4 research outputs found

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Design of a robot for gait rehabilitation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.Cataloged from PDF version of thesis.Includes bibliographical references.The ability to walk is important for independent living and when this capacity is affected by injury, gait therapy is the traditional approach to re-train the nervous system, to re-build muscle strength, to improve balance, and to re-train kinematics in order to reduce the stresses applied to bones and muscles. The importance of this problem is illustrated by the approximately 5.8 million stroke survivors alive in the US today and an estimated 700,000 strokes occurring each year. In fact, for stroke survivors with mild to moderate impairment, only 37% regain the ability to walk within one week post-stroke and 73% fall within the first six months. Falls are a leading cause of injury among Americans over 65 years old with over one third of this population experiencing a fall each year and an unsteady gait increases this risk. This growing population will require gait therapy. This thesis presents the design, development, fabrication, and proof-of-concept testing for a novel device to deliver gait therapy. While robotic devices exist, none of them take advantage of the concept of passive walkers and most focus on reproducing gait kinematics for impaired patients. Yet research has found that appropriate neural input is an important factor in efficacious therapy. For gait, this input would be the collision between the foot and the ground at heel-strike. The goal of this novel device is to allow patients to begin gait therapy before they are able to independently walk overground while maximizing the amount interface driven neural input during stepping in a safe environment.by Caitlyn Joyce Bosecker.S.M

    Estudio de las fuerzas de interacci贸n para la minimizaci贸n de esfuerzos en rehabilitaci贸n robotizada

