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Abstract. The accurate approximation of high-dimensional functions is an essential task in
uncertainty quantification and many other fields. We propose a new function approximation scheme
based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional
version of the TT decomposition and analyze its properties. We obtain results on the convergence of
the decomposition, revealing links between the regularity of the function, the dimension of the input
space, and the TT ranks. We also show that the regularity of the target function is preserved by the
univariate functions (i.e., the “cores”) comprising the functional TT decomposition. This result mo-
tivates an approximation scheme employing polynomial approximations of the cores. For functions
with appropriate regularity, the resulting spectral tensor-train decomposition combines the favorable
dimension-scaling of the TT decomposition with the spectral convergence rate of polynomial approxi-
mations, yielding efficient and accurate surrogates for high-dimensional functions. To construct these
decompositions, we use the sampling algorithm TT-DMRG-cross to obtain the TT decomposition of
tensors resulting from suitable discretizations of the target function. We assess the performance of
the method on a range of numerical examples: a modified set of Genz functions with dimension up to
100, and functions with mixed Fourier modes or with local features. We observe significant improve-
ments in performance over an anisotropic adaptive Smolyak approach. The method is also used to
approximate the solution of an elliptic PDE with random input data. The open source software and
examples presented in this work are available online (http://pypi.python.org/pypi/TensorToolbox/).

Key words. approximation theory, tensor-train decomposition, orthogonal polynomials, uncer-
tainty quantification
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1. Introduction. High-dimensional functions appear frequently in science and
engineering applications, where a quantity of interest may depend in nontrivial ways
on a large number of independent variables. In the field of uncertainty quantification
(UQ), for example, stochastic partial differential equations (PDEs) are often charac-
terized by hundreds or thousands of independent stochastic parameters. A numerical
approximation of the PDE solution must capture the coupled effects of all these pa-
rameters on the entire solution field, or on any quantity of interest that is a functional
of the solution field. Problems of this kind quickly become intractable when confronted
with näıve approximation methods, and the development of more effective methods is
a long-standing challenge. This paper develops a new approach for high-dimensional
function approximation, combining the discrete tensor-train format [49] with spectral
theory for polynomial approximation.

For simplicity, we will focus on real-valued functions representing the parameter
dependence of a single quantity of interest. For a function f ∈ L2([a, b]d), a straight-
forward approximation might involve projecting f onto the space spanned by the
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tensor product of basis functions {φij (xj)}
nj
ij=1 ⊂ L2([a, b]) for j = 1, . . . , d, obtaining

(1) f '
n1∑
i1

· · ·
nd∑
id

ci1,...,id (φi1 ⊗ · · · ⊗ φid) .

This approach quickly becomes impractical as the parameter dimension d increases,
due to the exponential growth in the number of coefficients ci1,...,id and the compu-
tational effort (i.e., the number of function evaluations) required to determine their
values. This growth is a symptom of the “curse of dimensionality.”

Attempts to mitigate the curse of dimensionality typically employ some assump-
tion about the structure of the function under consideration, effectively reducing
the number of coefficients that must be computed. A widely successful class of
methods involves interpolation or pseudospectral approximation with sparse grids
[1, 67, 45, 11, 10]: instead of taking a full tensor product approximation as in (1),
one considers a Smolyak sum [59] of smaller full tensor approximations, each perhaps
involving only a subset of the input parameters or at most low-order interactions
among all the inputs. While the basis functions φi are typically selected a priori,
the components of the Smolyak sum can be chosen adaptively [10]. In general, these
approaches work best when inputs to the target function f are weakly coupled.

Other approaches to high-dimensional approximation rely on low-rank separated
representations, e.g., of the form

(2) f '
r∑
i=1

ciγi,1 ⊗ · · · ⊗ γi,d,

where the functions γi,1, . . . , γi,d : [a, b]→ R for i = 1, . . . , r are not specified a priori
and r is ideally small (hence, the descriptor “low rank”). In some cases, the chosen
representation might separate only certain blocks of inputs to f , e.g., spatial and
stochastic variables [46, 60, 8]. In general, however, inputs to f can all be separated
as in (2). The representation in (2) is analogous to the canonical decomposition of
a tensor [37]. Many strategies for constructing low-rank separated representations of
parameterized models have been developed [15, 41, 35, 36, 47, 46, 60, 8, 43, 20, 16,
13, 68]; these include the proper generalized decomposition [46, 60, 8], least squares
approaches [14], and tensor-structured Galerkin approximations [36, 43, 16]. Almost
all of these approaches are “intrusive” in the sense that they require access to more
than black-box evaluations of the target function f . But nonintrusive approaches
have recently been developed as well [15].

An alternative to the canonical tensor decomposition is the tensor-train (TT) for-
mat for discrete tensors, introduced by [49]. As we will describe in section 2, the TT
format offers a number of advantages over the canonical decomposition, and it is there-
fore attractive to consider its application to function approximation. Recent work em-
ploying TT in the context of UQ includes [41], which uses the TT format to compress
the operator and the polynomial coefficients arising in the stochastic Galerkin dis-
cretization of an elliptic PDE. In [35] the quantics tensor-train (QTT) format is used
to accelerate the preconditioned iterative solution of multiparametric elliptic PDEs.
TT-cross interpolation [51] is used in [68] to evaluate the three-term recurrence rela-
tion used to find orthogonal polynomials and Gaussian quadrature points for arbitrary
probability measures. In [16] the TT format is compared with the canonical decom-
position and the hierarchical Tucker decomposition, for the purpose of storing the
operator derived from the Galerkin discretization of a stochastic PDE, and for com-
puting the associated inner products. While these efforts use the TT format to achieve
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SPECTRAL TENSOR-TRAIN DECOMPOSITION A2407

important efficiency gains in solving particular UQ problems, they do not address the
general nonintrusive function approximation problem considered in this paper.

In this work, we will use classical polynomial approximation theory to extend
the discrete TT decomposition into a scheme for the approximation of continuous
functions. To do this, we will first construct the functional counterpart of the TT
decomposition and examine its convergence. We will prove that the functional TT de-
composition converges for a wide class of functions in L2 that satisfy a particular
regularity condition; this result highlights connections between the regularity of the
target function, the dimension of the input space, and the TT ranks. For this class
of functions, we will also show that the weak differentiability of the target function is
preserved by the univariate functions or “cores” comprising the functional TT decom-
position, allowing us to apply polynomial approximation theory to the latter. The
resulting combined spectral TT approximation exploits the regularity of the target
function f and converges exponentially for smooth functions, but yields a representa-
tion whose complexity can scale linearly with dimension.

