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Abstract

Multi-project scheduling problems are characterized by the way resources are
managed in the problem environment. The general approach in multi-project
scheduling literature is to consider resource capacities as a common pool that
can be shared among all projects without any restrictions or costs. The way
the resources are used in a multi-project environment is called resource man-
agement policy and the aforementioned assumption is called Resource Shar-
ing Policy in this study. The resource sharing policy is not a generalization
for multi-project scheduling environments and different resource management
policies maybe defined to identify characteristics of different problem envi-
ronments. In this study, we present a resource management policy which
prevents sharing of resources among projects but allows resource transfers
when a project starts after the completion of another one. This policy is
called the Relaxed Resource Dedication (RRD) Policy in this study. The
general resource capacities might or might not be decision variables. We
will treat here the case where the general available amounts of resources are
decision variables to be determined subject to a limited budget. We call
this problem as the Resource Portfolio Problem (RPP). In this study, RPP
is investigated under RRD policy and a modified Branch and Cut (B&C)
procedure based on CPLEX is proposed. The B&C procedure of CPLEX
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is modified with different branching strategies, heuristic solution approaches
and valid inequalities. The computational studies presented demonstrate the
effectiveness of the proposed solution approaches.

Keywords: Project scheduling, resource portfolio problem, multi-project
scheduling, resource transfer, resource dedication, resource preference

1. Introduction

Resource management policy is an important issue for the multi-project
scheduling problems, since it characterizes the problem environment by defin-
ing the coupling among different projects. The common resource policy ap-
plied in the multi-project scheduling literature is Resource Sharing (RS) pol-
icy where resources can be shared among projects without any restrictions.
Even though RS policy is employed in the multi-project scheduling literature
frequently, it does not cover all possible cases. We have proposed Resource
Dedication (RD) policy for the cases where resources cannot be shared among
projects because of various reasons. The most common ones can be listed as
follows:

• The project characteristics may not allow RS. This can be seen in vari-
ous Research and Development (R&D) projects where the development
process is highly technology intensive.

• The resource characteristics may force RD. For example, in software
development projects, it is not desired to allocate developers to different
projects because of the learning curve concept.

• Another example can be given as the heavy machinery equipment for
certain cases where it becomes too costly to share them among projects
because of installation.

• Another reason can be geographical limitations, where projects are
distributed across the world such that it becomes unpractical to share
the resources.

RD policy is extensively investigated in Besikci et al. (2012a,b). In this
study, RD policy is extended further to Relaxed Resource Dedication (RRD)
policy. In RRD policy, a resource can be transferred among projects, when
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the project using that resource is completed and another project is to start
which requires that same resource.

The general resource capacity will have different meanings according to
the valid resource management policy in the problem environment. In RS
policy, the general resource capacity corresponds to the size of the shared
pool for each renewable resource. Under RD policy, on the other hand, it
corresponds to the total amount of each renewable resource to be dedicated
among the projects. In other words, resource management policy defines the
way of coupling projects via general resource capacities. The general resource
capacities might or might not be decision variables. We will treat here the
case where the general resource capacities are to be determined subject to a
limited budget. We call this problem the Resource Portfolio Problem (RPP),
which extends the multi-project scheduling problem under RRD policy to a
higher decision level.

The problem environment in this paper has the following additional char-
acteristics; the projects are ready to start at time zero but their start time
is also a decision variable to enable resource transfers. Each project has an
assigned due date which are soft in the sense that any completion time ex-
ceeding the due date is reflected to the objective function as tardiness cost.
The activities are non-preemptive and have zero finish-to-start time lag. The
resource set contains both renewable and nonrenewable resource types. For
each activity, there is one or more modes of execution. The objective is se-
lected as the total weighted tardiness cost over all projects which is a common
objective function in scheduling problems, but any regular objective function
can be integrated into the model.

The remainder of the paper starts with a brief literature review of stud-
ies that focus on resource related decisions in project planning. In Section
3, RPP under RRD policy is defined and its mathematical formulation is
presented. In Section 4 the modified B&C solution procedure employing
CPLEX is explained in detail. The computational study and results are
given in Section 5. Finally conclusions and further research suggestions are
given in Section 6.

2. Literature Review

Project scheduling problem has been studied in various forms. Resource
constrained project scheduling problem (RCPSP) is the root for different
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extensions of project scheduling problem. Extensive information regard-
ing RCPSP can be found in Ozdamar and Ulusoy (1995), Herroelen et al.
(1998), Brucker et al. (1999) and Kolisch and Padman (2001). Multi-mode
resource constrained project scheduling problem (MRCPSP) is an extension
for RCPSP where activities can be executed with a set of different alter-
natives which are called modes. Interested readers can refer to Hartmann
and Briskorn (2010) for a survey of RCPSP and its extensions. Addition-
ally, the study of Zhu et al. (2007) is worth mentioning, where the authors
employ CPLEX to solve MRCPSP with different modifications. First of all,
authors use different approaches to reduce the number of decision variables
in the model. Additionally, branching strategy of CPLEX is modified by
giving corresponding time period of the decision variable as a weight. Fi-
nally a local branching strategy is used to search the close neighborhood of
an incumbent solution. Note that the authors also used a genetic algorithm
(GA) to provide an initial solution to the B&C procedure of CPLEX. In
this section, apart from the studies mentioned above, the studies addressing
the determination of resource requirements of projects and other resource
related concerns such as rough-cut capacity planning or resource availability
cost problem are presented in detail.

Resource related decisions are an important part of the multi-project
scheduling problems since the coupling of individual projects in the problem
environment is generally achieved with the resource related constraints.