    Get PDF
    Los accidentes cerebrovasculares son una de las principales causas de mortalidad y discapacidad en adultos y su incidencia en la poblaci贸n se incrementa cada a帽o. Sin embargo, gracias a los avances en los protocolos de atenci贸n, estabilizaci贸n y rehabilitaci贸n de los pacientes, se ha logrado disminuir la tasa de mortalidad a pesar del aumento de casos, lo que conlleva un signi cativo aumento de pacientes con alg煤n grado de secuelas o discapacidad. Los investigadores y m茅dicos trabajan en diversos frentes, buscando comprender los mecanismos que permitan evitar o detectar de forma anticipada un accidente cerebrovascular, los procesos involucrados en la reorganizaci贸n neuronal y mejorar las terapias que permitan recuperar las actividades de la vida diaria, entre otros. Todo ello ha permitido que la ingenier铆a tome un papel relevante a la hora de desarrollar t茅cnicas y mecanismos que faciliten la tarea de los especialistas. En este sentido, la rob贸tica se ha hecho un lugar importante durante las distintas fases de recuperaci贸n del paciente. El uso de robots para la rehabilitaci贸n entrega diversas herramientas y bene cios no s贸lo a los investigadores, sino tambi茅n al cuerpo m茅dico y los pacientes. A los investigadores les facilita datos cinem谩ticos y din谩micos que permiten el estudio de nuevas t茅cnicas de rehabilitaci贸n, a los m茅dicos les permite tener un mayor control de las terapias que se est谩n aplicando as铆 como indicadores que mejoren la evaluaci贸n del control motor y de la evoluci贸n del paciente. Al bene ciario 煤ltimo, el paciente, las nuevas investigaciones buscan precisamente que las terapias de rehabilitaci贸n tengan un efecto a nivel neuronal, motor y funcional que permita la recuperaci贸n de sus funciones mejorando signi cativamente su calidad de vida. Sin embargo, la interacci贸n entre el robot y la persona conlleva importantes retos, tanto a nivel de control como de dise帽o, de seguridad y ergon贸micos. La resoluci贸n favorable de todos ellos permitir铆a maximizar los bene cios de las terapias de rehabilitaci贸n. Realizando una revisi贸n de las publicaciones cient铆 cas sobre la rehabilitaci贸n por medio de dispositivos rob贸ticos, se observa que efectivamente el uso de robots mejora tanto el control motor como el control funcional de los pacientes. Sin embargo, investigaciones que comparan los bene cios conseguidos respecto a terapias convencionales cuestionan la relaci贸n costo-efectividad de su uso e incluso plantean sus potenciales efectos negativos si no se aplica de modo individualizado y adaptando el control a la evoluci贸n del paciente. Diversos factores pueden estar limitando la e cacia de las terapias robotizadas, uno de ellos es la correcta modelizaci贸n y dise帽o mec谩nico que garantice una adecuada interacci贸n entre el robot y el paciente. Una incorrecta transmisi贸n de fuerzas sobre el paciente puede provocar una variaci贸n en el patr贸n normal de activaci贸n muscular, fatiga, incomodidad, dolor y rechazo a la terapia. Esta sobrecarga es generada por un desalineamiento entre las articulaciones del exoesqueleto y sus equivalentes biol贸gicas, causada por la imposibilidad del dise帽o mec谩nico de adaptarse al movimiento de los tejidos blandos, la variabilidad antropom茅trica de los pacientes y los complejos movimientos de las articulaciones biol贸gicas. Esta tesis estudia las fuerzas de interacci贸n ortesis-paciente, sus efectos sobre los patrones musculares y la adaptaci贸n de las arquitecturas rob贸ticas al paciente. En base a este estudio se presenta el dise帽o y validaci贸n de un sistema articular de 3 grados de libertad con servoadaptaci贸n din谩mica que garantice una correcta transmisi贸n de fuerzas entre el robot y el paciente. Gracias a su capacidad de rotar respecto a un centro de rotaci贸n variable, el sistema permite adecuarse a las diferentes medidas antropom茅tricas del paciente, compensar el movimiento de los tejidos blandos y el movimiento de roto-traslaci贸n de las articulaciones biol贸gicas. El estudio y evaluaci贸n de dicha servoadaptaci贸n se ha focalizado sobre la articulaci贸n del codo, ya que esta articulaci贸n permite desacoplar la acci贸n de otros movimientos a la hora del an谩lisis. El desarrollo del sistema articular abarc贸 las siguientes fases: 1. Estudio de las fuerzas de interacci贸n entre el robot y el paciente, identi caci贸n de las causas del desalineamiento y estudio del estado del arte de los dispositivos rob贸ticos en cuanto a soluciones articulares que minimicen las fuerzas. 2. Dise帽o y validaci贸n de un banco de ensayo que permita emular la acci贸n de un exoesqueleto durante el ejercicio de exo-extensi贸n del codo y a su vez generar distintos grados de desalineamientos del robot sobre la extremidad superior. 3. Estudio de los efectos de los desalineamientos sobre los patrones musculares y las fuerzas transmitidas al paciente. Este estudio sienta las bases que justi can la compensaci贸n de los efectos del desalineamiento. La informaci贸n obtenida es usada para modelar el sistema articular. 4. Dise帽o y validaci贸n de un sistema articular de 3 grados de libertad. Este dise帽o se modela e implementa de forma virtual sobre el banco de ensayo, para su posterior evaluaci贸n a trav茅s de diversos desalineamientos generados. 5. Implementaci贸n de una estrategia de control que permita al sistema articular rotar respecto a un centro instant谩neo de rotaci贸n de forma que minimice las fuerzas de interacci贸n sobre el paciente. Si bien se enfoc贸 el estudio a la articulaci贸n del codo, el sistema articular dise帽ado es extrapolable a cualquier articulaci贸n del plano sagital o frontal, mientras que el estudio de las fuerzas de interacci贸n es generalizable a todas las articulaciones biol贸gicas. Los resultados corroboran que a mayor desalineamiento, mayores son las fuerzas transmitidas sobre el paciente, siendo la componente en la direcci贸n x del plano sagital la m谩s afectada por los desalineamientos. Adem谩s, del an谩lisis de las se帽ales electromiogr谩 cas, se observ贸 que la transmisi贸n inadecuada de fuerzas causa una variaci贸n en los patrones musculares normales, en lo que se re ere a velocidad de conducci贸n de los potenciales de acci贸n y al reclutamiento de las moto-neuronas. Se comprob贸 que el sistema articular permite al exoesqueleto adaptarse a diferentes medidas antropom茅tricas y que es capaz de servoadaptarse durante el movimiento para mantenerse alineado con su equivalente biol贸gica. De las pruebas realizadas se observ贸 que el sistema es capaz disminuir las fuerzas transmitidas, las cuales convergen r谩pidamente a una zona de estabilizaci贸n, con gurada al inicio de la terapia, donde las fuerzas de interacci贸n se encuentran dentro de rangos aceptables y no suponen una sobrecarga al paciente.The use of robots for stroke patients' rehabilitation provides benefits not only to researchers, but also to medical professionals and patients. Researchers are provided with kinematic and dynamic data that allow the study of new rehabilitation techniques. Robotics provide clinicians with means for better controlling undergoing therapies, improving both the assesment and indicators of the evolution of patient. For the ultimate beneficiary, the patient, the current research seeks that rehabilitation therapies have an effect at neuronal, motor and functional levels, resulting in better recovery functions and improving the patient's quality of life. However, the interaction between a robot and a human carries significant challenges, in terms of design control, safety and ergonomics. The favorable resolution of all of them would maximize the benefits of a rehabilitation therapy. Conducting a review of the scientific literature on robot aided therapy, it is observed that the effective use of robots improves both patient motor and functional control. However, comparing the benefits of robotic therapies with respect to conventional therapies puts into question the cost-effectiveness of their use and even their potential effects if they are not applied on an individual basis and if their control is not dinamically adapted to the patient's progress. Several factors may be limiting the effectiveness of a robotic therapy, one of them is the correct modeling and mechanical design to ensure proper interaction between the robot and the patient. Incorrect forces on the patient can cause a variation in the normal pattern of muscle activation, fatigue, discomfort, pain and rejection of the therapy. This overload is generated by a misalignment between the joints of the exoskeleton and its biological counterparts, caused by the impossibility of designing a mechanical architecture that accommodates the movement of soft tissues, the anthropometric variability of patients and the complex biological joint movements. This thesis studies the interaction forces between orthosis and patient, their effects on muscle patterns and the adaptation of robotic architectures to the patient. Based on this study we present the design and validation of a joint system with 3 degrees of freedom with dynamic servo-adaptation that ensures correct robot force transmissions to the patient. Thanks to its ability to rotate around a variable center of rotation, the system can adapt to different anthropometric measurements of the patient, compensating the soft tissue movements and the roto-translational movement of a biological joint. The study and evaluation of such servo-adaptation has focused on the elbow joint, as it is possible to decouple the action of other movements for analysis and can be extrapolated to any joint in the sagittal or frontal plane, while the study of the interaction forces is generalizable to all biological joints. The results confirm that the greater the misalignment, the greater the forces transmitted to the patient are, with the component in the x direction of sagittal being the most affected by misalignments. Furthermore, the analysis of electromyographic signals, shows that an improper transmission of forces causes a variation in normal muscle patterns in terms of conduction velocity and action potential recruitment of motor neurons. It was verified that the joint system enables the exoskeleton to fit to different anthropometric measurements and is capable of servo-adapt itself to the patient's conditions during the movement in order to maintain the alignment with its biological joints. Of the tests performed it was observed that a joint system can reduce the transmitted forces and quickly converge to a stabilization zone, configured at the start of the therapy, in which the interaction forces are within an acceptable range

