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AN EQUITABLE APPROACH TO THE PAYMENT SCHEDULING PROBLEM  

IN PROJECT MANAGEMENT 
 
 

ABSTRACT 
This study reports on a new approach to the payment scheduling problem. In this 

approach, the amount and timing of the payments made by the client and received by 
the contractor are determined so as to achieve an equitable solution. An equitable 
solution is defined as one where  both the contractor and the client deviate from their 
respective ideal solutions by an equal percentage. The ideal solutions for the 
contractor and the client result from having a lump sum payment at the start and end 
of the project respectively. A double loop genetic algorithm is proposed to solve for 
an equitable solution. The outer loop represents the client and the inner loop the 
contractor. The inner loop corresponds to a multi-mode resource constrained project 
scheduling problem with the objective of maximizing the contractor's net present 
value for a given payment distribution. When searching for an equitable solution, 
information flows between the outer and inner loops regarding the payment 
distribution over the event nodes and the timing of these payments. An example 
problem is solved and analyzed. A set of 93 problems from the literature are solved 
and some computational results are reported.  

 

1. THE PROBLEM DEFINITION 

A review of the project management and scheduling literature reveals that a 

considerable amount of effort has been spent on the resource constrained project scheduling 

problem (RCPSP) with the objective of minimizing the makespan (Özdamar and Ulusoy, 

1995; Kolisch and Padman, 1998). It is only relatively recently that financial considerations 

attract increasing attention although the first attempts for modelling financial aspects of 

project management appeared rather early (Russell, 1970). Financial aspects of project 

management have been included in the problem formulation through the use of the 

maximization of the net present value (NPV) objective which includes both the negative 

(disbursement) and the positive (receipt) cash flows throughout the project. A recent review of 

project network models with discounted cash flows is given by Herroelen et al. (1997). 

The problem treated in this paper can be considered as an extension of the payment 

scheduling problem. The payment scheduling problem considers the amount and timing of the 
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payments as decision variables which can affect the financial returns of both the contractor 

and the client. The amount and timing of payments are an important agenda item in the 

negotiations between the client and the contractor. Here, the payments are assumed to occur at 

the event nodes. 

In this study, the payment scheduling problem is attacked by taking into account not 

only the contractor or only the client but both the client and the contractor. The motivation 

behind this study is to make a first attempt to the investigation of the negotiation process 

between the contractor and the client.  Both  the contractor and the client aim to maximize 

their financial returns and hence, their respective NPVs. The budget including a profit margin 

is agreed upon by the client and the contractor. The contractor meets the costs of the activities 

by using the payments made by the client towards the budget. Whenever the cumulative cash 

flow of the contractor becomes negative, then the contractor is assumed to borrow funds at a 

borrowing rate larger than the regular discount rate used to calculate the NPVs. The most 

preferred payment schedule for the contractor is obtaining the total payment as a lump sum at 

the beginning of the project. After receiving the total  payment at the beginning, the contractor 

will try to minimize his/her costs by scheduling the activities in such a manner that activities 

with higher cash outflow will be scheduled as late as possible. To calculate the client's NPV, it 

is assumed that the budget is readily available initially and the NPV of all the disbursements 

by the client are subtracted from this lump sum. The remainder is the gain of the client 

resulting from not having to make the total payment initially. The most preferred payment 

schedule for the client is a  lump sum payment made at the completion of the project. Then the 

client will not worry about the scheduling of the activities but only the project duration, since 

this is the factor affecting the NPV for the client directly. The most preferred payment 

structures for both the contractor and the client will be called the ideal solutions for both the 

contractor and the client respectively. 

The investigation of the negotiation process is reduced here to the search for an 

equitable solution for both the contractor and the client. An equitable solution is defined as 

one where  both the contractor and the client deviate from their respective ideal solutions by 

an equal percentage so as to reach a compromise solution to overcome the schedule 
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disagreements arising between them. The equitable solution is equitable in the sense that both 

parties agree to forego an equal percent from their ideal solutions.  

The payment scheduling problem from the contractor's point of view was formulated 

by Dayanand and Padman (1993). They proposed a zero-one integer programming 

formulation and suggested and tested several heuristics. Dayanand and Padman (1994) 

presented a two-stage procedure in which the first stage consisted of a simulated annealing 

algorithm and in the second stage, activities are rescheduled  to improve the project NPV. 

They reported that the performance of this approach was significantly better than the problem-

dependent heuristics proposed earlier by Dayanand and Padman (1993). Another major result 

was that the improvement  due to the second stage was indeed relatively small. Dayanand and 

Padman (1995) looked into the payment scheduling problem from the client's perspective. 

Several mixed integer linear programming models were introduced. The analysis showed that 

the client obtains the greatest benefit by scheduling the project for early completion. Making 

payments at regular time intervals was shown to typically increase the client's expenses. 