Mohring (1984) investigates the resource requirement problem for project
scheduling with a graph theoretical approach. The author defines two impor-
tant problem classes for project scheduling. The first problem, problem A,
is defined as a problem of scarce resources where the objective is finding the
shortest project duration with a given amount of resources. The second prob-
lem, problem B, is defined as a problem of scarce time where the objective is
finding the least cost resource requirements within a given project duration.
The author uses graph theory to represent and solve these project schedul-
ing problems. Apart from the solution methodologies for these problems, the
important part of the study is the realization of the interaction between the
two different problems. Since solution procedures for scarce resource problem
have a better algorithmic behavior, one can find better solution procedures
for scarce time problem, if a way of transformation can be found among the
problems. The author notes that the objective of scarce resource problem is
presented as a constraint in scarce time problem and vice versa. Using this
rationale, a special “dual” relation between these two problems is defined
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and used in the solution procedures proposed. Note that, the problem under
study in this study is of the form of scarce resource problem.

Another study in the form of scarce time problem is presented in De-
meulemeester (1995) and is defined as the resource availability cost problem
(RACP). The general idea is determining the least cost resource requirements
for a single project scheduling problem. The proposed formulation for RACP
is similar to the formulations for resource constrained project scheduling
problem (RCPSP) with the basic differences being in the objective function
and in the constraint for project duration. The solution methodology pro-
posed for RACP is based on decision problems defined with resource limits.
These definitions serve as cuts for the feasible region for the problem, and
the algorithm employs efficient capacity points (resource availability value in
the solution that is greater than the other resource availabilities) to obtain
the optimal solution. The experiments have demonstrated that the solution
procedure is very effective.

An approach dealing with the determination of the resource requirements
of projects is the rough-cut capacity planning (RCCP) for a multi project en-
vironment. A recent example is provided in Gademann and Schutten (2004).
It is assumed that a project can be broken into jobs that stand for activity
groups, which are not known yet. For each of these estimations, a prece-
dence relation structure is constructed. In addition to this, a multi-project
environment is modeled as a single project problem with all the estimated
activity groups. Two variants of the RCCP problem are defined in line with
scarce resource and scarce time problems, namely resource driven and time
driven. In the resource driven RCCP, only the regular capacity can be used
and the objective is minimizing the total lateness. In the time driven RCCP,
a project delivery time is to be met by determining the non-regular capacity
(i.e., the additional capacity beyond the already available capacity) and the
objective is minimizing the cost of this non-regular capacity. The authors
propose a linear program for the time driven RCCP problem. The model
allows for precedence infeasible solutions and preemptions and heuristic pro-
cedures are proposed to repair such solutions. To overcome the precedence
infeasibility, the mathematical model is changed slightly to determine the
time windows for activities to ensure feasibility. The solutions of the mod-
ified linear program are improved by local search heuristics based on dual
relations between the time windows and the decision variables.

Yang and Sum (1997) presented one of the first studies questioning the
generalizing RS policy by pointing out the assumption of sharing resources
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without any costs. Kruger and Scholl (2008) introduce further resource
management schemes. They classify different resource transfers for differ-
ent multi-project environments. Authors define three different approaches
for dealing with resource transfers; transfer neglecting, transfer reducing and
transfer using approach. Transfer neglecting approach is conceptually RS
policy where there is not any restriction on resource flow between projects
whereas transfer reducing approach does not allow RS and resources are
dedicated to projects. And finally in transfer using approach resources can
be transferred between projects with explicit costs. Note that the individ-
ual projects in the problem environment inherit the characteristics of an
RCPSP. The transfer using approach is further investigated in Kruger and
Scholl (2009). Authors propose different heuristic rules for the parallel and
serial scheduling schemes modified for the resource transfer concept.

RD policy is first introduced in Besikci et al. (2012a) leading to the so-
called Resource Dedication Problem (RDP), where the objective is minimiz-
ing the total weighted tardiness over all projects. The authors present a
mathematical formulation for RDP and two different solution methodolo-
gies. The first solution approach is a GA employing a new improvement
move called the combinatorial auction for RD (CA for RD), which is based
on preferences of projects for resources. Preference of a project for a resource
can be defined as the relative value of a resource for a project or the marginal
gain in the objective function when one unit of the corresponding resource
is made available. Two different methods for calculating the projects’ pref-
erences are proposed as linear relaxation based and Lagrangian relaxation
based preferences. The second solution approach is a Lagrangian relaxation
based heuristic employing subgradient optimization. The proposed solution
approaches are compared with exact or best solutions obtained employing
CPLEX and are shown to be efficient.

The study reported in Besikci et al. (2012a) is extended to deal with RPP
under RD policy by including general resource capacity decisions in Besikci
et al. (2012b). The objective is again the minimization of the total weighted
tardiness over all projects. A two-phase GA is proposed as a solution ap-
proach, where in the first phase, RD space is searched and in the second
phase resource portfolio (RP) space is searched along with the RD space.
For the RP space search, the authors propose a new improvement move
called the combinatorial auction for RP (CA for RP). CA for RP employs
general resource preferences to improve a given initial solution. Numerical
results demonstrate the effectiveness of the proposed solution approach.
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3. Resource Portfolio Problem under Relaxed Resource Dedication
Policy

RPP in a multi-project environment covers the determination of general
resource capacities for a given total resource budget, dedication of these
resources to a set of projects in certain amounts such that the general resource
capacities are obeyed, and determinination of the project sequence relations
and resource transfers between feasible projects (according to the project
sequence relations) in such a way that individual project schedules would
result in an optimal solution for a predetermined regular objective function.
The objective for the problem environment is taken here as the minimization
of the total weighted tardiness of the projects. Mathematical programming
formulation for the RPP under the RRD policy is given below.

