24 research outputs found

    Reviewing the effectiveness of artificial intelligence techniques against cyber security risks

    Get PDF
    The rapid increase in malicious cyber-criminal activities has made the field of cybersecurity a crucial research discipline. Over the areas, the advancement in information technology has enabled cybercriminals to launch increasingly sophisticated attacks that can endanger cybersecurity. Due to this, traditional cybersecurity solutions have become ineffective against emerging cyberattacks. However, the advent of Artificial Intelligence (AI) – particularly Machine Learning (ML) and Deep Learning (DL) – and cryptographic techniques have shown promising results in countering the evolving cyber threats caused by adversaries. Therefore, in this study, AI's potential in enhancing cybersecurity solutions is discussed. Additionally, the study has provided an in-depth analysis of different AI-based techniques that can detect, analyse, and prevent cyber threats. In the end, the present study has also discussed future research opportunities that are linked with the development of AI systems in the field of cybersecurity

    Detection of the botnets’ low-rate DDoS attacks based on self-similarity

    Get PDF
    An article presents the approach for the botnets’ low-rate a DDoS-attacks detection based on the botnet’s behavior in the network. Detection process involves the analysis of the network traffic, generated by the botnets’ low-rate DDoS attack. Proposed technique is the part of botnets detection system – BotGRABBER system. The novelty of the paper is that the low-rate DDoS-attacks detection involves not only the network features, inherent to the botnets, but also network traffic self-similarity analysis, which is defined with the use of Hurst coefficient. Detection process consists of the knowledge formation based on the features that may indicate low-rate DDoS attack performed by a botnet; network monitoring, which analyzes information obtained from the network and making conclusion about possible DDoS attack in the network; and the appliance of the security scenario for the corporate area network’s infrastructure in the situation of low-rate attacks

    Impact of Feature Selection Methods on Machine Learning-based for Detecting DDoS Attacks : Literature Review

    Get PDF
    Cybersecurity attacks are becoming increasingly sophisticated and increasing with the development of technology so that they present threats to both the private and public sectors, especially Denial of Service (DoS) attacks and their variants which are often known as Distributed Denial of Service (DDoS). One way to minimize this attack is by using traditional mitigation solutions such as human-assisted network traffic analysis techniques but experiencing some limitations and performance problems. To overcome these limitations, Machine Learning (ML) has become one of the main techniques to enrich, complement and enhance the traditional security experience. The way ML works are based on the process of data collection, training and output. ML is influenced by several factors, one of which is feature engineering. In this study, we focus on the literature review of several recent studies which show that the feature selection process greatly impacts the level of accuracy of this ML. Datasets such as KDD, UNSW-NB15 and others also affect the level of accuracy of ML. Based on this literature review, this study can observe several feature engineering strategies with relevant impacts that can be chosen to improve ML solutions on DDoS attacks

    A new framework to alleviate DDoS vulnerabilities in cloud computing

    Get PDF
    In the communication age, the Internet has growing very fast and most industries rely on it. An essential part of Internet, Web applications like online booking, e-banking, online shopping, and e-learning plays a vital role in everyday life. Enhancements have been made in this domain, in which the web servers depend on cloud location for resources. Many organizations around the world change their operations and data storage from local to cloud platforms for many reasons especially the availability factor. Even though cloud computing is considered a renowned technology, it has many challenges, the most important one is security. One of the major issue in the cloud security is Distributed Denial of Service attack (DDoS), which results in serious loss if the attack is successful and left unnoticed. This paper focuses on preventing and detecting DDoS attacks in distributed and cloud environment. A new framework has been suggested to alleviate the DDoS attack and to provide availability of cloud resources to its users. The framework introduces three screening tests VISUALCOM, IMGCOM, and AD-IMGCOM to prevent the attack and two queues with certain constraints to detect the attack. The result of our framework shows an improvement and better outcomes and provides a recovered from attack detection with high availability rate. Also, the performance of the queuing model has been analysed