Other work in recent years has examined the connection between multivariate
function decompositions and their discrete counterparts, represented by factorizations
of matrices and tensors. A broad presentation of the functional analysis of Banach
and Hilbert tensor spaces is presented in [26]. Some of these results are exploited
in the construction of the functional TT decomposition. Another building block for
many aspects of our work is [61], which studies decompositions of bivariate functions
and their connections to classical matrix factorizations. Moving from the bivariate to
the general multivariate case, examples of tensor-format decompositions for particular
functions are given in [64, 50]. For functions in periodic Sobolev spaces, [55] develops
results for the approximation rates of hierarchical tensor formats. Our work will
provide related results for the tensor-train decomposition of functions on hypercubes
equipped with a finite measure.

Moreover, we will focus on the nonintrusive setting where f is a black-box function
that can only be evaluated at chosen parameter values. Hence we must resort to a
sampling method in constructing the spectral TT approximation: we will use the rank-
revealing TT-DMRG-cross technique [53] to approximate the tensors resulting from
suitable discretizations of f . We will then assess the performance of the spectral TT
approximation on a range of target functions, including the Genz test functions and
modifications thereof, functions with Fourier spectra chosen to illustrate particular
challenges, functions with local features, and functions induced by the solution of a
stochastic elliptic PDE. In all these examples, we will comment on the relationships
between the degree of the polynomial approximation, the TT ranks, the accuracy of
the overall approximation, and the scaling of computational effort with dimension.

The remainder of the paper is organized as follows. In section 2, we recall the
definitions and properties of several tensor decomposition formats, focusing on the TT
decomposition. Section 3 reviews relevant results on the approximation of functions in
Sobolev spaces. In section 4, we provide a constructive definition of the functional TT
decomposition, discuss its convergence, and present results on the regularity of the de-
composition. This leads to algorithms for constructing the spectral TT decomposition,
whose practical implementations are summarized in section 4.5.3. Section 5 presents
the numerical examples. Some technical results are deferred to the appendices.

2. Tensor decompositions. For the moment, assume that we can afford to
evaluate the function f : [a, b]d → R at all points on a tensor grid X = ×dj=1xj ,

where xj = (xij)
nj
i=1 for j = 1, . . . , d and xij ∈ [a, b] ⊂ R. We denote A(i1, . . . , id) =

f(xi1 , . . . , xid) and abbreviate the d-dimensional tensor by A = f(X ).
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A2408 D. BIGONI, A. P. ENGSIG-KARUP, AND Y. M. MARZOUK

In the special case of d = 2, A reduces to a matrix A. The singular value
decomposition (SVD) of this matrix,

(3) A = UΣVT ,

always exists and, since A is a real-valued matrix, is unique up to sign changes [62].
The SVD can be used to obtain a low-rank approximation of A by truncating away the
smallest singular values on the diagonal of Σ and the corresponding columns of U and
V. Unfortunately the SVD cannot be immediately generalized to tensors of dimension
d > 2. Several approaches to this problem have been proposed over the years [37,
5, 25]. Perhaps the most popular are the canonical decomposition (CANDECOMP)
[7, 31], the Tucker decomposition [63], and the TT decomposition [49].

2.1. Classical tensor decompositions. The canonical decomposition aims to
represent A as a sum of outer products:

(4) A ' ACD =

r∑
i=1

A
(1)
i ⊗ · · · ⊗A

(d)
i ,

where A
(k)
i is the ith column of matrix A(k) ∈ Rnk×r. The upper bound of summation

r is called the canonical rank of the tensor ACD. The canonical decomposition is
unique under mild conditions [57]. On the other hand, a best rank-r decomposition—
where one truncates the expansion similarly to the SVD—does not always exist since
the space of rank-r tensors is not closed [40, 12]. Computation of the canonical
decomposition based on the alternating least squares (ALS) method is not guaranteed
to find a global minimum of the approximation error, and has a number of other
drawbacks and corresponding workarounds [37].

The Tucker decomposition is defined as follows:

(5) A '
r1∑
i1=1

· · ·
rd∑
id=1

gi1...id

(
A

(1)
i1
⊗ · · · ⊗A

(d)
id

)
,

where the core tensor G, defined by G(i1, . . . , id) = gi1...id , weighs interactions between
different components in different dimensions. This expansion is not unique, due to the
possibility of applying a rotation to the core tensor and its inverse to the components
A(i). However, the ability to recover a unique decomposition can be improved if
some sparsity is imposed on the core tensor [44]. The Tucker decomposition does
not suffer from the same closure problem as the canonical decomposition, but the
number of parameters to be determined grows exponentially with the dimension d
due to the presence of the core tensor G. This cost limits the applicability of Tucker
decomposition to relatively low-dimensional problems.

2.2. Discrete tensor-train (DTT) decomposition. The dimension limita-
tions of the Tucker decomposition can be overcome using a hierarchical SVD, where
the tensor is not decomposed with a single core G that simultaneously relates all the
dimensions, but rather with a hierarchical tree of cores—usually binary—that relate
a few dimensions at a time. This approach is called the hierarchical Tucker or H-
Tucker decomposition [27, 24]. A particular type of H-Tucker decomposition is the
TT decomposition, which retains many of the characteristics of the H-Tucker decom-
position but with a simplified formulation. (See [24, sect. 5.3] for a comparison.) The
TT decomposition has the following attractive properties:

• existence of the full-rank approximation [49, Thm. 2.1];
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• existence of the low-rank best approximation [49, Cor. 2.4];
• an algorithm that returns a quasi-optimal TT approximation (see (9) and [49,

Cor. 2.4]);
• memory complexity that scales linearly with dimension d [49, sect. 3];
• straightforward multilinear algebra operations; and
• a sampling algorithm for constructing the TT approximation, with a compu-

tational complexity that scales linearly with the dimension d [53].

Definition 1 (discrete tensor-train approximation). Let A ∈ Rn1×···×nd have
entries A(i1, . . . , id). The TT-rank-r = (r0, . . . , rd) approximation of A is ATT ∈
Rn1×···×nd , defined as

(6)

A(i1, . . . , id) = ATT (i1, . . . , id) + ETT (i1, . . . , id)

=

r∑
α0,...,αd=1

G1(α0, i1, α1) · · ·Gd(αd−1, id, αd) + ETT (i1, . . . , id) ,

where ETT is the residual term and r0 = rd = 1.

The three-dimensional arrays Gk(αk, ik, αk+1) are referred to as TT cores. The
TT format approximates every entry of the tensor A with a product of matrices, in
particular with a sequence of rk× rk+1 matrices, each indexed by the parameter ik+1.
In other words, each core Gk is “connected” to the adjacent cores Gk−1 and Gk+1

by summing over the indices αk−1 and αk, hence the name tensor “train.” It can be
shown [49] that there exists an exact TT representation (ETT = 0) for which

(7) rk = rank (Ak) ∀k ∈ {1, . . . , d},

where Ak is the kth unfolding of A, corresponding to the MATLAB/NumPy operation

(8) Ak = reshape

(
A,

k∏
s=1

ns,

d∏
s=k+1

ns

)
.