Sets:
V Set of projects, v ∈ V
Jv Set of activities of project v, j ∈ Jv
vN Last activity (indexed with N ) of project v
Pv Set of all precedence relationships of project v
Mvj Set of modes for activity j of project v, m ∈Mvj

K Set of renewable resources, k ∈ K
I Set of nonrenewable resources, i ∈ I
Tv Set of time periods of project v, t ∈ Tv

Parameters:
Evj Earliest finish time of activity j of project v
Lvj Latest finish time of activity j of project v
dvjm Duration of activity j, operating on mode m
rvjkm Renewable resource k usage of activity j of project v, operating on

mode m
wvjim Nonrenewable resource i usage of activity j of project v, operating on

mode m
ddv Assigned due date for project v
cv Relative weight of project v
crk Unit cost of renewable resource k

cwi Unit cost of nonrenewable resource i
tb Total resource budget
Ω A big number calculated as the sum of time periods of all projects
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Decision Variables:

Xvjmt =


1 if activity j of project v, operating on mode m is finished

at period t
0 otherwise

BRvk = Amount of renewable resource k dedicated to project v
BWvi = Amount of nonrenewable resource i dedicated to project v
TCv = Weighted tardiness cost of project v
Rk = Total amount of required renewable resource k
Wi = Total amount of required nonrenewable resource i
Fv = Release time of project v
SRvv′k = Amount of renewable resource k transferred to project v’ from

project v

Yvv′ =

{
1 if project v′ is released after project v is finished
0 otherwise

Mathematical Model RPP-RRD

min. z =
∑
v∈V

TCv (1)

Subject to∑
m∈Mvj

Ljv∑
t=Evj

Xvjmt = 1 ∀ j ∈ Nv and ∀ v ∈ V (2)

∑
m∈Mvj

Lvb∑
t=Evb

(t− dvbm)Xvbmt ≥
∑

m∈Mvj

Lva∑
t=Eva

tXvamt

∀ (a, b) ∈ P and ∀ v ∈ V (3)

Fv′ − Fv −
LvN∑

t=EvN

∑
m∈MvN

tXvNmt ≤ Ω(Yvv′ ) ∀ v, v
′ ∈ V (4)

Fv +

LvN∑
t=EvN

∑
m∈MvN

tXvNmt − Fv′ ≤ Ω(1− Yvv′ ) ∀ v, v
′ ∈ V (5)

SRvv′k ≤ Ω(Yvv′ ) ∀ v, v
′ ∈ V and ∀ k ∈ K (6)∑

j∈Nv

∑
m∈Mvj

max{t+dvjm−1,Lvj}∑
q=min{t,Evj}

rvjkmXvjmq ≤ BRvk +
∑
v′∈V

SRv′vk

∀ k ∈ K ∀ t ∈ Tv ∀ v ∈ V (7)∑
j∈Nv

∑
m∈Mvj

Lvj∑
t=Evj

wvjimXvjmt ≤ BWvi ∀ i ∈ I and ∀ v ∈ V (8)
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BRvk +
∑
v′∈V

SRv′vk ≥
∑
v′∈V

SRvv′k ∀ k ∈ K and ∀ v ∈ V (9)

∑
v∈V

BRvk ≤ Rk ∀ k ∈ K (10)∑
v∈V

BWvi ≤ Wi ∀ i ∈ I (11)∑
i∈I

cwiWi +
∑
k∈K

crkRk ≤ tb (12)

TCv ≥ Cv(Fv +

LvN∑
t=EvN

∑
m∈MvN

tXvNmt − ddv) ∀ v ∈ V (13)

Xvjmt ∈ {0, 1} ∀ j ∈ J , ∀ t ∈ Tv, ∀ m ∈Mvj and ∀ v ∈ V (14)
BRvk, BWvi, Rk, Wi, TCv ∈ Z+ ∀ v ∈ V , ∀ k ∈ K and ∀ i ∈ I (15)
Yvv′ ∈ {0, 1}, Fv and SRvv′k ∈ Z+ ∀ v, v′ ∈ V and ∀ k ∈ K (16)

The objective function (1) is the minimization of the total weighted tar-
diness cost for all projects. Constraint sets (2) and (3) impose activity finish
and precedence relations. Constraint sets (4) and (5) set the decision vari-
able Yvv′ to 1, if project v is finished before project v’ is released, and to 0
otherwise. Thus, the SRvv′k values will only have positive values, if project v
is finished before project v’ is released (constraint set (6)). Constraint set (7)
limits the renewable resources employed for each project with the dedicated
renewable resources and the transferred renewable resources from the other
projects. Constraint set (8) calculates the nonrenewable resource dedication
values available for each project. In constraint set (9), the total resource that
can be transferred by a project is limited with the total resource dedicated
to this project and the total resource it gained from transfers. Constraint
sets (10) and (11) calculate the total renewable and nonrenewable resource
requirements, respectively. Constraint (12) limits the sum of the total renew-
able and nonrenewable resource costs with the general resource budget. And
finally, constraint set (13) calculates the weighted tardiness value for each
project. Constraint sets (14)-(16) define the feasible ranges for the decision
variables. Note that in the above formulation every project has an indepen-
dent time index. This feature is enabled by the structure of the following
constraints. Firstly, the coupled resource constraints for projects (constraint
sets (4) and (5)) do not include a time period index. Furthermore, to cal-
culate the start and finish times of projects while including project sequence
relations, constraint sets (10) and (11) are used. In these constraints, if there
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is a sequence relation between two projects, then the successor project’s start
time decision variable (Fv′) is given a lower bound of finish time of the pre-
decessor project (the finish time of the predecessor project is also corrected
with the corresponding start time decision variable, Fv). Note that having
independent time indices for each project decreases the number of activity
finish decision variables (Xvjmt) since every project will have its individual
upper bound for time periods.