Dayanand and Padman (1997) introduced several deterministic models to analyze the payment 

scheduling problem with the objective of maximizing  the contractor's NPV. In the models, a 

deadline is imposed and the number of payments is fixed. Once the total payment to be 

received from the client is determined, it remains unchanged during the progress of the 

project. They suggested that the models described can be used by both the contractor and the 

client subject to some modifications. 

Bey et al. (1981) demonstrated how profitability in project activity can be increased 

through effective timing of cash outlays and receipts. In their model, the only resource 

constraint imposed was cash which was taken to be a doubly constrained resource. They 

utilized an example problem to illustrate how to minimize a project's cost or to maximize a 

project's expected value. With the use of a numerical example they showed that the optimal 

schedule varies with the objective function selected and depending whether it is viewed from 

the standpoint of the contractor or from the standpoint of the client. The cost of capital was 

shown to have an effect on the optimal time sequencing of activities.  

 



 

 4

2. THE PROBLEM FORMULATION AND A SOLUTION  APPROACH 

2.1. The problem formulation 

The payment scheduling problem as defined above is represented over an activity - on 

- arc (AoA) network. All aspects of the problem are taken to be deterministic. The progress 

payments are assumed to be paid at the event nodes where an event occurs at the completion 

of one or more activities. The project is to be accomplished subject to a deadline. The 

resources employed are renewable resources each of limited amount. Each activity can be 

accomplished in general  in more than one way of  resource combinations and usage levels. 

Each different way of accomplishing an activity corresponds to a mode associated with this 

activity. Switching from one mode to another results either in a resource-duration trade-off or 

in a resource-resource trade-off. Once a resource is assigned to an activity by a certain 

amount, it is assumed that this amount of resource will be tied up by that activity for its whole 

duration. Each mode of an activity will have a different cost of accomplishment. It is assumed 

that the cash flow associated with the cost of an activity occurs at the completion of that 

activity. Note that this is not a restrictive assumption since any type of cash flow associated 

with an activity can be discounted to an equivalent amount occurring at the end of the activity 

using a proper discount rate. Activity scheduling is taken to be non-preemptive. 

A payment distribution is defined here as the percentages of the budget to be paid by 

the client to the contractor at the event nodes prespecified. The event nodes where a payment 

might occur can be prespecified by the client and even by the contractor such as a payment at 

the initial node. Also, the number of event nodes where a payment might occur can be 

restricted to a prespecified number.   

Given a payment distribution, then the maximum NPV of the contractor can be 

obtained by solving a deterministic multi-mode resource constrained max-NPV problem for 

the contractor. Using the timing of the progress payments, the NPV of the client can be easily 

calculated since the client is only affected by the amount and timing of the progress payments. 

Thus, by  taking the absolute difference between the percent deviations from the ideal NPVs, 
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the objective function value Z for the given payment schedule can be calculated using (Eq. 1). 

The objective, of course, is the minimization of Z. 

 

where NPVclient and NPVcont are the NPVs for the client and the contractor respectively. The 

superscript 'ideal' refers to the ideal solution in each case. Note that, 0 ≤ Z < 1. 

2. 2. The negotiation process 

During the negotiation process, information flows between the client and the 

contractor. The client suggests to the contractor a payment distribution over the event nodes. 

Having received this information, the contractor prepares a project schedule so as to maximize 

his/her NPV and sends back to the client the information on the timing of the payments. Using 

this information, the client can calculate his/her NPV. The interaction between the client and 

the contractor  is depicted in Figure 1. The objective function value is calculated using Eq.1. 

Based on this result, the client suggests a new payment distribution. This process repeats itself 

until an equitable solution is reached. During the steps leading to the equitable solution, either 

NPVclient is in the decreasing mode and NPVcont is in the increasing mode or vice versa, 

depending on the initial solution started from. 

---------------------------------------------- 
Figure 1 about here 

---------------------------------------------- 

3. A DOUBLE LOOP GENETIC ALGORITHM 

Genetic algorithms (GAs) were developed by John Holland (1975) as artificial 

adaptive systems to simulate natural evolution. Because of their effectiveness and efficiency in 

searching complex search spaces, they are increasingly used to attack NP-hard problems. 

Several GA applications have been proposed for solving RCPSP with the objective of 
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minimizing the makespan. Özdamar (1999) proposed a GA with priority rules encoding  for 

the multi-mode RCPSP with both renewable and nonrenewable resources. Lee and Kim 

(1996) reported their results of using simulated annealing, tabu search and genetic algorithm 

on RCPSP. Their GA was based on priority value encoding. Mori and Tseng (1997) attack a 

multi-mode RCPSP with renewable resources only. They use a direct chromosome 

representation in which each gene corresponds to an activity and includes the mode 

assignment, the scheduling order and start-finish times of the corresponding activity. The GA 

approach is compared to a stochastic scheduling method by Drexl and Gruenewald (1993) and 

is found to provide superior solutions. The GA developed by Hartmann (1997) considers both 

renewable and nonrenewable resources. The encoding is based on a precedence feasible set of 

activities and their mode assignments. A local search extension is employed to improve the 

solutions found by the basic GA. Extensive experiments are conducted with several different 

variants of the GA and results are compared with three other heuristics from literature. The 

proposed GA outperforms the other algorithms with regard to a lower average deviation from 

the optimal makespan. Hartmann (1998) introduced a permutation based GA for the RCPSP 

and compared it with both priority value based and priority rule based GAs to find it to be 

superior to both. To the best knowledge of the authors, no GA application has yet been 

reported for the multi-mode resource-constrained max-NPV problem. 