Furthermore, if rk ≤ rank(Ak), a TT-rank-r best approximation to A in the Frobenius
norm, called Abest, always exists, and the algorithm TT-SVD [49] produces a quasi-
optimal approximation to it. In particular, if ATT is the numerical approximation of
A obtained with TT-SVD, then

(9) ‖A−ATT ‖F ≤
√
d− 1‖A−Abest‖F .

If the truncation tolerance for the SVD of each unfolding is set to δ = ε/
√
d− 1‖A‖F ,

the TT-SVD is able to construct the approximation ATT such that

(10) ‖A−ATT ‖F ≤ ε‖A‖F .

Assuming that the TT ranks are all equal, that rk = r, and that nk = n, the TT
decomposition ATT requires the storage of O

(
dnr2

)
parameters. Thus the memory

complexity of the representation (6) scales linearly with dimension. A further reduc-
tion in the required storage can be achieved using the quantics TT (QTT) format
[48, 34], which, for n = 2m, leads to O

(
dmr2

)
complexity.

The computational complexity of the TT-SVD depends on the selected accuracy,
but for rk = r and nk = n, the algorithm requires O

(
rnd
)

flops. We see that this
complexity grows exponentially with dimension, and thus the curse of dimensionality
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is not resolved, except for the memory complexity of the final compressed represen-
tation. At this stage, it is worth noting that using the TT format rather than the
more complex H-Tucker decomposition relinquishes the possibility of implementing
a parallel version of TT-SVD [24] and gaining a factor of 1/ log2(d) in computational
complexity. But this would still not resolve the exponential growth of computational
complexity with respect to dimension. Another reason that the TT-SVD may not be
immediately suitable for high-dimensional problems is that it first requires storage
of the full tensor. This means that the initial memory requirements scale exponen-
tially with the problem’s dimension. In the next section we will discuss an alternative
method for constructing a TT approximation of the tensor using a small number of
function evaluations.

An open question in TT decomposition regards the ordering of the d indices of
A; different orderings can lead to higher or lower TT ranks and change the memory
efficiency of the representation accordingly. Given a particular permutation σ, we
define the reordered tensor B(i) = A(σ(i)). One would like to find σ such that
the TT ranks of B are minimized. From (7) we see that the TT ranks depend on
the ranks of the unfoldings Bk of B, and from the definition of the unfolding (8)
one sees that two indices i and j will influence the ranks of the matrices {Bk}j−1

k=i .
The permutation σ should be chosen such that pairs of indices yielding high-rank
unfoldings are contiguous, so that the rank will be high only for a limited number
of unfoldings. If this does not happen, the nonseparability of pairs of dimensions is
carried from core to core, making the decomposition more expensive. Section 5.2 will
point to several examples where this problem arises.

2.3. Cross-interpolation of tensors. An alternative to TT-SVD is provided by
the TT-DMRG-cross algorithm. (See [53] for a detailed description.) This method
hinges on the notion of the density matrix renormalization group [66] (DMRG) and
on matrix skeleton decomposition [23]. For d = 2 and A ∈ Rm×n, the skeleton
decomposition is defined by

(11) A ' A(:,J )A(I,J )−1A(I, :) ,

where I = (i1, . . . , ir) and J = (j1, . . . , jr) are subsets of the index sets [1, . . . ,m]
and [1, . . . , n]. The selection of the indices (I,J ) need to be such that most of the
information contained in A is captured by the decomposition. It turns out that the
optimal submatrix A(I,J ) is that with maximal determinant in modulus among all
the r× r submatrices of A [22]. The problem of finding such a matrix is NP-hard [9].
An approximation to the solution of this problem can be found using the maxvol

algorithm [22], in a row-column alternating fashion as explained in [51]. Running
maxvol is computationally inexpensive and requires 2c(n− r)r operations, where c is
usually a small constant in many practical applications.

The problem of finding the TT decomposition ATT can be cast as the minimiza-
tion problem
(12) min

G1,...,Gd
‖A−ATT ‖F .

One possible approach to solving this problem is TT-cross [51]. Here the optimization
is performed through left-to-right and right-to-left sweeps of the cores, using the
matrix skeleton decomposition to find the most relevant fibers in the d-dimensional
space. A fiber is, for a d-dimensional tensor A, the equivalent of what rows and
columns are for a matrix. In MATLAB notation, the (i1, . . . , ik−1, ik+1, . . . , id) fiber
along the kth dimension is A(i1, . . . , ik−1, :, ik+1, . . . , id). This approach provides
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linear scaling in the number of entries evaluated. On the other hand, it requires the
TT ranks to be known a priori in order to select the correct number of fibers for each
dimension. Underestimating these ranks leads to a poor (and in some cases erroneous)
approximation, while overestimating them increases computational effort.

A more effective approach is the TT-DMRG-cross [53], where the optimization
is performed over two cores, Gk and Gk+1, at a time. At step k of the sweeps,
the core Wk(ik, ik+1) = Gk(ik)Gk(ik+1) solving (12) is found, and the cores Gk and
Gk+1 are recovered through the SVD of Wk. The relevant core Wk is identified
again using the maximum volume principle, by selecting the most important planes
A(i1, . . . , ik−1, :, :, ik+2, . . . , id) in the d-dimensional space. Unlike TT-cross, this
method is rank-revealing, meaning that the TT ranks do not need to be guessed
a priori; instead, the method determines them automatically.

3. Relevant results from approximation theory. The main objective of this
work is to extend the TT format to functional approximations of f . To do this we
need to consider the case where some smoothness can be assumed on f . Here we will
review some concepts from polynomial approximation theory which, in subsequent
sections, will be combined with the TT decomposition. In the following, we will make
use of the Sobolev spaces

(13) Hkµ(I) =

f ∈ L2
µ(I) :

∑
|i|≤k

‖D(i)f‖L2
µ(I) < +∞

 ,

where k ≥ 0, D(i)f is the ith weak derivative of f , I = I1 × · · · × Id is a product of
intervals of R, and µ : B(I)→ R is a σ-finite measure on the Borel σ-algebra defined
on I. This space is equipped with the norm ‖ · ‖2Hkµ(I) defined as

(14) ‖f‖2Hkµ(I) =
∑
|i|≤k

‖D(i)f‖2L2
µ(I)

and the seminorm | · |I,µ,k given by

(15) |f |2I,µ,k =
∑
|i|=k

‖D(i)f‖2L2
µ(I).

In the following we will assume µ is a product measure satisfying µ(I) =
∏d
i=1 µi(Ii),

where µi is a σ-finite measure on the Borel σ-algebra defined on Ii.

3.1. Projection. A function f ∈ L2
µ(I) can be approximated by its projection

onto a finite-dimensional subspace of L2
µ(I). The following results hold both for com-

pact and noncompact supports I.

