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ABSTRACT   

The rapid increase in malicious cyber-criminal activities has made the field of cybersecurity a crucial research 

discipline. Over the areas, the advancement in information technology has enabled cybercriminals to launch 

increasingly sophisticated attacks that can endanger cybersecurity. Due to this, traditional cybersecurity solutions have 

become ineffective against emerging cyberattacks. However, the advent of Artificial Intelligence (AI) – particularly 

Machine Learning (ML) and Deep Learning (DL) – and cryptographic techniques have shown promising results in 

countering the evolving cyber threats caused by adversaries. Therefore, in this study, AI's potential in enhancing 

cybersecurity solutions is discussed. Additionally, the study has provided an in-depth analysis of different AI-based 

techniques that can detect, analyse, and prevent cyber threats. In the end, the present study has also discussed future 

research opportunities that are linked with the development of AI systems in the field of cybersecurity. 
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1. Introduction 

Technological evolution has resulted in the development of such a system that can think and act like a human. 

In particular, with the introduction of new technologies, such as Artificial Intelligence (AI) and Machine 

Learning (ML), significant advancements have been made to ensure fool-proof security of the IT systems 

against cybersecurity risks [1]. Cybersecurity can be understood as the set of systems, human behaviours, and 

processes that assists in protecting online and electronic resources. Additionally, it is a fast-evolving discipline 

that has grasped the attention of practitioners because of the increment in the number of cyber-attacks and 

threats that endanger sensitive data. However, despite the effectiveness of AI and ML in cybersecurity, 

cybercriminals have also been using AI to launch increasingly complex cyberattacks while simultaneously 

hiding their tracks [2, 3]. Nonetheless, the fact remains that AI techniques in cybersecurity have the potential 

to alter the existing asymmetric adversary-versus-defender balance. Moreover, with the integration of AI on 

the defensive side, certain forms of defence, such as malware and spam detection could be improved [4]. 

Besides, it is also established that traditional solutions of cybersecurity are becoming ineffective, in terms of 

adequately identifying and mitigating cyberattacks. However, advancements in AI and cryptographic 

techniques are found to provide promising results to cybersecurity experts, in terms of countering cyber 

threats. To fully comprehend the potential of AI, this paper aims at reviewing different AI-based techniques 

that can be used to counter cybersecurity risks. 

2. Related work 

The recent increase in identity theft and cyber-attacks have made the internet a daunting place. Such attacks 

can severely affect society as today’s communication and economic infrastructure heavily depend on IT and 

computer networks. Over the decades, researchers have discovered various types of cyber threats that could 

potentially jeopardize information security. According to a recent report [5], denial of service (DoS), 

eavesdropping, and malware attacks are among the most dangerous cybersecurity threats that can compromise 
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digital security. In a DoS attack, the adversary attempts to clog the computing resources of a victim's 

computer by sending a substantial number of requests. According to [6], such attacks can be conducted in 

different ways. For example, one single attacker machine can overwhelm a victim's machine by transmitting a 

substantial number of network packets – which often appears to be legitimate. This activity is usually done to 

bypass network security. On the other hand, an adversary can also use multiple machines to launch 

simultaneous attacks in a distributed-style. Likewise, eavesdropping sniff through the network communication 

line to misuse obtained data[7, 8]. Malicious attackers either listens to the message transmission to detect 

information, which is often referred to as passive eavesdropping. Besides, attackers might also actively collect 

information by sending multiple friendly queries, which is called active eavesdropping. Another cyber threat 

that can jeopardize the cybersecurity is the malware attack. Studies like [2, 9] and  [10]examined the 

phenomenon and proclaims that malware attacks spread automatically through the network by exploiting 

unknown or known vulnerabilities. Such attack not only threatens the confidentiality and integrity of 

individual computers, but it is also capable of bringing down any server via Distributed Denial of Service 

(DDoS) attack. These attacks severely affect the safety and security of the digital realm. To counter these 

security threats, multiple AI-based solutions have been proposed to classify and intelligently analyse cyber-

attacks automatically. Some of the fruitful techniques are thoroughly reviewed and discussed in the 

proceeding manuscript. 

2.1. Machine learning 

Conventionally, ML techniques can be categorised into two types: unsupervised and supervised learning. In 

unsupervised learning, no training or data labelling is required. Instead, the algorithm, according to [2], 

automatically determines the degree of dispersion/coherence among the sample data while systematically 

creating classes. However, in supervised learning data samples are labelled according to different classes, e.g., 

legitimate or malicious. It is important to note that data labelling or training is manually performed and 

require humans to detect and analyse data patterns. The use of ML techniques is highly effective in detecting 

malicious activities. In this account[11],  proposed a hybrid Support Vector Machine (SVM) approach for 

developing intrusion detection system (IDS). The study utilised two feature techniques of reducing security 

attacks: BPSO and Information Gain to detect DoS attack. The study further reported 99.4% classification 

performance on the DoS attack. Likewise, studies like [12] and [13] used Index Partial Distance Search k-

nearest Neighbour (IPDS), and K-Means clustering and KNN classification to detect various types of attacks. 