To attack the problem, a double-loop genetic algorithm is designed. An example of  a 

double loop genetic algorithm is provided by Gravel et al. (1998). In the approach proposed 

here, the double loop genetic algorithm structure reflects the payment scheduling part and the 

project scheduling part through the use of an outer loop and an inner loop. The outer loop 

captures the information regarding the percentage payment of the overall payment at each 

event node. The inner loop holds the information about the scheduling of the activities given 

the payment structure at the event nodes.  

---------------------------------------------- 
Figure 2 about here 

---------------------------------------------- 

The basic rules applied for the management of GA for both the inner loop and the 

outer loop are basically the same (Figure 2).  An initial population is created by randomly 
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generating feasible solutions and it becomes the current population. The population size is 

kept constant throughout the GA. The solutions in the current population constitute a 

generation of solutions. A new generation is generated from the current generation through 

three operations: reproduction, crossover, and mutation. A number Ne of individuals called elit 

individuals are reproduced. For that purpose, the chromosomes in the population are listed in 

nonincreasing order of fitness values and the first Ne  chromosomes from the top of the list are 

reproduced. Ne is determined by multiplying the elitist ratio with the population size. An 

individual from the current population is selected for mating randomly with a fitness-

proportionate probability. The selection process from the current population is with 

replacement. A chromosome selected for mating is either subjected to  crossover operation 

with a probability called the crossover probability Pc or is reproduced with a probability (1-

Pc).  If crossover is going to be applied, then a second individual is selected from the current 

population randomly with a fitness-proportionate probability.  Mutation operation is applied 

to the chromosome resulting from this process with a probability called the mutation 

probability Pmu. The stopping criterion for the creation of new generations is the number of 

generations. The application of the procedure for a given number of generations is called a 

replication. The stopping criterion for the replications is the number of replications. 

3.1. The Outer Loop 

The objective function of the outer loop is as stated in Eq. (1). When calculating the 

objective function value of a chromosome, the number of significant digits is limited here to 

two.  It is likely that for a given objective function value, there may exist several solutions 

corresponding to different NPVclient  and NPVcont pairs some of which are dominant solutions. 

Obviously, dominant solutions would be preferred by the decision makers. It is assumed that 

the NPVclient is computed by using the same discount rate r as in the case of NPVcont . 

3.1.1. The encoding 

The chromosome representation of the outer loop captures information regarding the 

percentage of progress payments that will be paid at specific event nodes. Each gene holds an 

integer number representing an event node on the project network. The number of genes is 
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directly related to the size of the unit share of the budget allocated to a gene. For example, if 

the chromosome is composed of 20 genes, then the unit share of a gene is 5% of the budget. 

Each time an event node number appears on the chromosome, the corresponding event node  

receives a unit share of the budget. Hence, the number of times an event node number appears 

on a chromosome determines the progress payment to be received at that event node in 

question as a percentage of the budget.  

A sample chromosome for a network with 6 event nodes and the unit share of the 

budget for each gene being 10% would be, for example, (3/5/1/6/5/6/1/6/3/5). Looking at the 

sample chromosome, it can be deduced that node 1 having a count of two on the chromosome, 

will receive 20% of the total payment; node 6 having a count of three will receive 30% of the 

total payment, and so on. If a finer distribution is desired, then the number of genes can be 

increased accordingly. This way, a more precise distribution of the budget over the events 

might be obtained, but at a cost of increased computational effort. 

3.1.2. The crossover operator 

A small scale experimentation including one-point, two-point and uniform crossover 

operators has revealed that the two-point crossover operator is the better one. Since the only 

information important is the number of occurrence of the event numbers, two-point crossover 

is applicable here without causing any infeasibility. To apply the crossover operation, two loci 

are chosen to divide the parent chromosomes into three parts each. The offspring child is 

formed by taking the first and last parts from the mother and the middle part from the father. 

An example of a crossover operation is given in Figure 3. The genes transferred to the child 

are shown in bold. The crossover operation results in a single offspring. 

