150 research outputs found

    A Superclass of Edge-Path-Tree graphs with few cliques

    Get PDF
    Edge-Path-Tree graphs are intersection graphs of Edge-Path-Tree matrices that is matrices whose columns are incidence vectors of edge-sets of paths in a given tree. Edge-Path-Tree graphs have polynomially many cliques as proved in [4] and [7]. Therefore, the problem of finding a clique of maximum weight in these graphs is solvable in strongly polynomial time. In this paper we extend this result to a proper superclass of Edge-Path-Tree graphs. Each graph in the class is defined as the intersection graph of a matrix with no submatrix in a set W of seven small forbidden submatrices. By forbidding an eighth small matrix, our result specializes to Edge-Path-Tree graph

    Generating tree-like graphs

    Get PDF
    Implementation of an algorithm that interactively generates k-graphs, a superclass of k-branches.Master i InformatikkMAMN-INFINF

    Bounded Search Tree Algorithms for Parameterized Cograph Deletion: Efficient Branching Rules by Exploiting Structures of Special Graph Classes

    Full text link
    Many fixed-parameter tractable algorithms using a bounded search tree have been repeatedly improved, often by describing a larger number of branching rules involving an increasingly complex case analysis. We introduce a novel and general search strategy that branches on the forbidden subgraphs of a graph class relaxation. By using the class of P4P_4-sparse graphs as the relaxed graph class, we obtain efficient bounded search tree algorithms for several parameterized deletion problems. We give the first non-trivial bounded search tree algorithms for the cograph edge-deletion problem and the trivially perfect edge-deletion problems. For the cograph vertex deletion problem, a refined analysis of the runtime of our simple bounded search algorithm gives a faster exponential factor than those algorithms designed with the help of complicated case distinctions and non-trivial running time analysis [21] and computer-aided branching rules [11].Comment: 23 pages. Accepted in Discrete Mathematics, Algorithms and Applications (DMAA

    Computing Role Assignments of Proper Interval Graphs in Polynomial Time

    Get PDF
    A homomorphism from a graph G to a graph R is locally surjective if its restriction to the neighborhood of each vertex of G is surjective. Such a homomorphism is also called an R-role assignment of G. Role assignments have applications in distributed computing, social network theory, and topological graph theory. The Role Assignment problem has as input a pair of graphs (G,R) and asks whether G has an R-role assignment. This problem is NP-complete already on input pairs (G,R) where R is a path on three vertices. So far, the only known non-trivial tractable case consists of input pairs (G,R) where G is a tree. We present a polynomial time algorithm that solves Role Assignment on all input pairs (G,R) where G is a proper interval graph. Thus we identify the first graph class other than trees on which the problem is tractable. As a complementary result, we show that the problem is Graph Isomorphism-hard on chordal graphs, a superclass of proper interval graphs and trees

    Strong cliques and equistability of EPT graphs

    Get PDF
    In this paper, we characterize the equistable graphs within the class of EPT graphs, the edge-intersection graphs of paths in a tree. This result generalizes a previously known characterization of equistable line graphs. Our approach is based on the combinatorial features of triangle graphs and general partition graphs. We also show that, in EPT graphs, testing whether a given clique is strong is co-NP-complete. We obtain this hardness result by first showing hardness of the problem of determining whether a given graph has a maximal matching disjoint from a given edge cut. As a positive result, we prove that the problem of testing whether a given clique is strong is polynomial in the class of local EPT graphs, which are defined as the edge intersection graphs of paths in a star and are known to coincide with the line graphs of multigraphs.Facultad de Ciencias ExactasConsejo Nacional de Investigaciones Científicas y Técnica

    Strong cliques and equistability of EPT graphs

    Get PDF
    In this paper, we characterize the equistable graphs within the class of EPT graphs, the edge-intersection graphs of paths in a tree. This result generalizes a previously known characterization of equistable line graphs. Our approach is based on the combinatorial features of triangle graphs and general partition graphs. We also show that, in EPT graphs, testing whether a given clique is strong is co-NP-complete. We obtain this hardness result by first showing hardness of the problem of determining whether a given graph has a maximal matching disjoint from a given edge cut. As a positive result, we prove that the problem of testing whether a given clique is strong is polynomial in the class of local EPT graphs, which are defined as the edge intersection graphs of paths in a star and are known to coincide with the line graphs of multigraphs.Facultad de Ciencias ExactasConsejo Nacional de Investigaciones Científicas y Técnica
    corecore