The studies report 99.6% and 99.8% accuracy in NSI-KDD dataset. Galal et al. [14], on the other hand, used 

three supervised learning algorithms, including Decision Tree, SVM, and Random Forest to detect malware 

from the given dataset. The study proclaims that their proposed model achieved an accuracy of 97.19% in 

detecting malware attacks. This means that ML methods are powerful techniques that can be used to ensure 

robust security against cyberattacks. 

2.2.  Artificial neural network 

Another technique that makes use of AI is the Artificial Neural Network (ANN). ANNs can be defined as 

statistical models that imitate the function and structure of the human brain. ANN has the capability of 

learning problems, particularly in environments where rules and algorithms for solving a problem are either 

unknown or difficult to express. In cybersecurity, ANNs can be used for observing network traffic [15]. As 

shown in Figure 1, ANNs analyse the past network activities to detect an actual attack during the delivery 

phase. As compared to traditional cybersecurity techniques, the great benefit of ANNs is their ability to learn 

the cybersecurity environment. This could be understood by considering the study of Chandrasekhar and 

Raghuveer [16, 17] who integrated SVM, ANN, and fuzzy C-means clustering to develop an intrusion 

detection model that predicts network intrusion. The findings of the study indicate that the proposed algorithm 

achieved the detection accuracy of 98.99% for PROBE, 99.66% for DoS, 98.81% for U2R, and 98.99% for 

R2L attacks. Shenfield et al. [18], on the other hand, used ANN for deep packet inspection-based IDS. The 

study proclaims that their model achieved an accuracy of 98% in distinguishing between malicious and benign 

network traffic. Dahl et al. [19] used random projections to train neural networks in detecting automatically 

generated malware. With this model, the authors were able to achieve classification result with an error rate of 

0.49%. This indicates that ANN is a powerful AI technique that is widely used for detecting cyber-attacks. 
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Figure 1. ANNs preventing network attack [15] 

2.3. Deep belief network 

Deep Belief Network (DBN) can be defined as a probabilistic generative model that make use of multiple 

layers of hidden and stochastic variables. This method is effective in detecting cybersecurity threats because it 

can effectively work in a random environment and a random network. Ding et al. [20], in their study, used 

DBNs to detect malware attacks. According to the study, DBNs utilised unsupervised learning to find multiple 

features layers and then use it in a feed-forward neural network (NN) fashion to fine-tune, particularly for the 

optimisation of discrimination. As a result of the unsupervised pre-training algorithm, DBNs were found to be 

less susceptible to over-fitting. This is also apparent in the study, as DBNs achieved an accuracy of 96.1%. 

Nadeem et al. [21] used NN with semi-supervised learning for obtaining optimal accuracy. The study used 

KDD Cup 99 dataset to detect the non-labelled data via Ladder Network and then used DBN for data 

classification. The study proclaims an average accuracy of 99.18%, which is similar to supervised learning. 

Zhao et al. [22], on the other hand, proposed an IDS based on probabilistic neural network (PNN) and DBN to 

solve an existing problem in traditional IDS, including huge data volumes, long-term training, and redundant 

information. The study used KDD CUP 99 dataset for testing the performance and obtained an accuracy of 

99.14%. This means that DBN is an efficient AI model that is capable of detecting malicious activities within 

a network.  

2.4. Convolutional neural network 

Convolutional Neural Network (CNN) is a widely used AI-based technique whose network structure is similar 

to that of the biological neural network [23]. As a deep learning (DL) architecture, CNN is a multi-layered 

sensor, as presented in Figure 2. It is particularly designed to identify two-dimensional shapes, which are 

highly invariant to tilting, scaling, translation, or other deformation forms. To utilise the full effectiveness of 

CNN against cybersecurity risk, the study [24, 25]designed a dilated convolutional autoencoders (DCAEs) 

that make use of CNNs and stacked auto-encoders. In essence, the proposed model has the ability to learn 

crucial features from more-varied and large-scale unlabelled raw traffic network data consisting of web-based 

malware, botnets, advanced persistent threats (APTs), exploits, and scans. The study proclaims that their 

model achieved the detection accuracy of 99.59%. Likewise, [26] proposed a one-dimensional CNN based on 

end-to-end encrypted traffic classification technique. The method combines feature classifier, feature 

selection, as well as feature extraction into an end-to-end framework that intelligently learns the non-linear 

connection between the expected output and the original input. The study proclaims that their proposed 

method shown excellent performance in 2-class classification with 99% and 100% accuracy for VPN and non-

VPN traffic, respectively. Thus, CNN is capable of detecting potential cybersecurity threats with great 

precision and accuracy.     

 

Figure 2. Convolutional neural network (CNN) structure [19] 
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2.5. Decision tree 

The decision tree is a method that uses training data samples to create a set of rules. In the structure of a 

decision tree, each branch represents a test output while each node and leaf node represent a test on one 

property and a category, respectively [2]. As depicted in Figure 3, the decision tree categorises the data 

samples via the training conditions; thus, it has a better detection accuracy for cyberattacks. The study [27] 

proposed decision tree-based IDS for NSL-KDD dataset that uses Correlation Feature Selection (CFS) for 

evaluating features. Using this algorithm, the study reported an accuracy of 96.65% in detecting cyberattacks. 