---------------------------------------------- 
Figure 3 about here 

---------------------------------------------- 

3.1.3. The mutation operator 

Two types of mutation operators have been considered. One is the global mutation 

operator. A chromosome is selected for mutation with the global mutation probability and 

each individual locus on that chromosome is considered for mutation using global mutation 
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probability and if chosen for mutation, the chosen locus is assigned an event number 

randomly. Here, on a selected chromosome more than one  locus can be selected for mutation. 

The other is the local mutation operator. A chromosome is selected for mutation with the 

local mutation probability and a locus is selected for mutation and the chosen locus is assigned 

an event number randomly. Hence, only one gene is subjected to mutation on a selected 

chromosome. The choice between the two types of mutation operators is made as a result of  

parameter finetuning experiments. 

3.1.4. The fitness value 

To determine the fitness value of a chromosome X of the outer loop the objective 

function value for chromosome X is subtracted from the maximum objective function value 

for the population. In order to calculate the fitness value, one needs to know NPVclient and 

NPVcont . Each chromosome X generated in the outer loop is sent to the inner loop so as to 

determine the maximum NPVcont it can locate and the corresponding timing of the payments. 

This information is passed on to the outer loop to be used together with the payment structure 

for the calculation of NPVclient.  So, the fitness value for chromosome X is obtained. 

3.2. The Inner Loop 

In the inner loop, the objective is to maximize NPVcont under a specific payment 

distribution. The payment distribution is imposed by an individual of the outer loop whose 

fitness function value is to be computed. The outcome of the inner loop is an activity schedule 

found by maximizing the NPVcont. NPVcont  is calculated using a discount rate r. During the 

time periods when the cumulative payments made by the client do not meet the cumulative 

expenses incurred by the contractor, the contractor borrows money at a borrowing rate larger 

than the discount rate r. Upon receiving the activity schedule, NPVclient  can be calculated  

readily since the occurrence times of the nodes and hence the payments are ready. 
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3.2.1. The encoding 

The chromosome representation captures both the information regarding the activities' 

ordering and their chosen operational mode. Thus, each gene holds the activity number and its 

corresponding mode.  

It is obvious that any activity placed in a gene must not violate the precedence 

relationships. Moreover, the operators that cause a change in an individual's gene contents 

must preserve the feasibility. A sample individual with 5 activities is written as follows: (1-1, 

3-2, 5-1, 2-1, 4-3). Here, the first digit in each entry represents the activity number and the 

second digit the mode associated with that activity. 

3.2.2. The crossover operator 

The crossover operator used in the inner loop is the multi-component uniform order-

based crossover (MCUOX) developed by Sivrikaya-Şerifoğlu (1997). This crossover operator 

operates in the following manner (Figures 4 and 5).  

---------------------------------------------- 
Figures 4 and 5 about here 

---------------------------------------------- 

Starting from the first genes on the parent chromosomes, iteratively, one of the parents 

is chosen randomly and its next unconsidered activity becomes the next activity on the child. 

If the mode for the selected activity is different on the mother and the father, then the mode 

assigned to the activity on the child chromosome is randomly selected from the mode 

selection of the mother or the father. The crossover operation results in a single offspring. 

MCUOX has the advantage of preserving the precedence feasibility of the schedule. 

3.2.3. The mutation operators 

There are two types of mutation operators implemented in the inner  loop. The first one 

is the repositioning mutation that is employed for the activities. Repositioning mutation 

operator chooses two positions on the chromosome randomly and transfers the contents of the 

former to the latter. Since the repositioning mutation can cause precedence violations, a simple 
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repair function complements repositioning mutation. Suppose that the gene at locus pos1 is 

repositioned into another locus pos2. The algorithm implements a repair function for the two 

cases pos1<pos2 and pos1>pos2. When pos1<pos2, the activity now in pos2 may have jumped 

over  some successor(s). If this is the case, the gene transferred to locus pos2 is repositioned in 

the chromosome at the location right before the first successor between pos1 and pos2-1. In 

the latter case, when pos1>pos2, the activity put on locus pos2 may violate some precedence 

relationships. So, the activity is placed right after last predecessor between pos2+1 and pos1. 

Bit mutation, on the other hand, is used to change the mode selection for an activity. 

An activity, that means a locus on the chromosome, is chosen randomly and is assigned a 

random mode. 

3.2.4. The scheduler 

To obtain the NPV of an individual in the population, it must first be scheduled. The 

scheduler employed is a forward scheduler which schedules the activities as early as possible 

without violating the resource constraints and the activity ordering on the chromosome. 

Suppose there are two consecutive activities, act1 and act2, on the chromosome in that order 

and suppose that they are both eligible, i.e. their predecessors have been scheduled. If the 

resource availability is not sufficient for act1, then act2 will not be scheduled even if the 

resource availability is sufficient for scheduling it. Consequently, the scheduler will preserve 

the ordering of the activities on the chromosome, which means that any activity in a locus will 

not have a starting time smaller than an activity in a locus located prior on the chromosome. 

