9,128 research outputs found

    Extraction of Information Related to Adverse Drug Events from Electronic Health Record Notes: Design of an End-to-End Model Based on Deep Learning

    Get PDF
    BACKGROUND: Pharmacovigilance and drug-safety surveillance are crucial for monitoring adverse drug events (ADEs), but the main ADE-reporting systems such as Food and Drug Administration Adverse Event Reporting System face challenges such as underreporting. Therefore, as complementary surveillance, data on ADEs are extracted from electronic health record (EHR) notes via natural language processing (NLP). As NLP develops, many up-to-date machine-learning techniques are introduced in this field, such as deep learning and multi-task learning (MTL). However, only a few studies have focused on employing such techniques to extract ADEs. OBJECTIVE: We aimed to design a deep learning model for extracting ADEs and related information such as medications and indications. Since extraction of ADE-related information includes two steps-named entity recognition and relation extraction-our second objective was to improve the deep learning model using multi-task learning between the two steps. METHODS: We employed the dataset from the Medication, Indication and Adverse Drug Events (MADE) 1.0 challenge to train and test our models. This dataset consists of 1089 EHR notes of cancer patients and includes 9 entity types such as Medication, Indication, and ADE and 7 types of relations between these entities. To extract information from the dataset, we proposed a deep-learning model that uses a bidirectional long short-term memory (BiLSTM) conditional random field network to recognize entities and a BiLSTM-Attention network to extract relations. To further improve the deep-learning model, we employed three typical MTL methods, namely, hard parameter sharing, parameter regularization, and task relation learning, to build three MTL models, called HardMTL, RegMTL, and LearnMTL, respectively. RESULTS: Since extraction of ADE-related information is a two-step task, the result of the second step (ie, relation extraction) was used to compare all models. We used microaveraged precision, recall, and F1 as evaluation metrics. Our deep learning model achieved state-of-the-art results (F1=65.9%), which is significantly higher than that (F1=61.7%) of the best system in the MADE1.0 challenge. HardMTL further improved the F1 by 0.8%, boosting the F1 to 66.7%, whereas RegMTL and LearnMTL failed to boost the performance. CONCLUSIONS: Deep learning models can significantly improve the performance of ADE-related information extraction. MTL may be effective for named entity recognition and relation extraction, but it depends on the methods, data, and other factors. Our results can facilitate research on ADE detection, NLP, and machine learning

    Clinical Relation Extraction Toward Drug Safety Surveillance Using Electronic Health Record Narratives: Classical Learning Versus Deep Learning

    Get PDF
    BACKGROUND: Medication and adverse drug event (ADE) information extracted from electronic health record (EHR) notes can be a rich resource for drug safety surveillance. Existing observational studies have mainly relied on structured EHR data to obtain ADE information; however, ADEs are often buried in the EHR narratives and not recorded in structured data. OBJECTIVE: To unlock ADE-related information from EHR narratives, there is a need to extract relevant entities and identify relations among them. In this study, we focus on relation identification. This study aimed to evaluate natural language processing and machine learning approaches using the expert-annotated medical entities and relations in the context of drug safety surveillance, and investigate how different learning approaches perform under different configurations. METHODS: We have manually annotated 791 EHR notes with 9 named entities (eg, medication, indication, severity, and ADEs) and 7 different types of relations (eg, medication-dosage, medication-ADE, and severity-ADE). Then, we explored 3 supervised machine learning systems for relation identification: (1) a support vector machines (SVM) system, (2) an end-to-end deep neural network system, and (3) a supervised descriptive rule induction baseline system. For the neural network system, we exploited the state-of-the-art recurrent neural network (RNN) and attention models. We report the performance by macro-averaged precision, recall, and F1-score across the relation types. RESULTS: Our results show that the SVM model achieved the best average F1-score of 89.1% on test data, outperforming the long short-term memory (LSTM) model with attention (F1-score of 65.72%) as well as the rule induction baseline system (F1-score of 7.47%) by a large margin. The bidirectional LSTM model with attention achieved the best performance among different RNN models. With the inclusion of additional features in the LSTM model, its performance can be boosted to an average F1-score of 77.35%. CONCLUSIONS: It shows that classical learning models (SVM) remains advantageous over deep learning models (RNN variants) for clinical relation identification, especially for long-distance intersentential relations. However, RNNs demonstrate a great potential of significant improvement if more training data become available. Our work is an important step toward mining EHRs to improve the efficacy of drug safety surveillance. Most importantly, the annotated data used in this study will be made publicly available, which will further promote drug safety research in the community