Definition 2 (spectral expansion). Let I ⊆ Rd and f ∈ L2
µ(I). Let {Φi}∞|i|=0

be a set of multivariate polynomials forming an orthonormal basis for L2
µ(I), where

Φi(x) = φi1,1(x1) · · ·φid,d(xd), i = (i1, . . . , id), and φi,j is the degree-i member of the
family of univariate polynomials orthonormal with respect to the measure µj. For
N = (N1, . . . , Nd) ∈ Nd0, the degree-N spectral expansion of f is obtained from the

projection operator PN : L2
µ(I)→ span({Φi}Ni=0), where

(16) PNf =
∑

0≤i≤N

ciΦi, ci =

∫
I

f Φidµ(x),
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A2412 D. BIGONI, A. P. ENGSIG-KARUP, AND Y. M. MARZOUK

and i ≤ N denotes
∧

1≤j≤d (ij ≤ Nj). The operator PN is orthogonal in the inner

product on L2
µ(I).

For simplicity, in the following we define PN := PN when N1 = · · · = Nd =
N . The rate of convergence of the spectral expansion (16) is determined by the
smoothness of f .

Proposition 3 (convergence of spectral expansion [32, 6]). Let f ∈ Hkµ(I) for
k ≥ 0. Then

(17) ‖f − PNf‖L2
µ(I) ≤ C(k)N−k|f |I,µ,k.

In practice the coefficients ci in (16) are approximated using discrete inner prod-
ucts based on quadrature rules of sufficient accuracy. We will focus here on d-
dimensional quadrature rules produced by tensorizing univariate Gaussian rules—
specifically, for dimension i, an (Ni + 1)-point Gaussian quadrature rule [17]. Let

(xi, wi)
N
i=0 be the points and weights describing such a rule [21]. A d-dimensional

integral can then be approximated by

(18)

∫
I

f(x)dµ(x) ≈
N∑
i=0

f(xi)wi =: UN(f).

The discrete (and computable) version of the spectral expansion (16) is then defined
as follows.

Definition 4 (discrete projection). Let (xj, wj)
N
j=0 be a set of quadrature points

and weights. The discrete projection of f is obtained by the action of the operator
P̃N : L2

µ(I)→ span({Φi}Ni=0), defined as

(19) P̃Nf =

N∑
i=0

c̃iΦi, c̃i = UN(fΦi) =

N∑
i=0

f(xj)Φi(xj)wj.

The operator P̃N is orthogonal on L2
µ(I) only for N→∞.

This approximation to the orthogonal projection onto PN, the space of poly-
nomials of degree up to N, is sometimes called a pseudospectral approximation. For
simplicity, we have focused on the fully tensorized case and tied the number of quadra-
ture points to the polynomial degree. When the quadrature UN is a Gauss rule, then
the discrete projection is exact for f ∈ PN. For any f , using a quadrature rule that is
exact for polynomials up to degree 2N ensures that potential O(1) internal aliasing
errors in (19) are avoided [10].

3.2. Interpolation. A function f can also be approximated using interpolation
on a set of nodes and assuming a certain level of smoothness between them. Here
we will consider piecewise linear interpolation and polynomial interpolation on closed
and bounded domains I = I1×· · ·×Id. Other interpolation rules could be used inside
the same framework for specific problems.

The linear interpolation of a function f : [a, b]→ R can be written in terms of basis
functions called hat functions: given a set of distinct ordered nodes {xi}Ni=0 ∈ [a, b]
with x0 = a and xN = b, the hat functions are

(20) ei(x) =


x−xi−1

xi−xi−1
if xi−1 ≤ x ≤ xi ∧ x ≥ a,

x−xi+1

xi−xi+1
if xi ≤ x ≤ xi+1 ∧ x ≤ b,

0 otherwise.
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SPECTRAL TENSOR-TRAIN DECOMPOSITION A2413

When dealing with multiple dimensions, several options are available. A common
choice is basis functions that have their support over simplices around a node. This
allows the basis functions ei to remain linear. In this paper, we will instead use basis
functions supported on the hypercubes adjacent to a node. These basis functions ei
can no longer be linear while preserving the linear interpolation property; they need to
be bilinear in two dimensions, trilinear in three dimensions, and so on. Letting V be
the set of piecewise continuous functions on I, the multilinear interpolation operator
IN : V → C0(I) is then defined by

(21) INf(x) =

N∑
i=0

ĉiei(x), ĉi = f (xi) ,

where {xi}Ni=0 = {x1
i }
N1
i=0 × · · · × {xdi }

Nd
i=0 is a tensor grid of points. Again we will

use the notation IN := IN when N1 = · · · = Nd = N . The multilinear interpolation
(21) is a projection, but in general not an orthogonal projection, on L2

µ(I). If the grid
points are uniformly distributed, the convergence of this approximation is as follows.

Proposition 5 (convergence of linear interpolation [4]). Let f ∈ H2
µ(I). Then

(22) ‖f − INf‖L2
µ(I) ≤ CN−2|f |I,µ,2.

The second type of interpolation we will use in this paper is Lagrange polyno-
mial interpolation. It is based on the Lagrange polynomials {li}Ni=1, defined in the
univariate case as

(23) li(x) =
∏

0≤m<k
m6=i

x− xm
xi − xm

,

where the nodes {xi}ki=1 ∈ [a, b] are typically distributed nonuniformly over the in-
terval; an example is the Gauss nodes used in section 3.1. This choice is designed to
avoid the Runge phenomenon and hence assure a more accurate approximation. The
univariate polynomial interpolation operator ΠN : V → span

(
{li}Ni=0

)
is given by

(24) ΠNf(x) =

N∑
i=0

ĉili(x), ĉi = f (xi) .

The polynomial interpolation ΠN is also a projection, but in general not orthogonal on
L2
µ(I). Lagrange interpolation in the multivariate case presents many theoretical issues

when used for interpolation on arbitrary nodes. In the scope of this paper, however,
we will only consider tensor grids of nodes, for which the theory follows easily from the
univariate case. As we will see in the next section, we will never explicitly construct
these tensor grids, thanks to the TT decomposition and cross-interpolation. But the
convergence properties of Lagrange interpolation on tensor grids will nonetheless be
useful for analysis purposes. The convergence of the Lagrange interpolant is again
dictated by the smoothness of the function being approximated.

Proposition 6 (convergence of Lagrange interpolation [2, 6]). Let f ∈ Hkµ(I) for
k ≥ 1. Then

(25) ‖f −ΠNf‖L2
µ(I) ≤ C(k)N−k|f |I,µ,k.