4. A Modified B&C Approach for RPP under RRD Employing
CPLEX

The given mathematical model for RPP under the RRD policy is a com-
plex scheduling problem. It is even very difficult to reflect all the aspects of
the problem to a heuristic approach. Thus to solve RPP-RRD, B&C pro-
cedure of CPLEX version 11.2, which will be referred to as CPLEX from
now on, is modified with different branching strategies, feasible solution ap-
proaches and valid inequalities. Firstly, the general procedure of CPLEX
will be briefly discussed and then modifications will be explained in detail.

4.1. General Branch and Cut Procedure of CPLEX

CPLEX employs the well known B&C procedure to solve integer prob-
lems. The general B&C procedure starts with preprocessing of the given
problem and proceeds with the given steps below (Users Manual for CPLEX,
2009):

1. A node from the tree is selected.

2. The linear programming (LP) relaxation of the problem at the selected
node is solved and a lower bound is generated.

3. Cutting planes are generated to cut off the current solution.

4. An heuristic procedure is invoked to generate an integer feasible so-
lution close to the current relaxation solution and an upper bound is
generated.

5. A branching variable is chosen

6. Two nodes are generated and included to the tree.

All these steps can be modified by the user by employing special purpose
algorithms developed specially for the problem at hand. The control of the
above procedures is enabled with callback functions in the CPLEX. At every
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node, when a feasible LP relaxation solution is found for the problem, the
associated callback functions for each of the above procedures can be used to
control the details of the B&C procedure. Three basic steps will be modified
to control the details of the B&C procedure in this study; branching, feasible
solution generation and local cut generation. Below explanations of these
modifications are given in detail.

4.2. Branching Strategy for the RPP under RRD

The selection of branching variables can greatly improve the execution
time of the B&C procedure. Model RPP-RRD has two sets of binary and
seven sets of integer decision variables which can be used to generate branches.
In CPLEX, the branching can be modified by giving priorities to decision
variables or directly selecting a decision variable for branching on a viable
node. In this study, we select the branching variable explicitly or leave it to
CPLEX.

The proposed branching strategy is based on the structure of the math-
ematical model RPP-RRD. Note that when Yvv′ variables are known, the
problem reduces to RPP with available resource transfer options according
to the values of Yvv′ decision variables. In other words, when Yvv′ variables
are set, the remaining decisions are general resource capacities, resource dedi-
cations, resource transfers between feasible projects (for projects finish before
the start of another one) and finally scheduling of individual projects. This
structure of the problem not only facilitates the search but also allows for
different feasible solution generation approaches. To branch on Yvv′ decision
variables, the branch callback function of CPLEX is used and branches are
generated from integer infeasible variables from the linear relaxation solution
on the node explicitly and fed into B&C procedure of CPLEX.
The selection rule for Yvv′ variable among the integer infeasible ones is given
below:

Initialization: Select all the projects that have integer infeasible Yvv′ de-
cision variables in a node and add selected projects to set InP.

Step 1: Select the projects from InP that do not have any sequence
relations (i.e., all Yvv′ and Yv′v variables are integer infeasible for project v)
and add selected projects to set SP. If set SP is empty, then go to Step 2 ;
else go to Step 4.

Step-2: Select the projects from InP that are the predecessor projects in
their sequence relations (i.e. all Yv′v variables are integer feasible and 0 for
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project v) and add selected projects to set SP. If set SP is empty, then go
to Step 3 ; else go to Step 4.

Step-3: Select the projects from InP that have integer infeasible Yvv′

decision variables and add selected projects to set SP, go to Step-4.
Step-4: Select the project v from SP with maximum weight and select

the project v’ with minimum weight among the projects that have integer
infeasible Yvv′ values. Generate two branches with the selected Yvv′ decision
variable (Yvv′ ≤ 0 and Yvv′ ≥ 1).

This selection procedure gives first priority to projects without any se-
quence relations, and then to the projects that are predecessor in their se-
quence relations. For tie breaking project weights are used. Another selec-
tion procedure based on ratio of due date and weight of the projects which
prioritizes projects with earlier due dates and higher weight values is also
considered. However, in the preliminary test runs it has been observed that
there is not a significant difference between two approaches.

When all Yvv′ decision variables are integer feasible in a node, then BRvk

decision variables are selected as the next variables for branching.The selec-
tion rule for BRvk variable among the integer infeasible ones is given below:
The selection rule for BRvk variable among the integer infeasible ones is given
below:

Initialization: Select all the projects that have integer infeasible BRvk

decision variables in a node and add selected projects to set InP.
Step-1: Select the projects from InP that do not have any predecessors

(i.e., all Yv′v variables are 0 for project v) and add selected projects to set
SP. If set SP is empty then go to Step 2 else go to Step-4.

Step:2 Select the projects from InP that have at least one successor (i.e.,
at least one Yvv′ variable is 1 for project v) and add selected projects to set
SP. If set SP is empty, then go to Step 3 else go to Step-4.

Step-3: Select the projects from InP that have integer infeasible BRvk

decision variables and add selected projects to set SP, go to Step-4.
Step:4 Select the project v from SP with maximum weight and select

corresponding renewable resource k with integer infeasible BRvk decision
variable and maximum resource cost. Generate two branches with the se-
lected BRvk decision variable.(BRvk ≤ bLinearRelaxationSolutionV aluec
and BRvk ≥ dLinearRelaxationSolutionV aluee).