Furthermore, trying to improve the schedule by not translating the order of the activities on the 

chromosome to the starting times of the activities in the schedule would imply to interfere 

with the natural evolutionary process of the genetic algorithm. The schedule modified this way 

would correspond to a different chromosome which is expected to be generated by the 

algorithm itself.   

A backward scheduler has also been developed for employing together with the 

forward scheduler. Backward scheduler would delay an activity whenever a delay  is possible 

without violating the order of activities on the chromosome and/or a payment hinges upon the 
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completion of that activity. But backward scheduling has not resulted in a significant increase 

in the NPVs so as to justify the increase in the computation times resulting from its use. Due 

to this restriction, backward scheduler is applied only to the final chromosome for improving 

the final solution, if possible, by delaying certain activities without causing any increase in the  

project duration.  

3.2.5. The fitness value 

Once the chromosome is scheduled, the activities' finish times and the progress 

payments' occurrence times are at hand to compute NPVcont. To compute the objective 

function value of the inner loop,  a discount rate, a borrowing rate and the timing and amount 

of the progress payments are needed. In order to obtain the fitness value of a chromosome in a 

population, the minimum NPV value of the population is subtracted from that chromosome's 

NPV value.  

3.3. Obtaining the Ideal Values for the Contractor and the Client 

Recall that the most desired payment schedule for the contractor is a lump-sum 

payment made at the beginning of the project and for the client it is a lump-sum payment 

made at the completion of the project. Both ideal points are affected by the deadline imposed 

on the problem.  

To capture the ideal solutions for the contractor and for the client, the genetic 

algorithm defined in Section 3.1 is employed. Here, the payment structure consists only of a 

lump-sum payment made at the beginning of the project and at the end of the project, 

respectively. 

3.4. Parameter Finetuning   

There are some parameters to be set to get more efficient results from the genetic 

algorithm. For finetuning  the parameters of the double loop GA two meta-GAs  are designed 

for the inner loop and the outer loop, respectively. The first attempt on meta-GA is provided 

by Grefenstette (1986).  The idea with the meta-GA is to employ GA itself in the search for 
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good performing parameter values. The encodings of the chromosomes of the meta-GAs are 

based on the parameters to be set. For the inner loop, the chromosome representation is as 

follows: {number of replications, number of generations, population size, crossover 

probability, bit mutation probability, repositioning mutation probability, elitist ratio}. For the 

outer loop, the representation becomes the following: {number of replications, number of 

generations, population size, crossover probability, mutation probability, elitist ratio}. The 

range of the parameters employed for the meta-GAs are given in Table 1 and Table 2 for the 

inner loop and outer loop, respectively. The meta-GA for the inner loop is performed first and 

the parameters obtained are employed in the meta-GA for the outer loop which then follows. 

The objective and the fitness functions are the same for the meta-GAs as the original 

GAs for which the parameters are being finetuned. The problem selected for solution is one 

with 53 activities, 30 nodes, and 3 renewable resources. The population size is 50 and the 

meta-GA continues for 60 generations. The initial population is generated randomly. The 

chromosome with the largest fitness value of the previous generation is transferred to the next 

generation. For generating new chromosomes, two-point crossover and bit mutation are 

applied consecutively with probability of crossover being 0.60 and probability of bit mutation 

being 0.125.  The selection of parents for crossover is made randomly from the current 

population with replacement and with the probability of selection being proportional to the 

fitness of the chromosomes. 

The parameter values recommended as a result of parameter finetuning are reported in 

Table 1 and Table 2 for use in the inner and outer loop, respectively. Both the global and the 

local mutation operators have been tested during the parameter finetuning experiments. The 

global mutation operator turned out to produce slightly better results and has thus been 

adopted for the computational studies following. 

---------------------------------------------- 
Table 1  about here 

---------------------------------------------- 
---------------------------------------------- 

Table 2  about here 
---------------------------------------------- 
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4. NUMERICAL STUDY 

4.1. Example Problem 

The double loop genetic algorithm is run on an example problem. The AoA 

representation of the example problem is given in Figure 6 with the activity numbers indicated 

on the arcs.  The durations of the activities and the resource usages for both modes are given 

in Table 3.  The resource limits for Resource 1 and Resource 2 are 5 and 2 units respectively.   

The budget is taken as the sum of the maximum cost of each of the activities in the project by 

using the most costly mode alternative and multiplying the sum by a profit margin. The 

discount rate and the borrowing rate are taken as 0.5% and 0.9% per period respectively. 

---------------------------------------------- 
Figure 6 about here 

---------------------------------------------- 
---------------------------------------------- 

Table 3  about here 
---------------------------------------------- 

The deadline for the project is obtained using the following expression: 

D = Cmin + (Cmax - Cmin) * md                               (Eq. 2) 

where Cmax and Cmin are the maximum and the minimum makespan values respectively, that 

the project can accomplish, and md is a multiplier, 0 ≤ md ≤ 1. 

