs (DRCMPSPWET) and a mathematical programming formulation of the problem is provided. In DRCMPSPWET, a project arrives on top of an existing project portfolio and a due date has to be quoted for the new project while minimizing the costs of schedule changes. The objective function consists of the weighted earliness tardiness costs of the activities of the existing projects in the current baseline schedule plus a term that increases linearly with the anticipated completion time of the new project. An iterated local search based approach is developed for large instances of this problem. In order to analyze the performance and behavior of the proposed method, a new multi-project data set is created by controlling the total number of activities, the due date tightness, the due date range, the number of resource types, and the completion time factor in an instance. A series of computational experiments are carried out to test the performance of the local search approach. Exact solutions are provided for the small instances. The results indicate that the local search heuristic performs well in terms of both solution quality and solution time

    An equitable approach to the payment scheduling problem in project management

    Get PDF
    This study reports on a new approach to the payment scheduling problem. In this approach, the amount and timing of the payments made by the client and received by the contractor are determined so as to achieve an equitable solution. An equitable solution is defined as one where both the contractor and the client deviate from their respective ideal solutions by an equal percentage. The ideal solutions for the contractor and the client result from having a lump sum payment at the start and end of the project respectively. A double loop genetic algorithm is proposed to solve for an equitable solution. The outer loop represents the client and the inner loop the contractor. The inner loop corresponds to a multi-mode resource constrained project scheduling problem with the objective of maximizing the contractor's net present value for a given payment distribution. When searching for an equitable solution, information flows between the outer and inner loops regarding the payment distribution over the event nodes and the timing of these payments. An example problem is solved and analyzed. A set of 93 problems from the literature are solved and some computational results are reported

    Automatisierte Generierung und Simulation von Hyper-Heuristiken fĂŒr stochastische Multi-Modus-Multi-Projekt-ressourcenbeschrĂ€nkte Projekt- und Systemplanungsprobleme mit UmrĂŒstzeiten

    Get PDF
    A simulation framework is presented which covers both generation and simulation of production planning and control problems which include transfer times and stochastic influences and therefore extend classical multi-mode multi-project RCPSPs. This allows for systematic and in-depth investigations of the quality and the behaviour of heuristics. In addition, the automated design of heuristics based on Boolean operators applied to relations of problem specific quantities leads on average to better results than a manual selection and adjustment of heuristic strategies
    • 

    corecore