196 research outputs found

    On the Implicit Graph Conjecture

    Get PDF
    The implicit graph conjecture states that every sufficiently small, hereditary graph class has a labeling scheme with a polynomial-time computable label decoder. We approach this conjecture by investigating classes of label decoders defined in terms of complexity classes such as P and EXP. For instance, GP denotes the class of graph classes that have a labeling scheme with a polynomial-time computable label decoder. Until now it was not even known whether GP is a strict subset of GR. We show that this is indeed the case and reveal a strict hierarchy akin to classical complexity. We also show that classes such as GP can be characterized in terms of graph parameters. This could mean that certain algorithmic problems are feasible on every graph class in GP. Lastly, we define a more restrictive class of label decoders using first-order logic that already contains many natural graph classes such as forests and interval graphs. We give an alternative characterization of this class in terms of directed acyclic graphs. By showing that some small, hereditary graph class cannot be expressed with such label decoders a weaker form of the implicit graph conjecture could be disproven.Comment: 13 pages, MFCS 201

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    Extending and Applying a Framework for the Cryptographic Verification of Java Programs

    Get PDF
    Abstract. In our previous work, we have proposed a framework which allows tools that can check standard noninterference properties but a priori cannot deal with cryptography to establish cryptographic indistinguishability properties, such as privacy properties, for Java programs. We refer to this framework as the CVJ framework (Cryptographic Verification of Java Programs) in this paper. While so far the CVJ framework directly supports public-key encryption (without corruption and without a public-key infrastructure) only, in this work we further instantiate the framework to support, among others, public-key encryption and digital signatures, both with corruption and a public-key infrastructure, as well as (private) symmetric encryption. Since these cryptographic primitives are very common in security-critical applications, our extensions make the framework much more widely applicable. To illustrate the usefulness and applicability of the extensions proposed in this paper, we apply the framework along with the tool Joana, which allows for the fully automatic verification of noninterference properties of Java programs, to establish cryptographic privacy properties of a (non-trivial) cloud storage application, where clients can store private information on a remote server.

    Spectral tensor-train decomposition

    Get PDF
    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT decomposition and analyze its properties. We obtain results on the convergence of the decomposition, revealing links between the regularity of the function, the dimension of the input space, and the TT ranks. We also show that the regularity of the target function is preserved by the univariate functions (i.e., the "cores") comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting \textit{spectral tensor-train decomposition} combines the favorable dimension-scaling of the TT decomposition with the spectral convergence rate of polynomial approximations, yielding efficient and accurate surrogates for high-dimensional functions. To construct these decompositions, we use the sampling algorithm \texttt{TT-DMRG-cross} to obtain the TT decomposition of tensors resulting from suitable discretizations of the target function. We assess the performance of the method on a range of numerical examples: a modifed set of Genz functions with dimension up to 100100, and functions with mixed Fourier modes or with local features. We observe significant improvements in performance over an anisotropic adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online.Comment: 33 pages, 19 figure

    Secret Sharing, Slice Formulas, and Monotone Real Circuits

    Get PDF

    Applications of Derandomization Theory in Coding

    Get PDF
    Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals whether a defective item is present within a specified group of items. We use randomness condensers to explicitly construct optimal, or nearly optimal, group testing schemes for a setting where the query outcomes can be highly unreliable, as well as the threshold model where a query returns positive if the number of defectives pass a certain threshold. Finally, we design ensembles of error-correcting codes that achieve the information-theoretic capacity of a large class of communication channels, and then use the obtained ensembles for construction of explicit capacity achieving codes. [This is a shortened version of the actual abstract in the thesis.]Comment: EPFL Phd Thesi

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    A universal median quasi-Monte Carlo integration

    Full text link
    We study quasi-Monte Carlo (QMC) integration over the multi-dimensional unit cube in several weighted function spaces with different smoothness classes. We consider approximating the integral of a function by the median of several integral estimates under independent and random choices of the underlying QMC point sets (either linearly scrambled digital nets or infinite-precision polynomial lattice point sets). Even though our approach does not require any information on the smoothness and weights of a target function space as an input, we can prove a probabilistic upper bound on the worst-case error for the respective weighted function space, where the failure probability converges to 0 exponentially fast as the number of estimates increases. Our obtained rates of convergence are nearly optimal for function spaces with finite smoothness, and we can attain a dimension-independent super-polynomial convergence for a class of infinitely differentiable functions. This implies that our median-based QMC rule is universal in the sense that it does not need to be adjusted to the smoothness and the weights of the function spaces and yet exhibits the nearly optimal rate of convergence. Numerical experiments support our theoretical results.Comment: Major revision, 32 pages, 4 figure
    • …
    corecore