This selection procedure similarly favors predecessor projects in their se-
quence relations. Note that, when all BRvk variables are integer feasible the
branching procedure is left to CPLEX.
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4.3. Feasible Solution Generation Procedure

At each viable node, CPLEX attempts to generate a feasible solution
close to the solution of the LP relaxation. If good (in some cases any) feasi-
ble solutions can be generated, CPLEX can use these solutions to facilitate
the execution of the B&C algorithm. The proposed branching strategies pri-
oritize branching on Yvv′ variables which results in integer feasible values for
these variables in the early stages of B&C procedure. This structure can be
used to generate feasible solutions, since when Yvv′ variables are known, the
remaining problem reduces to RPP with possible resource transfers according
to the values of Yvv′ decision variables. The solution approaches developed
for RDP in Besikci et al. (2012a) and RPP in Besikci et al. (2012b) can
be modified and used to generate feasible solutions at these stages of the
B&C procedure. In Besikci et al. (2012a), an improvement heuristic based
on preferences of projects for resources, CA for RD, is proposed which moves
the current resource dedication state of the problem to a more “preferable”
resource state within the given general resource capacities, such that the
objective function would be improved (the objective function value will at
least remain the same). Similarly, in Besikci et al. (2012b), an improvement
heuristic based on general resource preferences, CA for RP, is proposed which
moves the current general resource capacity state to a more “preferable” re-
source state within the given resource budget.

The proposed feasible solution generation procedure basically determines
the general resource capacities, resource dedication values and resource trans-
fers (according to the values of Yvv′ variables) and generates an initial solution
(not necessarily feasible). And then, this initial solution is improved with CA
for RD and CA for RP improvement heuristics. The procedure for feasible
solution generation is given below:
Initial Solution Generation

Step-1: Calculate no-delay renewable and nonrenewable resource require-
ments of all projects and determine total required budget for these values.
Dedicate nonrenewable resource values proportional to the no-delay require-
ments of the projects and total required budget as follows:

BW ′
vi =

NoDelayRequirementvi ×GeneralBudget

TotalRequiredBudget
(17)

Calculate remaining resource budget after nonrenewable resource dedica-
tion.
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Step-2: Select all projects that does not have any predecessor projects in
their sequence relations, such that for project v, for all v’, Yv′v values are 0.
Add these projects to NP set. Add projects v’ to set SPv for each project v
in NP, such that for project v’, Yvv′ = 1.

Step-3: Calculate no-delay renewable resource requirements of projects in
NP set. Check if these resource amounts are sufficient for no-delay resource
requirements of successor projects of v in set SPv. If not, calculate necessary
amounts as additional renewable resources. Determine desired general re-
newable resource capacities with these calculated values and then determine
total required budget for these desired values. Calculate realized general re-
newable resource capacities from remaining budget, proportional to desired
values and remaining resource budget as follows:

R′k =
DesiredResourceCapacityk ×RemainingBudget

TotalRequiredBudget
(18)

Step-4: Calculate total no-delay resource requirement of a project as the
sum of no-delay resource requirement of corresponding project and additions
required for successor projects. Calculate renewable resource dedication val-
ues for projects in NP proportional to their total no-delay resource require-
ments using general renewable resource capacities calculated in step-3 as
follows:

BR′vk =
TotalNoDelayRequirementvk ×R′k

TotalNoDelayRequirementk
(19)

Calculate the renewable resource transfer values for projects in SP with
the following mathematical model:

min.z =
V∑
v

K∑
k

(NDvk −
V∑
v′

SRv′vk) (20)

Subject to
SRvv′k ≤ BR′vkYvv′ ∀ v, v′ ∈ V and ∀ k ∈ K (21)

V∑
v′

SRvv′k ≤ BR′vk v ∈ V and ∀ k ∈ K (22)

V∑
v′

SRv′vk ≤ NDvk v ∈ V and ∀ k ∈ K (23)
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where BR′vk is the renewable resource dedication values for projects in NP
set calculated in previous step-4 and NDvk is the no-delay renewable re-
source requirement for projects in SP set. This mathematical model tries to
determine resource transfers among available projects such that the devia-
tion between total resource transfers to a project and its no-delay resource
requirement is minimized over all projects.

Step-5: With renewable and nonrenewable resource dedication values,
resource transfer values and precedence relations of projects at hand, the
problem reduces to MRCPSP for each individual project. Solve each single
project scheduling problem and obtain an initial solution by calculating start
times and finish times of the projects considering sequence relations and
single project scheduling results.

Note that the special structure of the mathematical model RPP-RRD
allows the calculation in step-5. The individual projects have their time pe-
riods independent from the other projects in the multi-project environment.
Thus when their individual schedules and sequence relations are given the
resulting schedule for multi-project problem can be easily calculated.
Solution Improvement with CA for RP

Step-1: Apply CA for RD to the initial solution till no improvement is
seen.

Step 1.1 Determine preferences of projects for resources for each project
Step 1.2 Determine total slack resources for each project (total dif-

ference between allocated resources and given resource capacities for each
project)

Step 1.3 Employ a continuous knapsack model to maximize the total
preference value gained by dedicating the spare resources to projects.

Step 1.4 Calculate schedules for each project with the given resource
state.

Step-2: Apply CA for RP to the initial solution till no improvement is
seen.

Step 2.1 Calculate preferences for general resources summing up pref-
erences of projects for resources over all projects.

Step 2.2 Determine the slack resource budget for each resource (total
difference between used budget and total budget)

Step 2.3 Employ a continuous knapsack model to maximize the total
preference values gained by transferring slack budget to general resource
capacities.