Recall that Lagrange interpolation on N + 1 Gauss nodes is equivalent to the
degree-N pseudospectral approximation (discrete projection) computed with the same
nodes [3]; this equivalence also extends to the tensorized case.
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A2414 D. BIGONI, A. P. ENGSIG-KARUP, AND Y. M. MARZOUK

4. Spectral tensor-train decomposition. Now we blend the discrete tensor-
train decomposition of section 2.2 with the polynomial approximations described in
section 3. First, we construct a continuous version of the TT decomposition, termed
the functional tensor-train (FTT) decomposition. The construction proceeds by re-
cursively decomposing nonsymmetric square integrable kernels through auxiliary sym-
metric square integrable kernels, as in [54]. Next, we prove that this decomposition
converges under certain regularity conditions, and that the cores of the FTT de-
composition inherit the regularity of the original function, and thus are amenable to
spectral approximation when the original function is smooth. Based on this analysis,
we propose an efficient approach to high-dimensional function approximation that
employs only one-dimensional polynomial approximations of the cores of the FTT
decomposition, and we analyze the convergence of these approximations.

4.1. Functional tensor-train decomposition. Let X × Y ⊆ Rd, and let f
be a Hilbert–Schmidt kernel with respect to the finite measure µ : B(X × Y ) → R,
i.e., f ∈ L2

µ(X × Y ). We restrict our attention to product measures, so µ = µx × µy.
The operator

(26)

T : L2
µy (Y )→ L2

µx(X)

g 7→
∫
Y

f(x, y)g(y)dµy(y)

is linear, bounded, and compact [28, Cor. 4.6]. The Hilbert adjoint operator of T
is T ∗ : L2

µx(X) → L2
µy (Y ). Then TT ∗ : L2

µx(X) → L2
µx(X) is a compact Hermitian

operator. By the spectral theory of compact operators, the spectrum of TT ∗ comprises
a countable set of eigenvalues whose only point of accumulation is zero [39, Thms. 8.3-1
and 8.6-4]. Since TT ∗ is self-adjoint, its eigenfunctions {γ(x; i)}∞i=1 ⊂ L2

µx(X) form
an orthonormal basis [28, Cor. 4.7]. The operator T ∗T : L2

µy (Y ) → L2
µy (Y ) is also

self-adjoint and compact, with eigenfunctions {ϕ(i; y)}∞i=1 ⊂ L2
µy (Y ) and the same

eigenvalues as TT ∗. Then we have the following expansion of f .

Definition 7 (Schmidt decomposition). Let the integral operators TT ∗ and T ∗T
have eigenvalues {λ(i)}∞i=1 and associated eigenfunctions {γ(x; i)}∞i=1 and {ϕ(i; y)}∞i=1,
respectively. Then the Schmidt decomposition of f is

(27) f =

∞∑
i=1

√
λ(i)γ( · ; i)⊗ ϕ(i; · ) .

In the general setting considered here, the convergence of (27) is in L2
µ.

Now let I1×· · ·×Id = I ⊆ Rd, and let f be a Hilbert-Schmidt kernel with respect
to the finite measure µ : B(I)→ R, i.e., f ∈ L2

µ(I). We assume µ =
∏d
i=1 µi. Applying

the Schmidt decomposition to f with X = I1 and Y = I2 × · · · × Id, we obtain

(28) f(x) =

∞∑
α1=1

√
λ1(α1) γ1 (x1;α1)ϕ1 (α1;x2, . . . , xd) .

Now proceed by letting X = N× I2 and Y = I3 × · · · × Id, and let τ be the counting
measure on N. From the definition of counting measure, the orthonormality of ϕ(αi; · )

D
ow

nl
oa

de
d 

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPECTRAL TENSOR-TRAIN DECOMPOSITION A2415

for all αi ∈ N, and the fact that f ∈ L2
µ(I), we have

(29)∫
X×Y

∣∣∣√λ1(α1)ϕ1(α1;x2, . . . , xd)
∣∣∣2 dτ(α1)dµ2(x2) · · · dµd(xd)

=

∞∑
α1=1

λ1(α1)

∫
I2×···×Id

|ϕ1(α1;x2, . . . , xd)|2 dµ2(x2) · · · dµd(xd) =

∞∑
α1=1

λ1(α1) <∞ .

This means that
(√
λ1ϕ1

)
∈ L2

τ×µ2×···×µd(X × Y ), and thus it is a Hilbert–Schmidt
kernel. Then, using the Schmidt decomposition, we obtain

(30)
√
λ1(α1)ϕ1(α1;x2, . . . , xd) =

∞∑
α2=1

√
λ2(α2)γ2(α1;x2;α2)ϕ2(α2;x3, . . . , xd) .

This expansion can now be substituted into (28):

(31) f(x) =

∞∑
α1=1

∞∑
α2=1

√
λ2(α2)γ1 (x1;α1) γ2(α1;x2;α2)ϕ2(α2;x3, . . . , xd) .

Proceeding recursively, one obtains

(32) f(x) =

∞∑
α1,...,αd−1=1

γ1 (α0;x1;α1) γ2(α1;x2;α2) · · · γd (αd−1;xd;αd) ,

where α0 = αd = 1 and γd (αd−1;xd;αd) :=
√
λd−1(αd−1)ϕd(αd−1;xd). We will call

this format the functional tensor-train (FTT) decomposition.
If we now truncate the FTT decomposition, we obtain the functional version of

the TT approximation.

Definition 8 (FTT approximation). Let I1 × · · · × Id = I ⊆ Rd and f ∈ L2
µ(I).

For r = (1, r1, . . . , rd−1, 1), a functional TT-rank-r approximation of f is

(33) fTT (x) :=

r∑
α0,...,αd=1

γ1(α0, x1, α1) · · · γd(αd−1, xd, αd) ,

where γi(αi−1, ·, αi) ∈ L2
µi and 〈γk(·, ·,m), γk(·, ·, n)〉L2

τ×µk
= δmn. The residual of

this approximation will be denoted by RTT := f − fTT . We will call {γi}di=1 the cores
of the approximation.

4.2. Convergence of the FTT approximation. In this section we will inves-
tigate the convergence of (33), and in particular we will try to connect this convergence
with the regularity of the approximated function f .

Proposition 9. Let the FTT decomposition (32) be truncated, retaining the largest
singular values {{

√
λi(αi)}riαi=1}di=1. Then the residual of the approximation (33) ful-

fills the condition

(34) ‖RTT ‖2L2
µ

= min
g∈L2

µ

TT-ranks(g)=r

‖f − g‖2L2
µ
≤
d−1∑
i=1

∞∑
αi=ri+1

λi(αi) .
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Proof. The first equality is due to the construction of fTT by a sequence of or-
thogonal projections that minimize the error in the L2

µ norm. These projections are
onto the subspaces spanned by the eigenfunctions of the Hermitian operators induced
by the tensor f , and are thus optimal [58, 65].

