111 research outputs found

    Applications of artificial intelligence in dentistry: A comprehensive review

    Get PDF
    This work was funded by the Spanish Ministry of Sciences, Innovation and Universities under Projects RTI2018-101674-B-I00 and PGC2018-101904-A-100, University of Granada project A.TEP. 280.UGR18, I+D+I Junta de Andalucia 2020 project P20-00200, and Fapergs/Capes do Brasil grant 19/25510000928-3. Funding for open-access charge: Universidad de Granada/CBUAObjective: To perform a comprehensive review of the use of artificial intelligence (AI) and machine learning (ML) in dentistry, providing the community with a broad insight on the different advances that these technologies and tools have produced, paying special attention to the area of esthetic dentistry and color research. Materials and methods: The comprehensive review was conducted in MEDLINE/ PubMed, Web of Science, and Scopus databases, for papers published in English language in the last 20 years. Results: Out of 3871 eligible papers, 120 were included for final appraisal. Study methodologies included deep learning (DL; n = 76), fuzzy logic (FL; n = 12), and other ML techniques (n = 32), which were mainly applied to disease identification, image segmentation, image correction, and biomimetic color analysis and modeling. Conclusions: The insight provided by the present work has reported outstanding results in the design of high-performance decision support systems for the aforementioned areas. The future of digital dentistry goes through the design of integrated approaches providing personalized treatments to patients. In addition, esthetic dentistry can benefit from those advances by developing models allowing a complete characterization of tooth color, enhancing the accuracy of dental restorations. Clinical significance: The use of AI and ML has an increasing impact on the dental profession and is complementing the development of digital technologies and tools, with a wide application in treatment planning and esthetic dentistry procedures.Spanish Ministry of Sciences, Innovation and Universities RTI2018-101674-B-I00 PGC2018-101904-A-100University of Granada project A.TEP. 280.UGR18Junta de Andalucia P20-00200Fapergs/Capes do Brasil grant 19/25510000928-3Universidad de Granada/CBU

    Earth Resources: A continuing bibliography with indexes, issue 11, October 1976

    Get PDF
    This bibliography lists 714 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1976 and September 1976. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    ATR-FTIR Spectroscopy-Linked Chemometrics:A Novel Approach to the Analysis and Control of the Invasive Species Japanese Knotweed

    Get PDF
    Japanese knotweed (Reynoutria japonica), an invasive plant species, causes negative environmental and socio-economic impacts. A female clone in the United Kingdom, its extensive rhizome system enables rapid vegetative spread. Plasticity permits this species to occupy a broad geographic range and survive harsh abiotic conditions. It is notoriously difficult to control with traditional management strategies, which include repetitive herbicide application and costly carbon-intensive rhizome excavation. This problem is complicated by crossbreeding with the closely related species, Giant knotweed (Reynoutria sachalinensis), to give the more vigorous hybrid, Bohemian knotweed (Fallopia x Bohemica) which produces viable seed. These species, hybrids, and backcrosses form a morphologically similar complex known as Japanese knotweed ‘sensu lato’ and are often misidentified. The research herein explores the opportunities offered by advances in the application of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy-linked chemometrics within plant sciences, for the identification and control of knotweed, to enhance our understanding of knotweed biology, and the potential of this technique. ATR-FTIR spectral profiles of Japanese knotweed leaf material and xylem sap samples, which include important biological absorptions due to lipids, proteins, carbohydrates, and nucleic acids, were used to: identify plants from different growing regions highlighting the plasticity of this clonal species; differentiate between related species and hybrids; and predict key physiological characteristics such as hormone concentrations and root water potential. Technical advances were made for the application of ATR-FTIR spectroscopy to plant science, including definition of the environmental factors that exert the most significant influence on spectral profiles, evaluation of sample preparation techniques, and identification of key wavenumbers for prediction of hormone concentrations and abiotic stress. The presented results cement the position of concatenated mid-infrared spectroscopy and machine learning as a powerful approach for the study of plant biology, extending its reach beyond the field of crop science to demonstrate a potential for the discrimination between and control of invasive plant species

    Literature review of the remote sensing of natural resources

    Get PDF
    Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided

    NASA Tech Briefs, February 2001

    Get PDF
    The topics include: 1) Application Briefs; 2) National Design Engineering Show Preview; 3) Marketing Inventions to Increase Income; 4) A Personal-Computer-Based Physiological Training System; 5) Reconfigurable Arrays of Transistors for Evolvable Hardware; 6) Active Tactile Display Device for Reading by a Blind Person; 7) Program Automates Management of IBM VM Computer Systems; 8) System for Monitoring the Environment of a Spacecraft Launch; 9) Measurement of Stresses and Strains in Muscles and Tendons; 10) Optical Measurement of Temperatures in Muscles and Tendons; 11) Small Low-Temperature Thermometer With Nanokelvin Resolution; 12) Heterodyne Interferometer With Phase-Modulated Carrier; 13) Rechargeable Batteries Based on Intercalation in Graphite; 14) Signal Processor for Doppler Measurements in Icing Research; 15) Model Optimizes Drying of Wet Sheets; 16) High-Performance POSS-Modified Polymeric Composites; 17) Model Simulates Semi-Solid Material Processing; 18) Modular Cryogenic Insulation; 19) Passive Venting for Alleviating Helicopter Tail-Boom Loads; 20) Computer Program Predicts Rocket Noise; 21) Process for Polishing Bare Aluminum to High Optical Quality; 22) External Adhesive Pressure-Wall Patch; 23) Java Implementation of Information-Sharing Protocol; 24) Electronic Bulletin Board Publishes Schedules in Real Time; 25) Apparatus Would Extract Water From the Martian Atmosphere; 26) Review of Research on Supercritical vs Subcritical Fluids; 27) Hybrid Regenerative Water-Recycling System; 28) Study of Fusion-Driven Plasma Thruster With Magnetic Nozzle; 29) Liquid/Vapor-Hydrazine Thruster Would Produce Small Impulses; and 30) Thruster Based on Sublimation of Solid Hydrazin