Step 2.4 Apply CA for RD to the new general resource capacity state
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The preferences of projects for resources are calculated with a modified
Lagrangian relaxation formulation of the single project scheduling problem.
The MRCPSP formulation of Talbot (1982) is modified with a constraint
which limits the completion time of the project with its no-delay completion
time. The basic rationale behind this approach is to capture the infeasi-
bility tolerated for the corresponding resource to reach the no-delay com-
pletion time with corresponding Lagrangian coefficients. The values of the
Lagrangian coefficients are taken as preferences of projects for resources.
Then using these preferences, the resource dedication state of the solution
is moved to a more preferable state and a new schedule for each project is
calculated. Detailed information related with CA for RD can be found in
Besikci et al. (2012a)

Similarly CA for RP uses preferences of projects for resources to calculate
general resource preferences simply summing up project preferences for each
resource. Then the general resource capacity state is moved to a more prefer-
able state and CA for RD is applied for this new solution to modify resource
dedication values accordingly and to obtain a new solution as described in
Besikci et al. (2012b).

4.4. Valid Inequality Generation

Valid inequalities can improve the B&C procedure and can have an im-
portant impact on the efficiency of the procedure. CPLEX generates various
valid inequalities based on polyhedral theory. One additional valid inequal-
ity, namely sequence valid inequality, will be generated at every viable node
whenever a Yvv′ decision variable is set to 1:

Fv′ ≥ Fv + EPvYvv′ ∀(v, v′) ∈ V : Yvv′ = 1 (24)

where EPv is the possible earliest completion time of project v calculated
from CPM.

Note that these valid inequalities can be applied a priori in the problem
formulation with the following constraint set:

Fv′ ≥ Fv + EPv + Ω(yvv′ − 1) ∀ v, v′ ∈ V (25)

This approach will result with different solutions for the LP relaxation at
each node which can improve the B&C procedure.
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5. Experimental Study

To test the efficiency of the proposed modification for CPLEX two differ-
ent problem sets are used. The first problem set is a control set, which is used
to roughly identify the effects of different modifications and rapidly observe
the project sequence relations among the projects. The second problem set
is used for an extensive study.

The problems in the first set are taken from the PSPLIB (http://129
.187.106.231/ psplib/) Kolisch and Sprecher (1996). For each test problem,
two projects from each j16, j20 and j30 sets are taken (a total of six projects
in each multi-project scheduling problem) and one of the projects in each
problem set has a weight value significantly higher than the other one. This
modification enabled a rapid observation of project sequence relations when
combined with a tight resource budget. The modes of the activities are
modified such that the total resource cost of modes and their corresponding
durations are proportional with diminishing returns for mode durations. The
due dates of the projects are set to their calculated no-delay due dates. A
total number of 20 problems are generated in this way. The results are given
in Table 1 below. The first row shows the best combination of the proposed
modifications according to absolute gap ((UB−LB)/LB) and objective value
of the best feasible solution which turns out to be the strategy where Yvv′

Branching - Heuristic Solution - Sequence Valid Inequality are combined.
AWT and AG columns show the average weighted tardiness and average
gap (distance of the objective value to the lower bound), respectively. Note
that for both of the columns, only the common problems that have resulted in
a feasible solution are used. Finally ART and NS columns show the average
run time for the procedure in minutes and the number of problems for which
no feasible solutions can be found with the given combination, respectively.
The total run time limit is set to 240 minutes.

As can be seen in Table 1, unmodified CPLEX and BRvk Branching ap-
proaches can only find two feasible solutions out of 20 problems. Thus for
these cases a comparison cannot be made with the other solution approaches
and they will be excluded from the analysis. When branching strategy of
CPLEX is modified with Yvv′ Branching, an important improvement can be
obtained such that only three out of 20 problems are infeasible. Further-
more, when heuristic solution approach is included to the B&C procedure
of CPLEX, these remaining three problems also yield some feasible solu-
tions. The same improvements cannot be seen when branching strategy is
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Table 1: The results for different combinations of the proposed modifications for the initial
20 test problems with 6 projects each.

Combination AWT AG ART NS
Yvv′ Branching - Heuristic Solution - Seq. Val. Ineq. 33.00 1.83 240 0
Unmodified CPLEX 39.50 3.81 240 18
Yvv′ Branching 74.71 6.65 240 3
Sequence Valid Inequality 39.5 3.43 240 18
A priori Valid Inequality 39.5 3.47 240 18
Yvv′ Branching - Heuristic 60.30 4.75 240 0
Yvv′ Branching - Heuristic Solution- A priori Valid Inequality 34.95 1.85 240 0
BRvk Branching 51.50 4.51 240 18
BRvk Branching - Heuristic 203.62 25.56 240 4
Yvv′ and BRvk Branching - Heuristic - Seq. Val. Ineq. 89.00 34.09 240 2

changed to BRvk Branching. Even though the B&C procedure is improved
with the addition of heuristic solution approach, the results are inferior to
Yvv′ Branching when compared according to solution quality.

Note that locally applied sequence as well as a priori valid inequality
additions do not contribute to solution quality when solely applied. They
cannot find a feasible solution for 18 problems out of 20. This shows that the
valid inequality modification only improves the procedure when there is an
upper bound provided with Yvv′ Branching and heuristic solution approach
as reported in Table 1. Note that there is not a significant difference between
a priori applied and locally applied sequence valid inequalities. This trend is
not expected to change when solving test problems, since there was not an
improvement in B&C procedure with the different LP relaxations including a
priori valid inequalities. Hence, we will not employ a priori valid inequalities
further.