    Quality framework for semantic interoperability in health informatics: definition and implementation

    Get PDF
    Aligned with the increased adoption of Electronic Health Record (EHR) systems, it is recognized that semantic interoperability provides benefits for promoting patient safety and continuity of care. This thesis proposes a framework of quality metrics and recommendations for developing semantic interoperability resources specially focused on clinical information models, which are defined as formal specifications of structure and semantics for representing EHR information for a specific domain or use case. This research started with an exploratory stage that performed a systematic literature review with an international survey about the clinical information modelling best practice and barriers. The results obtained were used to define a set of quality models that were validated through Delphi study methodologies and end user survey, and also compared with related quality standards in those areas that standardization bodies had a related work programme. According to the obtained research results, the defined framework is based in the following models: Development process quality model: evaluates the alignment with the best practice in clinical information modelling and defines metrics for evaluating the tools applied as part of this process. Product quality model: evaluates the semantic interoperability capabilities of clinical information models based on the defined meta-data, data elements and terminology bindings. Quality in use model: evaluates the suitability of adopting semantic interoperability resources by end users in their local projects and organisations. Finally, the quality in use model was implemented within the European Interoperability Asset register developed by the EXPAND project with the aim of applying this quality model in a broader scope to contain any relevant material for guiding the definition, development and implementation of interoperable eHealth systems in our continent. Several European projects already expressed interest in using the register, which will now be sustained by the European Institute for Innovation through Health Data
    corecore