152 research outputs found

    Improving Relation Extraction From Unstructured Genealogical Texts Using Fine-Tuned Transformers

    Get PDF
    Though exploring one’s family lineage through genealogical family trees can be insightful to developing one’s identity, this knowledge is typically held behind closed doors by private companies or require expensive technologies, such as DNA testing, to uncover. With the ever-booming explosion of data on the world wide web, many unstructured text documents, both old and new, are being discovered, written, and processed which contain rich genealogical information. With access to this immense amount of data, however, entails a costly process whereby people, typically volunteers, have to read large amounts of text to find relationships between people. This delays having genealogical information be open and accessible to all. This thesis explores state-of-the-art methods for relation extraction across the genealogical and biomedical domains and bridges new and old research by proposing an updated three-tier system for parsing unstructured documents. This system makes use of recently developed and massively pretrained transformers and fine-tuning techniques to take advantage of these deep neural models’ inherent understanding of English syntax and semantics for classification. With only a fraction of labeled data typically needed to train large models, fine-tuning a LUKE relation classification model with minimal added features can identify genealogical relationships with macro precision, recall, and F1 scores of 0.880, 0.867, and 0.871, respectively, in data sets with scarce (∼10%) positive relations. Further- more, with the advent of a modern coreference resolution system utilizing SpanBERT embeddings and a modern named entity parser, our end-to-end pipeline can extract and correctly classify relationships within unstructured documents with macro precision, recall, and F1 scores of 0.794, 0.616, and 0.676, respectively. This thesis also evaluates individual components of the system and discusses future improvements to be made

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail

    How essential are unstructured clinical narratives and information fusion to clinical trial recruitment?

    Full text link
    Electronic health records capture patient information using structured controlled vocabularies and unstructured narrative text. While structured data typically encodes lab values, encounters and medication lists, unstructured data captures the physician's interpretation of the patient's condition, prognosis, and response to therapeutic intervention. In this paper, we demonstrate that information extraction from unstructured clinical narratives is essential to most clinical applications. We perform an empirical study to validate the argument and show that structured data alone is insufficient in resolving eligibility criteria for recruiting patients onto clinical trials for chronic lymphocytic leukemia (CLL) and prostate cancer. Unstructured data is essential to solving 59% of the CLL trial criteria and 77% of the prostate cancer trial criteria. More specifically, for resolving eligibility criteria with temporal constraints, we show the need for temporal reasoning and information integration with medical events within and across unstructured clinical narratives and structured data.Comment: AMIA TBI 2014, 6 page

    Which Factors Contributes to Resolving Coreference Chains with Bayesian Networks?

    Get PDF
    International audienceThis paper describes coreference chain resolution with Bayesian Networks. Several factors in the resolution of coreference chains may greatly affect the final performance. If the choice of machine learning algorithm and the features the learner relies on are largely addressed by the community, others factors implicated in the resolution, such as noisy features, anaphoricity resolution or the search windows, have been less studied, and their importance remains unclear. In this article, we describe a mention-pair resolver using Bayesian Networks, targeting coreference resolution in discharge summaries. We present a study of the contributions of comprehensive factors involved in the resolution using the 2011 i2b2/VA challenge data set. The results of our study indicate that, besides the use of noisy features for the resolution, anaphoricity resolution has the biggest effect on the coreference chain resolution performance

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table
    • …
    corecore