When modifications are compared according to the solution quality it
is observed for which Yvv′ Branching - Heuristic Solution - Sequence Valid
Inequality combination gives the best results overall. We can observe that
all Yvv′ branching, heuristic solution approach and sequence valid inequality
modifications have a cascading effect, such that the solution quality always
increases significantly when modifications are used on top of each other. In
Table 2, the AWT for problems that all of these three different levels of
modifications have found feasible solutions are given.

Even though the modifications improve the UB values, the gap between
LB and UB values are still relatively high. The Yvv′ Branching and heuristic
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Table 2: The results for cases such that all approaches found feasible solutions.

Combination AWT
Yvv′ Branching - Heuristic Solution - Seq. Val. Ineq. 32.06
Yvv′ Branching - Heuristic 62.88
Yvv′ Branching 74.71

solution approach modifications do not improve the average gap but sequence
valid inequality has a significant effect on gap values when used with heuris-
tic solution approach and Yvv′ Branching strategy. Note that, despite the
improvement in UB values, the gap is still very high such that a termination
by reaching optimality cannot be observed.

To extensively test the solution approaches proposed here for RPP under
RRD another set of test problems are used. These problems are grouped
according to the maximum utilization factor (MUF) and the number of ac-
tivities in a project Kurtulus and Narula (1995). MUF is the ratio of the
resource requirement of no-delay schedule of the project to available resource,
i.e., resource capacity. Thus, if MUF is less than or equal to one, the project
can be scheduled without any delays. Since the resources cannot be shared,
combining the projects and calculating the MUF values are not suitable
for the proposed multi-project problem environment. In order to take into
account resource dedication and resource budget concepts, the no-delay re-
source requirement of the multi-project problem is calculated as the budget
value of the sum of no-delay resource requirements of the individual projects
Besikci et al. (2012b). With this approach, if MUF value is less than or
equal to one, the multi-project problem has necessary budget that will allow
a no-delay schedule. Similarly when MUF value is increased, resource budget
becomes tight for the multi-project problem.

Multi-project problems each consisting of 6 projects are created using
activity-on-node representation. There are two levels for the number of ac-
tivities for each of 6 projects in the test problems: 22 and 32 which are
taken from PSPLIB (http://129 .187.106.231/psplib/) (Kolisch and Sprecher,
1996). Three different levels of MUF (1.5, 1.6, and 1.7) are selected and a full
factorial design with 10 problems in each combination is created. In order to
compare different methods, for each combination a total of 10 base problems
are used. There are two levels for number of activities in a project: 22 and
32 activities.
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The results for the problem sets consisting of 6 projects with 22 activities
each are given in Tables 3, 4, 5; and for 32 activities in Tables 6, 7, 8, respec-
tively. Note that when a solution procedure cannot find a reasonable number
of feasible and/or optimal solution, it is not included in the subsequent tables
with higher MUF values since the problems become tighter with respect to
resource constraints.

Table 3: The results for different combinations of the proposed modifications for problems
consisting of 6 projects each with 22 activities and 1.5 MUF.

Combination AWT AG ART NS
Yvv′ Branching - Heuristic Solution - Seq. Val. Ineq. 41.00 0.04 158.34 0
Yvv′ Branching - Heuristic 42.50 0.12 190.62 0
Yvv′ Branching 44.40 0.17 195.97 0
Unmodified CPLEX 44.75 0.23 216.70 6

Table 4: The results for different combinations of the proposed modifications for problems
consisting 6 projects each with 22 activities and 1.6 MUF.

Combination AWT AG ART NS
Yvv′ Branching - Heuristic Solution - Seq. Val. Ineq. 44.33 0.17 200.50 0
Yvv′ Branching - Heuristic 51.17 0.33 240 0
Yvv′ Branching 44.40 0.28 240 4

Table 5: The results for different combinations of the proposed modifications for problems
consisting of 6 projects each with 22 activities and 1.7 MUF.

Combination AWT AG ART NS
Yvv′ Branching - Heuristic Solution - Seq. Val. Ineq. 79.50 0.39 200.50 0
Yvv′ Branching - Heuristic 82.30 0.47 240 0

Considering the results for cases in Table 3 it can be seen the AWT for
each modification combination and unmodified CPLEX are not significantly
different but unmodified CPLEX cannot find feasible solution for most of
the cases (6 out of 10 problems). Even though the AWT values do not differ
significantly for solution approaches, the AG for Yvv Branching - Heuristic
Solution - Sequence Valid Inequality modification combination is significantly
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lower than the other cases. This shows that when MUF values are not rela-
tively tight project sequence valid inequalities can improve the lower bound
for the B&C procedure. For the results obtained in Table 4 Yvv Branching
- Heuristic Solution - Sequence Valid Inequality modification combination
has a significant AWT and AG advantage when compared to the remain-
ing modification combinations. Note that Yvv′ Branching modification starts
to fall behind and cannot find feasible solutions for 4 cases out of 10. The
lower AWT values for Yvv′ Branching modification is the result of this lim-
ited feasible result base where it can find competitive results with the other
approaches. The final test cases reported in Table 5 have some interest-
ing implications. The two remaining modification combinations, namely Yvv

Branching - Heuristic Solution - Sequence Valid Inequality and Yvv Branch-
ing - Heuristic Solution, do not have a significant AWT difference and the
difference between AG values further diminishes with respect to cases with
lower MUF values. This points out that the effectiveness of sequence valid
inequality is highly correlated with MUF values and the improvement de-
creases when resource budget is tight.

Table 6: The results for different combinations of the proposed modifications for problems
consisting of 6 projects each with 32 activities and 1.5 MUF.

