397 research outputs found

    Delay-centric handover in SCTP

    Get PDF
    The introduction of the Stream Control Transmission Protocol (SCTP) has opened the possibility of a mobile aware transport protocol. The multihoming feature of SCTP negates the need for a solution such as Mobile IP and, as SCTP is a transport layer protocol, it adds no complexity to the network. Utilizing the handover procedure of SCTP, the large bandwidth of WLAN can be exploited whilst in the coverage of a hotspot, and still retain the 3G connection for when the user roams out of the hotspot’s range. All this functionality is provided at the transport layer and is transparent to the end user, something that is still important in non-mobile-aware legacy applications. However, there is one drawback to this scenario - the current handover scheme implemented in SCTP is failure-centric in nature. Handover is only performed in the presence of primary destination address failure. This dissertation proposes a new scheme for performing handover using SCTP. The handover scheme being proposed employs an aggressive polling of all destination addresses within an individual SCTP association in order to determine the round trip delay to each of these addresses. It then performs handover based on these measured path delays. This delay-centric approach does not incur the penalty associated with the current failover-based scheme, namely a number of timeouts before handover is performed. In some cases the proposed scheme can actually preempt the path failure, and perform handover before it occurs. The proposed scheme has been evaluated through simulation, emulation, and within the context of a wireless environment

    Background Traffic-Based Retransmission Algorithm for Multimedia Streaming Transfer over Concurrent Multipaths

    Get PDF
    The content-rich multimedia streaming will be the most attractive services in the next-generation networks. With function of distribute data across multipath end-to-end paths based on SCTP's multihoming feature, concurrent multipath transfer SCTP (CMT-SCTP) has been regarded as the most promising technology for the efficient multimedia streaming transmission. However, the current researches on CMT-SCTP mainly focus on the algorithms related to the data delivery performance while they seldom consider the background traffic factors. Actually, background traffic of realistic network environments has an important impact on the performance of CMT-SCTP. In this paper, we firstly investigate the effect of background traffic on the performance of CMT-SCTP based on a close realistic simulation topology with reasonable background traffic in NS2, and then based on the localness nature of background flow, a further improved retransmission algorithm, named RTX_CSI, is proposed to reach more benefits in terms of average throughput and achieve high users' experience of quality for multimedia streaming services

    IP-Based Mobility Management and Handover Latency Measurement in heterogeneous environments

    Get PDF
    One serious concern in the ubiquitous networks is the seamless vertical handover management between different wireless technologies. To meet this challenge, many standardization organizations proposed different protocols at different layers of the protocol stack. The Internet Engineering Task Force (IETF) has different groups working on mobility at IP level in order to enhance mobile IPv4 and mobile IPv6 with different variants: HMIPv6 (Hierarchical Mobile IPv6), FMIPv6 (Fast Mobile IPv6) and PMIPv6 (Proxy Mobile IPv6) for seamless handover. Moreover, the IEEE 802.21 standard provides another framework for seamless handover. The 3GPP standard provides the Access Network and Selection Function (ANDSF) to support seamless handover between 3GPP – non 3GPP networks like Wi-Fi, considered as untrusted, and WIMAX considered as trusted networks. In this paper, we present an in-depth analysis of seamless vertical handover protocols and a handover latency comparison of the main mobility management approaches in the literature. The comparison shows the advantages and drawbacks of every mechanism in order to facilitate the adoption of the convenient one for vertical handover within Next Generation Network (NGN) environments. Keywords: Seamless vertical handover, mobility management protocols, IEEE 802.21 MIH, handover latenc