For generating Cmax and Cmin, the genetic algorithm of the inner loop is used but this 

time with the objective of maximizing and minimizing the makespan, respectively. The 

maximum and the minimum makespan values of the sample project are determined to be 130 

and 72, respectively.  The scheduler employed avoids the maximum makespan to become 

infinite since the scheduler forces the activities to be scheduled at their earliest possible time 

their precedence and resource constraints permit.   

4.1.1. Analysis of the results 

The results obtained are given in Table 4. The deviational ratios of the client's and 

contractor's NPVs from their respective ideal solutions are roughly equal; 0.467 and 0.465, 
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respectively. The makespan of the project is 82. Backward scheduler is applied to the final 

solution resulting in a delay for the activities 5, 9, and 15.  

---------------------------------------------- 
Table 4  about here 

---------------------------------------------- 

The resource profile of the sample problem is given in Figure 7 with the activity 

numbers indicated on the figure. The cash flow profile is provided in Figure 8.  

---------------------------------------------- 
Figure 7  about here 

---------------------------------------------- 
 

---------------------------------------------- 
Figure 8  about here 

---------------------------------------------- 

The change of the NPVs of the contractor and the client over the generations of the 

outer loop are provided in Figure 9. In this particular example, NPVclient starts at a low value 

and increases over the generations and stabilizes after generation 44. NPVcont , on the other 

hand, starts at a high value and decreases over the generations to stabilize after generation 33. 

As can be seen from Figure 9, the sequence of solutions found over the generations, the 

decrease and the increase in the NPVclient and NPVcont values are not necessarily monotonic. 

---------------------------------------------- 
Figure 9 about here 

---------------------------------------------- 

4.1.2. Some sensitivity experiments 

To have an idea about the sensitivity of the double loop genetic algorithm and to test 

its responsiveness, a series of runs are taken by changing the data of the activities one at a 

time. Backward scheduler is not employed in any of the solutions reported in this section. 

In the final solution reported in Figure 7, activity 12 appears to have been scheduled 

fairly early.  Thus, as a first experiment, it is tested whether activity 12 will be delayed once 

its cost is increased. For that purpose, the cost of activity 12 is multiplied by 10. Indeed, the 

algorithm delays the start time of activity 12 from 29 to 60.  A similar argument goes for 

activity 4. To check whether activity 4 will be delayed once its cost is increased, its cost is 
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multiplied by 10. With this new data, the algorithm delays the start time of activity 4 from 9 to 

36.   In both cases, with increasing activity cost the project makespan has increased to 90 and 

86, respectively.  

In the third experiment, the duration for the second mode of activity 7 is decreased 

with the resource usage remaining constant. In the fourth experiment, the resource usage for  

activity 8 is reduced while keeping the duration constant. The changes made are given in 

Table 5. Note that in both cases the changes are designed to make the use of the second mode 

for both activities more attractive. Indeed, the second mode has been selected in both cases 

without causing any considerable delays in project durations. Project durations become 84 and 

82, respectively. 

---------------------------------------------- 
Table 5 about here 

---------------------------------------------- 

Another test is based on the sensitivity of the problem to the discount rate. In this test, 

the borrowing rate is taken as the discount rate multiplied by 1.8 for all of the discount rates 

tested. The results obtained are given in Table 6. As the discount rate r increases, the 

payments are observed to occur earlier and the costs later compared to the base case. 

Furthermore, the project duration increases considerably with increasing discount rate.  

---------------------------------------------- 
Table 6 about here 

---------------------------------------------- 

Another run is based on keeping the discount rate constant and evaluating the example  

problem with different borrowing rate multipliers. The results are given in Table 7. As the 

borrowing rate increases, in other words, the borrowing rate multiplier increases, a more 

evenly distribution of payments over the event nodes is observed so as to prevent the need for 

borrowing. The project duration doesn't seem to have been affected although the order of 

scheduling changes. 

---------------------------------------------- 
Table 7 about here 

---------------------------------------------- 

 



 

 17

4.2. Computational Experience 

To test the genetic algorithm further and gain computational experience, a set of 93 

problems taken from the literature have been solved (Ulusoy and Özdamar, 1995). The 

distributions of the test problems according to the number of activities and the number of 

renewable resources are given in Table 8a and 8b respectively. The number of event nodes 

varies between 8 and 30. The number of modes per activity takes on values between 1 and 3 

with the average number of modes per activity being 1.47.  

---------------------------------------------- 
Table 8a,b about here 

---------------------------------------------- 

The 93 problems are run for two levels of the deadline multiplier: md= 1.0 and md= 

0.6, where a lower value of md corresponds to a tighter deadline. When md = 1.0, for 69 

problems out of 93, Z < 0.010. Only for 2 problems, Z ≥ 0.200; in other words, a satisfactory 

equitable solution could not be found for these two problems.  For a large percentage of the 

problems, NPVclient and NPVcont vary from their ideal values in the range 0.400 to 0.600. 