The error bound is obtained by induction. Below, and for the remainder of the
proof, we omit the arguments of λ1, γ1, ϕ1, etc., in order to simplify the notation.
The first step of the decomposition (28) leads to

(35)

‖f − fTT ‖2L2
µ

=

∥∥∥∥∥f −
r1∑

α1=1

√
λ1γ1ϕ1 +

r1∑
α1=1

√
λ1γ1ϕ1 − fTT

∥∥∥∥∥
2

L2
µ

=

∞∑
α1=r1+1

λ1(α1) +

∥∥∥∥∥
r1∑

α1=1

√
λ1γ1ϕ1 − fTT

∥∥∥∥∥
2

L2
µ︸ ︷︷ ︸

g1(r1)

,

where the second equality above is due to the orthogonality

(36)

〈
f −

r1∑
α1=1

√
λ1γ1ϕ1, fTT −

r1∑
α1=1

√
λ1γ1ϕ1

〉
L2
µ

= 0 ,

which follows from the orthogonality of {γ1(α1; · )} and of {ϕ1(α1; · )}. Next, let(√
λ1ϕ1

)
(α1;x2, . . . , xd) :=

√
λ1(α1)ϕ1(α1;x2, . . . , xd) and apply the second step of

the decomposition to the last term of (35):
(37)

g1(r1) =

∥∥∥∥∥
r1∑

α1=1

γ1(
√
λ1ϕ1)−

r1∑
α1=1

r2∑
α2=1

γ1

√
λ2γ2ϕ2 +

r1∑
α1=1

r2∑
α2=1

γ1

√
λ2γ2ϕ2 − fTT

∥∥∥∥∥
2

L2
µ

=

∥∥∥∥∥
r1∑

α1=1

γ1

∞∑
α2=r2+1

√
λ2γ2ϕ2

∥∥∥∥∥
2

L2
µ

+

∥∥∥∥∥
r1∑

α1=1

r2∑
α2=1

γ1γ2(
√
λ2ϕ2)− fTT

∥∥∥∥∥
2

L2
µ

.

The first term can be simplified as
(38)∥∥∥∥∥

r1∑
α1=1

γ1

∞∑
α2=r2+1

√
λ2γ2ϕ2

∥∥∥∥∥
2

L2
µ

=

r1∑
α1=1

∞∑
α2=r2+1

λ2 ‖γ2(α1; ·;α2)‖2L2
µ2

=

∞∑
α2=r2+1

λ2

( ∞∑
α1=1

‖γ2‖2L2
µ2

−
∞∑

α1=r1+1

‖γ2‖2L2
µ2

)

≤
∞∑

α2=r2+1

λ2 ,

where the orthonormality property
∑∞
α1=1 ‖γ2(α1; ·;α2)‖2L2

µ2

= ‖γ2(·; ·;α2)‖2L2
τ×µ2

= 1

is used. Then

(39) g1(r1) ≤
∞∑

α2=r2+1

λ2 +

∥∥∥∥∥
r1∑

α1=1

r2∑
α2=1

γ1γ2(
√
λ2ϕ2)− fTT

∥∥∥∥∥
2

L2
µ

.

Plugging (39) into (35) and proceeding by induction, the bound (34) is obtained.
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SPECTRAL TENSOR-TRAIN DECOMPOSITION A2417

The result given in Proposition 9 does not directly involve any properties of the
function f . Now we will try to link the error of the FTT approximation with the
regularity of f . To do so, we will use the following auxiliary results: Proposition 10,
which is a particular case of [56, Prop. 2.21], and Lemmas 11 and 12, whose proofs
are given in Appendix B.

Proposition 10. Let I ⊂ Rd be a bounded domain, and let V ∈ L2
µ⊗µ(I × I) be

the symmetric kernel of the compact nonnegative integral operator V : L2
µ(I)→ L2

µ(I).

If V ∈ Hkµ(I× I) with k > 0 and {λm}m≥1 denotes the eigenvalue sequence of V, then

(40) λm ≤ |V |I×I,µ,km−k/d ∀m ≥ 1 .

Lemma 11. Let f ∈ Hkµ(I), Ī = I2×· · ·×Id, and J(x, x̄) = 〈f(x, y), f(x̄, y)〉L2
µ(Ī).

Then J ∈ Hkµ(I1 × I1) and

(41) |J |I1×I1,µ,k ≤ ‖f‖2Hkµ(I) .

Lemma 12. Let the function
(√
λiϕi

)
(αi; · ) ∈ Hkµ(Ĩ) be Hölder continuous with

exponent α > 1/2, where Ĩ = Ii+1×· · ·×Id is closed and bounded and Ī = Ii+2×· · ·×Id.
Let
(42)(√

λiϕi

)
TT

(αi; · ) =

ri+1∑
αi+1=1

√
λi+1(αi+1)γi+1(αi;xi+1;αi+1)ϕi+1(αi+1;xi+2, . . . , xd)

be the truncated Schmidt decomposition of
(√
λiϕi

)
(αi; · ). Then

(43)

ri∑
αi=1

∥∥∥(√λiϕi) (αi)
∥∥∥2

Hkµ(Ĩ)
≤ ‖f‖2Hkµ(I) .

For the sake of simplicity, in the following analysis we will let the ranks be r =
(r, . . . , r). Our main result, relating the regularity of f , the ranks r, and the input
dimension d to the error of the FTT approximation, is as follows.

Theorem 13 (convergence of the FTT approximation). Let f ∈ Hkµ(I) be a
Hölder continuous function with exponent α > 1/2 defined on the closed and bounded
domain I. Then

(44) ‖RTT ‖2L2
µ
≤ ‖f‖2Hkµ(I)(d− 1)ζ(k, r + 1) for r ≥ 1 ,

where ζ is the Hurwitz zeta function. Furthermore

(45) lim
r→∞

‖RTT ‖2L2
µ

= 0 for k > 1 .

Proof. We start by considering the case I = I1 × I2 × I3. Define the following
approximations of f using the Schmidt decomposition (27):

fTT,1 =

r1∑
α1=1

√
λ1(α1)γ1(x1;α1)ϕ1(α1;x2, x3) ,(46)

fTT =

r1∑
α1=1

γ1(x1;α1)
(√

λ1ϕ1

)
TT

(α1;x2, x3) ,(47)
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where

(48)
(√

λ1ϕ1

)
TT

(α1;x2, x3) =

r2∑
α2=1

√
λ(α2)γ2(α1;x2;α2)ϕ2(α2;x3) .

As in (36), 〈f − fTT,1, fTT,1 − fTT 〉L2
µ(I) = 0 and hence

(49) ‖RTT ‖2L2
µ(I) = ‖f − fTT ‖2L2

µ(I) = ‖f − fTT,1‖2L2
µ(I) + ‖fTT,1 − fTT ‖2L2

µ(I) .