    Drones and Geographical Information Technologies in Agroecology and Organic Farming

    Get PDF
    Although organic farming and agroecology are normally not associated with the use of new technologies, it’s rapid growth, new technologies are being adopted to mitigate environmental impacts of intensive production implemented with external material and energy inputs. GPS, satellite images, GIS, drones, help conventional farming in precision supply of water, pesticides, fertilizers. Prescription maps define the right place and moment for interventions of machinery fleets. Yield goal remains the key objective, integrating a more efficient use or resources toward an economic-environmental sustainability. Technological smart farming allows extractive agriculture entering the sustainability era. Societies that practice agroecology through the development of human-environmental co-evolutionary systems represent a solid model of sustainability. These systems are characterized by high-quality agroecosystems and landscapes, social inclusion, and viable economies. This book explores the challenges posed by the new geographic information technologies in agroecology and organic farming. It discusses the differences among technology-laden conventional farming systems and the role of technologies in strengthening the potential of agroecology. The first part reviews the new tools offered by geographic information technologies to farmers and people. The second part provides case studies of most promising application of technologies in organic farming and agroecology: the diffusion of hyperspectral imagery, the role of positioning systems, the integration of drones with satellite imagery. The third part of the book, explores the role of agroecology using a multiscale approach from the farm to the landscape level. This section explores the potential of Geodesign in promoting alliances between farmers and people, and strengthening food networks, whether through proximity urban farming or asserting land rights in remote areas in the spirit of agroecological transition. The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons 4.0 license

    VIBRATIONAL SPECTROSCOPY FOR THE ASSESSMENT OF VULVAL DISEASE

    Get PDF
    Vibrational spectroscopic diagnostic techniques have significant potential to improve the care of women with benign, premalignant and malignant vulval diseases by reducing the reliance on traditional biopsy and histopathology. These techniques also have the potential to augment clinicians’ ability to differentiate different types of vulval disease at the time of surgery for neoplastic vulval disease. In addition, vibrational spectroscopic techniques offer the opportunity to assess molecular changes associated with the development of vulval cancer that are not apparent on routine histopathological assessment. The work outlined in this thesis evaluates the role of emerging techniques in vibrational spectroscopy to address this need within three key themes: 1. Developmentofavibrationalspectroscopicdiagnostictechniquetoreducethe reliance on traditional biopsy and histopathological diagnosis. 2. Developmentofavibrationalspectroscopicdiagnostictechniqueforimproving the delineation of disease margins at the time of surgery for pre-malignant and malignant vulval conditions. 3. Evaluation of a vibrational spectroscopic tool for augmenting and automating aspects of vulval histopathology. Raman spectroscopic mapping of 91 fresh frozen vulval tissue sections combined with multivariate spectral analysis was used to demonstrate that malignant vulval disease could be differentiated from non-neoplastic and premalignant vulval disease with a sensitivity of 97% and specificity of 78%. The technique was then tested in experimental conditions closer to in-vivo application, measuring spectra from 91 whole fresh frozen tissue blocks using microscope and probe Raman systems. This demonstrated the technique could differentiate malignant from non-neoplastic and premalignant vulval disease with sensitivities of 84% to 92% and specificities of 84% to 64% respectively. In a separate investigation vulval tissue blocks from 27 women with suspected lichen sclerosus underwent Raman spectroscopic point measurements. Multivariate analysis demonstrated Raman spectroscopy could be used to differentiate lichen sclerosus from other vulval disorders with a similar clinical appearance with a sensitivity of sensitivity of 91% and specificity of 80%. Fourier transform infrared (FTIR) spectroscopic mapping of 93 fixed paraffin embedded tissue sections was used to demonstrate that malignant vulval disease could be differentiated from non-neoplastic and premalignant with vulval disease with an approximate sensitivity of 100% and specificity of 79%. In addition FTIR spectroscopy was used to differentiate molecular changes in vulval intraepithelial neoplasia (VIN) and lichen sclerosus (LS) found in association with vulval squamous cell carcinoma (SCC). Analysis of FTIR spectroscopic tissue maps from 48 patients demonstrated the technique could differentiate LS associated with SCC with a sensitivity of approximately 100% and specificity of 84% and VIN associated with SCC with a sensitivity of approximately 100% and specificity 58%. This thesis demonstrates the considerable potential of vibrational spectroscopy in this clinical setting. The research has made significant progress in each of the three themes outlined above and indicates that further work is warranted to develop the techniques towards routine clinical application

    NASA Tech Briefs, April 1997

    Get PDF
    Topics covered include: Video and Imaging; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports
    • …
    corecore