Another study [28]proposed an IDS based on the genetic algorithm and C4.5 decision tree. This system not 

only reduces the overall false-positive rate but also contributes to improving the classification accuracy and 

resolves the small separation problem of the decision tree. The results show better performance when 

compared to renowned cybersecurity systems, such as Reptree, Naïve Bayes, and Random tree with an 

accuracy of 99.89%. Thus, it is apparent that AI-based techniques are highly effective against cybersecurity 

risks.    

 
Figure 3. Decision tree example [19] 

 

3. Results and discussion 

Based on the existing body of literature, AI-based techniques, such as ML, decision tree, DBN, ANN, and 

CNN are capable of detecting various cybersecurity threats, including eavesdropping, malware, DoS, and 

DDoS attacks. While reviewing the effectiveness of AI techniques, it has been identified that ML-based 

techniques such as SVM, K-nearest neighbour, and decision tree are widely used in the development of IDS. 

Studies like [29]and [30]used SVM to detect cyber-attacks like DoS and achieved an accuracy of 99.8% and 

99.3%, respectively. This accuracy is consistent in studies [11]and [16] which, similar to previous studies, 

used SVM to achieve a detection accuracy of 99.4% and 99.66% on the DoS attacks, respectively. The results 

from [13] and [31] provide evidence that k-nearest neighbour is equally capable of analysing cybersecurity 

threats with an accuracy of 99% and 94.17%, respectively. While ML algorithms are highly effective, DL-

based algorithms, such as CNN are also consistent in threat detection. Studies like [32] and [33] used CNN to 

design an algorithm that detects malware attacks. According to the studies, their proposed methods achieved 

93% precision and 99.41% accuracy, respectively. This indicates that AI techniques improve security 

practices that can defend against cyberattacks and cybercriminals while protecting valuable assets.  

4. Discussion 

AI has the potential to change the dynamics of cybersecurity. Initially, cyberattacks were recognized with 

rule-based systems, which uses attack signatures to identify the attack. However, with new technological 

trends, cyberattack strategies have become increasingly sophisticated, and therefore a need for advanced 

technologies and tools which can help investigate, detect, and make optimal decisions have increased [2]. 

Today, AI-based cybersecurity solutions are being utilised to automate the attack detection while improving 

their capability to detect over time. Besides, AI techniques like decision trees use network flow rate, duration, 

and size to identify DoS attacks [34]. Furthermore, different ML-based techniques such as SVM can 

categorise multiclass data into the attack and legitimate class. These features make AI an attractive technology 

that can be used to examine network traffic patterns for potential cybersecurity risks. Moreover, in 

cybersecurity, ANN can recognize a zero-day attack as it learns from the patterns of recent incidents. For 
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instance, traffic network patterns obtained from recent DoS or eavesdrop attacks can be fed to ANNs as the 

training data, so that neurons can modify their weight to detect future DoS attacks [35]. This indicates that AI 

techniques are suitable for cybersecurity applications and can learn from previous attack patterns to predict 

future incidents. 

5. Conclusion 

As the sophistication and speed of attack increases, artificial intelligence has become an essential technology 

in the cybersecurity domain. The present research article has highlighted how cyber threats have evolved, 

increased in complexity, and using modern technology to jeopardize security. The research has provided in-

depth insight into the types of cyber threats that increases cybersecurity risk. Besides, with the advancement 

of technology, cyberattacks will continue to rise, even if the cybersecurity community develops solutions to 

counter these threats. In the present research, different AI-based techniques, including ML, ANN, DBN, CNN, 

and decision trees, have been reviewed. The present study also provided evidence that supports the use of 

these technologies. In contrast to the traditional rule-based cybersecurity solutions, AI-based frameworks are 

robust, flexible, and adaptable; thereby, contributes to improving security execution and protection against an 

increasing number of cyber threats.   

6. Future work 

The present research examined a significant number of academic cybersecurity studies based on AI. However, 

almost all studies have given less consideration to actual deployment efficiency and most experiments were 

conducted in the lab, which does not provide an actual picture of detection efficiency in the actual network. 

Therefore, it is important to consider real-world statistics and performance metrics in future research. 

Moreover, current datasets contain an unbalanced number of categories, redundant information, and old data 

[19]. Thus, establishing balanced attack categories, network intrusion detection (ID) datasets with a 

substantial amount of data, and dynamic type coverage becomes a top priority in future work. In addition, 

while access to the modern, high-tech computing infrastructure will help AI experts to solve AI-related 

problems with efficacy and efficiency, the fact remains that analysing the substantial amount of data requires 

state-of-the-art computing platforms and resources [2]. This problem, however, can be resolved by using 

cluster computing solutions, including Hadoop and Apache Sparke. In the future, the introduction of quantum 

computing will also ease solving sophisticated computing problems with great precision and accuracy; 

thereby, making it a potential future research domain. Future work should also explore the possibility of 

hybrid solutions, as it can potentially increase the reliability of AI techniques.  
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