    Named Entity Recognition in Electronic Health Records Using Transfer Learning Bootstrapped Neural Networks

    Full text link
    Neural networks (NNs) have become the state of the art in many machine learning applications, especially in image and sound processing [1]. The same, although to a lesser extent [2,3], could be said in natural language processing (NLP) tasks, such as named entity recognition. However, the success of NNs remains dependent on the availability of large labelled datasets, which is a significant hurdle in many important applications. One such case are electronic health records (EHRs), which are arguably the largest source of medical data, most of which lies hidden in natural text [4,5]. Data access is difficult due to data privacy concerns, and therefore annotated datasets are scarce. With scarce data, NNs will likely not be able to extract this hidden information with practical accuracy. In our study, we develop an approach that solves these problems for named entity recognition, obtaining 94.6 F1 score in I2B2 2009 Medical Extraction Challenge [6], 4.3 above the architecture that won the competition. Beyond the official I2B2 challenge, we further achieve 82.4 F1 on extracting relationships between medical terms. To reach this state-of-the-art accuracy, our approach applies transfer learning to leverage on datasets annotated for other I2B2 tasks, and designs and trains embeddings that specially benefit from such transfer.Comment: 11 pages, 4 figures, 8 table

    Knowledge-based best of breed approach for automated detection of clinical events based on German free text digital hospital discharge letters

    Get PDF
    OBJECTIVES: The secondary use of medical data contained in electronic medical records, such as hospital discharge letters, is a valuable resource for the improvement of clinical care (e.g. in terms of medication safety) or for research purposes. However, the automated processing and analysis of medical free text still poses a huge challenge to available natural language processing (NLP) systems. The aim of this study was to implement a knowledge-based best of breed approach, combining a terminology server with integrated ontology, a NLP pipeline and a rules engine. METHODS: We tested the performance of this approach in a use case. The clinical event of interest was the particular drug-disease interaction "proton-pump inhibitor [PPI] use and osteoporosis". Cases were to be identified based on free text digital discharge letters as source of information. Automated detection was validated against a gold standard. RESULTS: Precision of recognition of osteoporosis was 94.19%, and recall was 97.45%. PPIs were detected with 100% precision and 97.97% recall. The F-score for the detection of the given drug-disease-interaction was 96,13%. CONCLUSION: We could show that our approach of combining a NLP pipeline, a terminology server, and a rules engine for the purpose of automated detection of clinical events such as drug-disease interactions from free text digital hospital discharge letters was effective. There is huge potential for the implementation in clinical and research contexts, as this approach enables analyses of very high numbers of medical free text documents within a short time period

    Processing of Electronic Health Records using Deep Learning: A review

    Full text link
    Availability of large amount of clinical data is opening up new research avenues in a number of fields. An exciting field in this respect is healthcare, where secondary use of healthcare data is beginning to revolutionize healthcare. Except for availability of Big Data, both medical data from healthcare institutions (such as EMR data) and data generated from health and wellbeing devices (such as personal trackers), a significant contribution to this trend is also being made by recent advances on machine learning, specifically deep learning algorithms

    GNTeam at 2018 n2c2:Feature-augmented BiLSTM-CRF for drug-related entity recognition in hospital discharge summaries

    Get PDF
    Monitoring the administration of drugs and adverse drug reactions are key parts of pharmacovigilance. In this paper, we explore the extraction of drug mentions and drug-related information (reason for taking a drug, route, frequency, dosage, strength, form, duration, and adverse events) from hospital discharge summaries through deep learning that relies on various representations for clinical named entity recognition. This work was officially part of the 2018 n2c2 shared task, and we use the data supplied as part of the task. We developed two deep learning architecture based on recurrent neural networks and pre-trained language models. We also explore the effect of augmenting word representations with semantic features for clinical named entity recognition. Our feature-augmented BiLSTM-CRF model performed with F1-score of 92.67% and ranked 4th for entity extraction sub-task among submitted systems to n2c2 challenge. The recurrent neural networks that use the pre-trained domain-specific word embeddings and a CRF layer for label optimization perform drug, adverse event and related entities extraction with micro-averaged F1-score of over 91%. The augmentation of word vectors with semantic features extracted using available clinical NLP toolkits can further improve the performance. Word embeddings that are pre-trained on a large unannotated corpus of relevant documents and further fine-tuned to the task perform rather well. However, the augmentation of word embeddings with semantic features can help improve the performance (primarily by boosting precision) of drug-related named entity recognition from electronic health records
    corecore