Combination AWT AG ART NS
Yvv′ Branching - Heuristic Solution - Seq. Val. Ineq. 35.30 0.01 49.34 0
Yvv′ Branching - Heuristic 37.10 0.06 148.72 0
Yvv′ Branching 35.20 0.01 49.34 0
Unmodified CPLEX 237.83 5.79 219.06 4

Table 7: The results for different combinations of the proposed modifications for problems
consisting of 6 projects each with 32 activities and 1.6 MUF.

Combination AWT AG ART NS
Yvv′ Branching - Heuristic Solution - Seq. Val. Ineq. 47.33 0.25 240 1
Yvv′ Branching - Heuristic 50.78 0.35 240 1
Yvv′ Branching 94.75 1.58 240 6
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Table 8: The results for different combinations of the proposed modifications for problems
consisting of 6 projects each with 32 activities and 1.7 MUF.

Combination AWT AG ART NS
Yvv′ Branching - Heuristic Solution - Seq. Val. Ineq. 96.62 0.48 240 2
Yvv′ Branching - Heuristic 96.62 1.06 240 2

The results for the cases with 32 activities are quite parallel to the results
for the cases with 22 activities. Yvv′ Branching - Heuristic Solution - Sequence
Valid Inequality modification combination has a significant advantage for
AWT and AG performance measures for all cases with diminishing returns
for increasing MUF values.

6. Summary and Further Research Topics

In this study, an extension of Resource Dedication policy, namely Re-
laxed Resource dedication policy is investigated extensively. In RRD policy,
resources are dedicated to individual projects, but they can be transferred
among projects when one of the projects starts after the finish of the other
one. The problem environment for this study is defined in such a way that
general resource capacities are included as a new decision which is called
Resource Portfolio Problem. The mathematical formulation for RPP un-
der RRD policy is proposed and different features of the B&C procedure
of CPLEX are modified and presented as a solution approach for the RPP
under RRD policy.

The B&C procedure of CPLEX is modified with different branching
strategies, valid inequalities and feasible solution approaches. We have used
insights gained from our previous studies and applied modified versions of
our previous heuristics for similar problems. When all these modifications
are combined and used in B&C procedure of CPLEX the results for the test
problems show the effectiveness of the modifications.

A new research direction would be defining new resource management
policies that apply to different characteristics of multi-project environments
that are not investigated in this study. One case can be considering resource
transfers among projects with a time and/or value cost. This case can be
considered as an extension of the studies by Kruger and Scholl (2008) and
Kruger and Scholl (2009), where the individual projects have characteristics
of RCPSP and general resource capacities are given as parameters. Another
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research direction can be combining shared resources, dedicated resources
and transferable resources and generating a general resource management
setting.

Changing the objective criterion would open new research directions.
Even though makespan based objective functions are common in multi-
project scheduling, cost/revenue based objective functions also have an im-
portant place. A cost/revenue based objective function with an upper bound
on makespan and/or due dates for certain milestones can be an interesting
research direction.
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Besikci, U., Bilge, Ü., Ulusoy, G., (2012). Multi-mode resource constrained
multi-project scheduling and resource portfolio problem. Submitted to Eu-
ropean Journal of Operation Research.

Brucker, P., Drexl, A., M?hring R., Neumann, K., Pesch, E., (1999). Re-
source constrained project scheduling: notation, classification, models and
methods. European Journal of Operational Research, 112, 3-41.

Demeulemeester, E., (1995). Minimizing resource availability costs in time-
limited project networks. Management Science, 41(10), 1590-1598.

Gademann, N., Schutten, M., (2004). Linear programming based heuristics
for project capacity planning. IIE Transactions, 37, 153-165.

Hartmann, S., Briskorn, D., (2010). A survey of variants and extensions of
the resource-constrained project scheduling problem. European Journal of
Operational Research, 207, 1-14.

Herroelen, W., DeReyck, B., Demeulemeester, E., (1998). Resource con-
strained project scheduling: A survey of recent developments. Computers
and Operations Research, 25, 279-302.

23



Kolisch, R., Sprecher, A., (1996). PSPLIB - a project scheduling problem
library. European Journal of Operational Research, 96, 205-216.

Kolisch, R., Padman, R., (2001). An integrated survey of deterministic
project scheduling. OMEGA, 29, 249-272.

Kruger, F., Scholl, A., (2008). Managing and modeling general resource
transfers in (multi-)project scheduling. OR Spectrum, 32, 369-394.

Kruger, F., Scholl, A., (2009). A heuristic solution framework for the resource
constrained (multi-)project scheduling problem with sequence dependent
transfer times. European Journal of Operations Research, 197, 492-508.

Kurtulus, I.S., Narula, S.C., (1985). Multi-project scheduling: analysis of
project performance. IIE Transactions, 17(1), 58-66.

Mohring, R.H., (1984). Minimizing costs of resource requirements in project
networks subject to a fixed completion time. Operations Research, 32(1),
89-120.

Ozdamar, L., Ulusoy, G., (1995). A survey on the resource-constrained
project scheduling problem. IIE Transactions, 27, 574-586.

Yang, K.K., Sum, C.C., (1997). An evolution of due date, resource allocation,
project release and activity scheduling rules in a multiproject environment.
European Journal of Operation Research, 103, 139-154.

Talbot, F.B., (1982) Resource-constrained project scheduling with time-
resource tradeoffs: the nonpreemptive case. Management Science, 28(10),
1199-1210.

Users Manual for CPLEX 2009; ftp://public.dhe.ibm.com/ soft-
ware/websphere/ilog/docs/optimization/cplex/ps usrmancplex.pdf:
ILOG, May 2012.

Zhu G., Bard J.F., Yu G., (2007). A branch-and-cut procedure for the mul-
timode resource-constrained project-scheduling problem. INFORMS Jour-
nal on Computing, 18(3), 377-390.

24