    Analysis and Mitigation of Recent Attacks on Mobile Communication Backend

    Get PDF
    2014 aasta viimases kvartalis demonstreeriti mitmeid edukaid rünnakuid mobiilsidevõrkude vastu. Need baseerusid ühe peamise signaaliprotokolli, SS7 väärkasutamisel. Ründajatel õnnestus positsioneerida mobiilseadmete kasutajaid ja kuulata pealt nii kõnesid kui ka tekstisõnumeid. Ajal mil enamik viimase aja ründeid paljastavad nõrkusi lõppkasutajate seadmete tarkvaras, paljastavad need hiljutised rünnakud põhivõrkude endi haavatavust. Teadaolevalt on mobiilsete telekommunikatsioonivõrkude tööstuses raskusi haavatavuste õigeaegsel avastamisel ja nende mõistmisel. Käesolev töö on osa püüdlusest neid probleeme mõista. Töö annab põhjaliku ülevaate ja analüüsib teadaolevaid rünnakuid ning toob välja võimalikud lahendused. Rünnakud võivad olla väga suurte tagajärgedega, kuna vaatamata SS7 protokolli vanusele, jääb see siiski peamiseks signaaliprotokolliks mobiilsidevõrkudes veel pikaks ajaks. Uurimustöö analüüs ja tulemused aitavad mobiilsideoperaatoritel hinnata oma võrkude haavatavust ning teha paremaid investeeringuid oma taristu turvalisusele. Tulemused esitletakse mobiilsideoperaatoritele, võrguseadmete müüjatele ning 3GPP standardi organisatsioonile.In the last quarter of 2014, several successful attacks against mobile networks were demonstrated. They are based on misuse of one of the key signaling protocol, SS7, which is extensively used in the mobile communication backend for signaling tasks such as call and mobility management. The attackers were able to locate the mobile users and intercept voice calls and text messages. While most attacks in the public eye are those which exploits weaknesses in the end-device software or radio access links, these recently demonstrated vulnerabilities exploit weaknesses of the mobile core networks themselves. Understandably, there is a scramble in the mobile telecommunications industry to understand the attacks and the underlying vulnerabilities. This thesis is part of that effort. This thesis presents a broad and thorough overview and analysis of the known attacks against mobile network signaling protocols and the possible mitigation strategies. The attacks are presented in a uniform way, in relation to the mobile network protocol standards and signaling scenarios. Moreover, this thesis also presents a new attack that enables a malicious party with access to the signaling network to remove lost or stolen phones from the blacklist that is intended to prevent their use. Both the known and new attacks have been confirmed by implementing them in a controlled test environment. The attacks are serious because SS7, despite its age, remains the main signaling protocol in the mobile networks and will still long be required for interoperability and background compatibility in international roaming. Moreover, the number of entities with access to the core network, and hence the number of potential attackers, has increased significantly because of changes in regulation and opening of the networks to competition. The analysis and new results of this thesis will help mobile network providers and operators to assess the vulnerabilities in their infrastructure and to make security-aware decisions regarding their future investments and standardization. The results will be presented to the operators, network-equipment vendors, and to the 3GPP standards body

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    Concurrent Multipath Transfer: Scheduling, Modelling, and Congestion Window Management

    Get PDF
    Known as smartphones, multihomed devices like the iPhone and BlackBerry can simultaneously connect to Wi-Fi and 4G LTE networks. Unfortunately, due to the architectural constraints of standard transport layer protocols like the transmission control protocol (TCP), an Internet application (e.g., a file transfer) can use only one access network at a time. Due to recent developments, however, concurrent multipath transfer (CMT) using the stream control transmission protocol (SCTP) can enable multihomed devices to exploit additional network resources for transport layer communications. In this thesis we explore a variety of techniques aimed at CMT and multihomed devices, such as: packet scheduling, transport layer modelling, and resource management. Some of our accomplishments include, but are not limited to: enhanced performance of CMT under delay-based disparity, a tractable framework for modelling the throughput of CMT, a comparison of modelling techniques for SCTP, a new congestion window update policy for CMT, and efficient use of system resources through optimization. Since the demand for a better communications system is always on the horizon, it is our goal to further the research and inspire others to embrace CMT as a viable network architecture; in hopes that someday CMT will become a standard part of smartphone technology
    corecore