Exploiting the orthogonality of the singular functions, Proposition 10, and Lemma 11,
we have

(50) ‖f − fTT,1‖2L2
µ(I) =

∞∑
α1=r1+1

λ(α1) ≤
∞∑

α1=r1+1

α−k1 |J0|k ≤ ‖f‖2Hkµ(I)ζ(k, r1 + 1) ,

where J0(x1, x̄1) = 〈f(x1, x2, x3), f(x̄1, x2, x3)〉L2
µ(I2×I3). Similarly,

(51)∥∥∥(√λ1ϕ1

)
(α1)−

(√
λ1ϕ1

)
TT

(α1)
∥∥∥2

L2
µ(I2×I3)

≤
∞∑

α2=r2+1

α−k2 |J1(α1)|k

≤
∥∥∥(√λ1ϕ1

)
(α1)

∥∥∥2

Hkµ(I2×I3)
ζ(k, r2+1) ,

where J1(α1;x2, x̄2) =
〈(√

λ1ϕ1

)
(α1;x2, x3),

(√
λ1ϕ1

)
(α1; x̄2, x3)

〉
L2
µ(I3)

. With the

help of Lemma 12, this leads to

(52)

‖fTT,1 − fTT ‖2L2
µ(I)

=

∥∥∥∥∥
r1∑

α1=1

γ1( · ;α1)
((√

λ1ϕ1

)
(α1; · )−

(√
λ1ϕ1

)
TT

(α1; · )
)∥∥∥∥∥

2

L2
µ(I)

=

r1∑
α1=1

‖γ1( · ;α1)‖2L2
µ(I1)

∥∥∥(√λ1ϕ1

)
(α1; · )−

(√
λ1ϕ1

)
TT

(α1; · )
∥∥∥2

L2
µ(I2×I3)

≤
r1∑

α1=1

∥∥∥(√λ1ϕ1

)
(α1; · )

∥∥∥2

Hkµ(I2×I3)
ζ(k, r2 + 1) ≤ ‖f‖2Hkµ(I)ζ(k, r2 + 1) .

Thus we obtain the bound

(53) ‖RTT ‖2L2
µ(I) ≤ ‖f‖

2
Hkµ(I) [ζ(k, r1 + 1) + ζ(k, r2 + 1)] .

Now let I = I1 × · · · × Id and r = (r, . . . , r) for r ≥ 1. Then

(54) ‖RTT ‖2L2
µ(I) ≤ ‖f‖

2
Hkµ(I)

d−1∑
i=1

ζ(k, ri + 1) = ‖f‖2Hkµ(I)(d− 1)ζ(k, r + 1) .

Let us now study the asymptotic behavior of ‖RTT ‖2L2
µ

as r →∞. For k > 1, we

can use the bound

(55) ζ(k, r + 1) =

∞∑
i=r+1

i−k ≤
∫ ∞
r+1

i−kdi =
(r + 1)−(k−1)

(k − 1)
.
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SPECTRAL TENSOR-TRAIN DECOMPOSITION A2419

Plugging this into (54), we obtain

(56) ‖RTT ‖2L2
µ(I) ≤ ‖f‖

2
Hkµ(I)(d− 1)

(r + 1)−(k−1)

(k − 1)
.

This leads to the asymptotic estimate (45), completing the proof.

4.3. Regularity of the FTT decomposition. To construct polynomial ap-
proximations of the functional TT decomposition, we would like this decomposition
to retain the same regularity as the original function. In particular, within the scope
of the polynomial approximation theory presented in section 3, we need boundedness
of the weak derivatives used to define the Sobolev spaces (13). From this perspective,
we will require absolute convergence almost everywhere of the FTT decomposition.
Smithies [58, Thm. 14] proved that a kind of integrated Hölder continuity with expo-
nent α > 1/2 is a sufficient condition for the absolute convergence almost everywhere
(a.e.) of the Schmidt decomposition. The condition required by Smithies is a general-
ization of Hölder continuity a.e. [61], as we show in Appendix A. The Smithies result
can be extended by construction to the FTT decomposition.

Corollary 14 (absolute convergence a.e.). Let I1 × · · · × Id = I ⊂ Rd be closed
and bounded, and let f ∈ L2

µ(I) be a Hölder continuous function with exponent α >
1/2. Then the FTT decomposition (32) converges absolutely a.e.

Now we can prove that if f belongs to a certain Sobolev space, then the cores of
the FTT decomposition will also belong to the same Sobolev space.

Theorem 15 (Sobolev regularity of FTT cores). Let I1 × · · · × Id = I ⊂ Rd be
closed and bounded, and let f ∈ L2

µ(I) be a Hölder continuous function with expo-

nent α > 1/2 such that f ∈ Hkµ(I). Then the FTT decomposition (32) is such that

γj(αj−1, ·, αj) ∈ Hkµj (Ij) for all j, αj−1, and αj.

Proof. We will first show this property for the Schmidt decomposition (27) of the
Hölder (α > 1/2) continuous function f ∈ Hkµ(X × Y ). First we want to show that

(57) Dif =

∞∑
j=1

√
λj(D

i1ψj ⊗Di2φj) ,

where i = (i1, i2). Since f is Hölder (α > 1/2) continuous, (27) converges absolutely
a.e. by Smithies [58]; then we can define

(58) ∞ > g :=

∞∑
j=1

∣∣∣√λj(ψj ⊗ φj)∣∣∣ ≥
∣∣∣∣∣∣
∞∑
j=1

√
λj(ψj ⊗ φj)

∣∣∣∣∣∣ ,
where the domination holds a.e. Letting C∞c (X × Y ) be the set of infinitely differen-
tiable functions with compact support, by the definition of the weak derivative, for
all v ∈ C∞c (X × Y ),

(59) (−1)|i|
∫
X×Y

Difvdµ =

∫
X×Y

fv(i)dµ .

Therefore this property also holds for any v = vx ⊗ vy ∈ C∞c (X)⊗ C∞c (X). Using the
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dominated convergence theorem, we obtain

(−1)|i|
∫
X×Y

Difvdµ =

∫
X×Y

fv(i)dµ =

∫
X×Y

 ∞∑
j=1

√
λj(ψj ⊗ φj)

 v(i)dµ

=

∞∑
j=1

√
λj

∫
X×Y

(ψj ⊗ φj)v(i)dµ =

∞∑
j=1

√
λj

∫
X×Y

(
ψjv

(i1)
x

)
⊗
(
φjv

(i2)
y

)
dµ

=

∞∑
j=1

√
λj

(
(−1)i1

∫
X

Di1ψjvxdµx

)(
(−1)i2

∫
Y

Di2φjvydµy

)
.

Thus (57) holds. Next we want to show that f ∈ Hkµ(X×Y ) implies ‖Di1ψj‖L2
µ(X) <

∞ and ‖Di2φj‖L2
µ(Y ) <∞ for i1, i2 ≤ k. Thanks to (57) and due to the orthonormal-

ity of {φj}∞j=1, we have that

(60) Di1ψj =
1√
λj

〈
D(i1,0)f, φj

〉
L2
µ(Y )

.