    Intelligent feature selection using particle swarm optimization algorithm with a decision tree for DDoS attack detection

    Get PDF
    The explosive development of information technology is increasingly rising cyber-attacks. Distributed denial of service (DDoS) attack is a malicious threat to the modern cyber-security world, which causes performance disruption to the network servers. It is a pernicious type of attack that can forward a large amount of traffic to damage one or all target’s resources simultaneously and prevents authenticated users from accessing network services. The paper aims to select the least number of relevant DDoS attack detection features by designing an intelligent wrapper feature selection model that utilizes a binary-particle swarm optimization algorithm with a decision tree classifier. In this paper, the Binary-particle swarm optimization algorithm is used to resolve discrete optimization problems such as feature selection and decision tree classifier as a performance evaluator to evaluate the wrapper model’s accuracy using the selected features from the network traffic flows. The model’s intelligence is indicated by selecting 19 convenient features out of 76 features of the dataset. The experiments were accomplished on a large DDoS dataset. The optimal selected features were evaluated with different machine learning algorithms by performance measurement metrics regarding the accuracy, Recall, Precision, and F1-score to detect DDoS attacks. The proposed model showed a high accuracy rate by decision tree classifier 99.52%, random forest 96.94%, and multi-layer perceptron 90.06 %. Also, the paper compares the outcome of the proposed model with previous feature selection models in terms of performance measurement metrics. This outcome will be useful for improving DDoS attack detection systems based on machine learning algorithms. It is also probably applied to other research topics such as DDoS attack detection in the cloud environment and DDoS attack mitigation systems

    Detection of Distributed Denial of Service Attacks Carried Out by Botnets in Software-Defined Networks

    Full text link
    Recent years witnessed a surge in network traffic due to the emergence of new online services, causing periodic saturation and complexity problems. Additionally, the growing number of IoT devices further compounds the problem. Software Defined Network (SDN) is a new architecture which offers innovative advantages that help to reduce saturation problems. Despite its benefits, SDNs not only can be affected by traditional attacks but also introduce new security challenges. In this context, Distributed Denial of Service (DDoS) is one of the most important attacks that can damage an SDN network's normal operation. Furthermore, if these attacks are executed using botnets, they can use thousands of compromised devices to disrupt critical online services. This paper proposes a framework for detecting DDoS attacks generated by a group of botnets in an SDN network. The framework is implemented using open-source tools such as Mininet and OpenDaylight and tested in a centralized network topology using BYOB and SNORT. The results demonstrate real-time attack identification by implementing an intrusion detection mechanism in the victim client. Our proposed solution offers quick and effective detection of DDoS attacks in SDN networks. The framework can successfully differentiate the type of attack with high accuracy in a short tim

    Encountering distributed denial of service attack utilizing federated software defined network

    Get PDF
    This research defines the distributed denial of service (DDoS) problem in software-defined-networks (SDN) environments. The proposes solution uses Software defined networks capabilities to reduce risk, introduces a collaborative, distributed defense mechanism rather than server-side filtration. Our proposed network detection and prevention agent (NDPA) algorithm negotiates the maximum amount of traffic allowed to be passed to server by reconfiguring network switches and routers to reduce the ports' throughput of the network devices by the specified limit ratio. When the passed traffic is back to normal, NDPA starts network recovery to normal throughput levels, increasing ports' throughput by adding back the limit ratio gradually each time cycle. The simulation results showed that the proposed algorithms successfully detected and prevented a DDoS attack from overwhelming the targeted server. The server was able to coordinate its operations with the SDN controllers through a communication mechanism created specifically for this purpose. The system was also able to determine when the attack was over and utilize traffic engineering to improve the quality of service (QoS). The solution was designed with a sophisticated way and high level of separation of duties between components so it would not be affected by the design aspect of the network architecture
    corecore