When md = 0.6, for 88 problems out of 93, Z = 0.0. For four of the remaining problems, Z  

ranges between 0.020 and 0.060. One problem has Z = 0.190. NPVclient and NPVcont vary from 

their ideal values in the range 0.400 to 0.600. Thus, when md = 0.6, the results obtained are 

more satisfactory. The ideal contractor values do not decrease substantially for most of the 

problems where the ideal client values reduce considerably. Furthermore, a tighter deadline 

leaves less degrees of freedom for the temporal arrangement of the activities and hence also 

for the events. All these lead to improved objective function values, when md is taken as 0.6.  

The objective function values Z converge rather early in the process. The number of 

generations for achieving the best value for Z in a problem is on the average 12. For a given 

best value for Z, a dominant solution might exist which has the same value for Z but has at 

least as high values for both NPVclient and NPVcont. Most of the search is spent for finding such 

dominant solutions. In 13 problems out of 93, no dominant solution could be found for the 

best solution obtained. The number of dominant solutions obtained after reaching the first 

solution has been on the average 2.1. The dominant solutions have resulted on the average in 

an improvement of 2.2% for NPVcont and 2.4% for NPVclient. 
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The computational times over a problem of typical size are as follows: 

i. Inner loop takes on the average 0.45 sec for 1000 chromosomes in a problem with 3 

renewable resources, 29 activities, and 13 nodes. The chromosome consists of 29 genes with 

two parameters each. These results are comparable to the ones reported by Hartmann (1998). 

ii. Outer loop takes on the average 2542 sec for 1000 chromosomes in a problem with 

3 renewable resources, 29 activities, and 13 nodes. The size of the chromosome is 20 genes.  

These computation times have been obtained on a PC with 133 MHz clock-pulse and 

32 MByte RAM using C++ compiler. 

5. SUMMARY AND SUGGESTIONS FOR FURTHER STUDY 

A double loop GA has been proposed to reach an equitable solution for the payment 

scheduling problem. The algorithm is demonstrated at the hand of an example problem and 

tested using 93 problems from the literature. The procedure is shown to reach equitable 

solutions in reasonable computation times.  

A different cash flow structure than the payment scheduling problem results with the 

use of progress payments. Progress payments are made at the end of  time intervals throughout 

the project to cover the cost incurred in that interval subjected usually to a retainage or a profit 

margin. Kazaz and Sepil (1996) considered the unconstrained max-NPV problem for the case 

of progress payments made at equal time intervals such as monthly payments, formulating it 

as an integer programming problem and making use of the activity profit curves. Sepil and 

Ortac (1997) extend the work to the resource-constrained max-NPV problem and suggest 

three different heuristic priority rules. The GA procedure presented here for the case of 

payment scheduling problem can also be applied to the case of progress payments. Candidate 

payment time nodes are located at equal time intervals throughout the project. The GA 

procedure then determines the payment time nodes and their corresponding amounts of 

payments. 
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The GA approach presented here can easily be extended to include resource-resource 

trade-off. The only extension needed is to define the modes. 

The GA approach presented here can also take into account nonrenewable resources 

but in the test problems nonrenewable resources are not included. The inner loop has recently 

been the subject of another study where nonrenewable resources are included to the same set 

of 93 test problems employed here (Ulusoy et al., 1999). In that study, chromosomes violating 

the nonrenewable resource constraints are eliminated rather than repaired. Repair is avoided 

since such a repair would be expensive and would intervene with the evolutionary process of  

GA. The results have indicated that the addition of nonrenewable resources cause a 5.6% 

increase of the number of chromosomes generated. 

Several extensions are due. One such extension would be imposing a bonus and a 

penalty structure around the deadline.  

Computational gain can be achieved by not searching for dominant solutions. This can 

reduce the computational times considerably. It would also be interesting to look into the 

possibility of some computational gain as a result of a heuristic solution procedure replacing 

the GA in the inner loop.  In both cases, the possible computational gain has to be weighed 

against the loss in the quality of the solutions. 
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TABLE 1.  Inner loop parameter range and selected values 

Parameter Values Value Selected 

Number of replications 4, 5, 6, 7, 8, 9, 10, 11, 12 6 
Number of generations 25, 30, 35,..., 95, 100 60 

Population size 25, 30, 35,..., 95, 100 45 

Crossover probability 0.2, 0.25, 0.3,..., 0.75, 0.8 0.65 

Bit mutation probability 0.05, 0.1, 0.15, 0.2 0.15 

Rep. mutation probability 0.05, 0.1, 0.15, 0.2 0.15 

Elitist ratio 0.01, 0.02, 0.03,..., 0.14, 0.15 0.06 

 

 

 

 

TABLE 2. Outer loop parameter range and selected values 

Parameter Values Value Selected 

Number of replications 2, 3, 4, 5, 6, 7, 8 2 
Number of generations 25, 30, 35,..., 95, 100 60 

Population size 25, 30, 35,..., 95, 100 65 

Crossover probability 0.2, 0.25, 0.3,..., 0.75, 0.8 0.70 

Global  mutation prob. 0.05, 0.1, 0.15, 0.2, 0.25 0.25 

Elitist ratio 0.01, 0.02, 0.03,..., 0.14, 0.15 0.07 
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TABLE 3. Data for the sample problem 

Mode 1 Mode 2 
Activity 

Duration Resource 1 
Usage 

Resource 2 
Usage Duration Resource 1 

Usage 
Resource 2 

Usage 
1 0 0 0    
2 3 5 2    
3 5 3 1    
4 5 3 0    
5 5 3 0    
6 1 3 1 2 1 1 
7 6 5 2 10 2 1 
8 6 5 2 10 4 2 
9 5 3 1 7 1 1 

10 4 5 2    
11 9 3 0 10 2 0 
12 7 5 2 10 2 1 
13 8 2 2    
14 3 3 0 6 1 0 
15 3 3 0 6 1 0 
16 5 3 2    
17 11 1 0    
18 5 3 2 7 2 1 
19 4 0 1    
20 3 1 1    
21 15 0 1    
22 0 0 0    

 

TABLE 4. Results obtained for the sample problem 

NPVcont = 763.014 NPVclient = 570.55 

Deviation = 0.464 Deviation = 0.467 

Event node Percent payment Occurence time 

1 5 % 0 

2 5 % 3 

3 0 % 9 

4 0 % 29 

5 10 % 35 

6 15 % 50 

7 15 % 56 

8 50 % 82 
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TABLE 5. Change of resource profile for activity 7 and 8 

Activity 7  
Mode 2 

Activity 8 
Mode 2 

Duration Resource 1 Usage Resource 2 Usage Duration Resource 1 Usage Resource 2 Usage 

7 2 1 10 1 1 

 

Table 6. Discount rate analysis for the sample problem 

Discount Rate NPVclient 
Deviation of 

NPVclient from 
its ideal value 

NPVcont 
Deviation of 
NPVcont from 
its ideal value 

Makespan 

0.005 570.551 0.467 761.213 0.465 82 

0.01 764.219 0.531 752.386 0.536 89 

0.015 861.09 0.552 781.724 0.554 90 

0.02 943.774 0.545 839.063 0.548 104 

0.025 971.512 0.549 886.197 0.540 99 

0.03 1014.3 0.538 895.598 0.547 102 

 

Table 7. Borrowing rate analysis for the sample problem 

Borrowing 
Rate Multiplier NPVclient 

Deviation of 
NPVclient from 
its ideal value 

NPVcont 
Deviation of 
NPVcont from 
its ideal value 

Makespan 

1.2 575.142 0.463 759.734 0.466 86 

1.4 578.685 0.460 765.112 0.462 89 

1.6 574.591 0.463 754.297 0.470 87 

1.8 570.551 0.467 761.213 0.465 82 

2.0 567.168 0.470 766.433 0.462 85 
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Table 8a. Distribution of test problems according to the number of activities 

 
Number of activities Number of problems 

15-19 20 
20-24 51 
25-29 16 
30-39 4 
40-44 1 
45-55 1 

 

Table 8b. Distribution of test problems according to the number of renewable resources 

 
Number of renewable 

resources 
Number of problems 

1 29 
2 47 
3 14 
4 2 
5 1 
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FIGURE 1.  Interaction between the parties involved in the contract 
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1 3 5 3 4 1 1 2 3 3 5 5 5 4 2 1 5 3 4 3

FIGURE 3.  Crossover operator for  the outer loop 
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MOTHER 

FATHER 

1 3 5 3 1 1 3 5 4 2 1 2 3 5 4 1 5 3 4 3

CHILD 

START 
•  With the first position on the parents and the child. 

LOOP  
•  Choose one of the parents randomly. 
•  Find the first activity on the chosen parent which is not 

assigned to the child yet. That activity becomes the next 
activity on the child. 

•  If the mode assignment made for that activity are the 
same on both parents, then make this same mode 
assignment on the child, too. If not, choose one of the 
mode assignments of the parents randomly and record it 
on the child. 

•  If all the genes of the child chromosome are completed, 
STOP; 

•  else proceed to the next gene on the child and repeat 
LOOP. 

FIGURE 4. Algorithm of MCUOX 
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FIGURE 6.  Activity-on-arc representation of the sample problem 
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 [1-1, 4-3, 3-1, 2-2, 6-2, 5-1] 

FIGURE 5. An example of MCUOX crossover operation 
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FIGURE 8. Cumulative cash flow for the contractor for the sample problem 
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FIGURE 7.  Resource profile of the sample problem 
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NPV of contractor and NPV of client vs Generation
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Figure 9.  NPVcont and NPVclient vs. generations 