Using the Cauchy–Schwarz inequality, we obtain

(61)

∥∥Di1ψj
∥∥2

L2
µ(X)

=

∥∥∥∥∥ 1√
λj

〈
D(i1,0)f, φj

〉
L2
µ(Y )

∥∥∥∥∥
2

L2
µ(X)

≤
∣∣∣∣ 1

λj

∣∣∣∣ ‖φj‖2L2
µ(Y )

∥∥∥D(i1,0)f
∥∥∥2

L2
µ(X×Y )

<∞ ,

where the last bound is due to the fact that {φj}∞j=1 ⊂ L2
µ(Y ) (see (26) and (28))

and D(i1,0)f ∈ L2
µ(X × Y ) because i1 ≤ k and f ∈ Hkµ(X × Y ). In the same way,∥∥Di2φj

∥∥
L2
µ(Y )

< ∞ for all i2 ≤ k. It follows that {ψj}∞j=1 ⊂ Hkµ(X) and {φj}∞j=1 ⊂
Hkµ(Y ).

The extension to the FTT decomposition (32) follows by induction. Letting
X = I1 and Y = I2×· · ·×Id, we have {γ(·;α1)}∞α1=1 ⊂ Hkµ(I1) and {ϕ1(α1; ·)}∞α1=1 ⊂
Hkµ(I2×· · ·×Id). We can then apply the same argument to the Schmidt decomposition
of {ϕ1(α1; ·)}∞α1=1 and to every other set {ϕi(αi−1; ·;αi)}∞αi=1 obtained during the
recursive construction of the FTT decomposition.

Remark 16. The results above have the limitation of holding only for functions
defined on closed and bounded domains. In many practical cases, however, functions
are defined on the real line, equipped with a finite measure. To the best of the
authors’ knowledge, the corresponding result for such cases has not been established
in the literature. The result by Smithies [58, Thm. 14] hinges on a result by Hardy
and Littlewood [30, Thm. 10] on the convergence of Fourier series; the latter is the
only step in [58, Thm. 14] where the closedness and boundedness of the domain is
explicitly used. A similar result for an orthogonal system in L2

µ(−∞,∞), where µ is
a finite measure, would be sufficient to extend Smithies’ result to the real line. For
one of the numerical examples presented later (section 5.4), we will assume that this
result holds.

Other regularity properties can be proven, given different kinds of continuity of
the function f . These properties are not strictly necessary in the scope of polynomial
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SPECTRAL TENSOR-TRAIN DECOMPOSITION A2421

approximation theory, so we will state them without proof. The first regards the
continuity of the cores of the FTT decomposition and follows directly from Mercer’s
theorem [33].

Proposition 17 (continuity of FTT cores). Let I1 × · · · × Id = I ⊂ Rd, and let
f ∈ L2

µ(I) be a continuous function with FTT decomposition (32). Then the cores
γi(αi−1, ·, αi) are continuous for every i and αi.

The second property regards the strong derivatives of the cores of the FTT de-
composition. It requires the Lipschitz continuity of the function and then follows from
a result on the uniform convergence of the Schmidt decomposition by Hammerstein
[29, 61].

Theorem 18 (differentiability of FTT cores). Let I1×· · ·×Id = I ⊂ Rd be closed

and bounded, and let f ∈ L2
µ(I) be a Lipschitz continuous function such that ∂βf

∂x
β1
1 ···∂x

βd
d

exists and is continuous on I for β =
∑d
i=1 βi. Then the FTT decomposition (32) is

such that γk(αk−1, ·, αk) ∈ Cβk(Ik) for all k, αk−1, and αk.

4.4. Connecting the DTT and FTT decompositions. The practical con-
struction of the FTT decomposition must rely on evaluations of the function f at
selected points in its domain. It is natural to describe these pointwise evaluations
through a discrete TT decomposition. The construction of the discrete TT decom-
position, whether through TT-SVD, TT-cross, or TT-DMRG-cross, is based on the
nonlinear minimization problem (12), leading to the approximation error (10) defined
in terms of the Frobenius norm. The FTT decomposition requires instead solving the
analogous minimization problem (34) defined in terms of the functional L2

µ norm. We
must then find a connection between these two minimization problems.

Using the fact that µ is a product measure, one can construct the tensor-product
quadrature rule Q defined by the points and weights (X ,W), where X = ×dj=1xj ,
W = w1 ⊗ · · · ⊗ wds , and (xj ,wj) defines a Gauss-type quadrature rule in the jth
dimension with respect to the measure µj ; see section 3. Now let h(X i) = f(X i)

√
W i,

where i = (i1, . . . , id). Then, for B = h(X ),

(62) ‖f‖L2
µ

=

n1∑
i1=1

· · ·
nd∑
id=1

f2(X i)W i +O(N−k) = ‖B‖2F +O(N−k) ,

where the approximation is exact for polynomial functions up to order 2nj − 1. One
can then seek the DTT decomposition BTT satisfying

‖B −BTT ‖F ≤ ε‖B‖F

using one of the methods outlined in section 2. This approach allows us to approximate
the solution of the minimization problem (34), achieving a relative error

(63) ‖f − fTT ‖L2
µ
. ε‖f‖L2

µ
.

The error in the approximation bound (63) is due to a truncation error introduced by
replacing the L2

µ norm with a finite-order quadrature rule, as well as aliasing due to the

approximation of f(X i)
√
W i by BTT (i). Both of these errors disappear as n1, . . . , nd

are increased. An appropriately error-weighted DTT decomposition of A = f(X ) can
then be recovered as Aw

TT = BTT /
√
W , where we assume strictly positive quadrature

weights. The numerical tests presented in section 5 confirm the idea that the relative
L2
µ error shown in (63) can be achieved for sufficiently large ni.
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Note that the approach just described is not limited to Gaussian quadrature rules.
For instance, with a uniform measure µ one could use a Newton–Cotes rule—e.g., a
trapezoidal rule with equally spaced points and uniform weights—to approximate the
L2
µ norm. In this case, B = h(X ) ∝ f(X ) = A, and the DTT approximation can be

applied directly to A.

4.5. Polynomial approximation of the FTT decomposition. All of the
theory needed to combine the FTT decomposition with the polynomial approxima-
tions described in section 3 is now in place. We will consider the projection and
interpolation approaches separately.

4.5.1. Functional tensor-train projection. Let f ∈ Hkµ(I), and let fTT be
the rank-r FTT approximation of f . Applying the projector (16) to fTT yields

PNfTT =
∑N

i=0 c̃iΦi, where

(64) c̃i =

∫
I

fTT (x)Φi(x) dµ(x) =

r∑
α0,...,αd=1

β1(α0, i1, α1) · · ·βd(αd−1, id, αd)

and

(65) βn(αn−1, in, αn) =

∫
In

γn(αn−1, xn, αn)φin(xn) dµn(xn).

The spectral expansion of fTT can thus be obtained by projecting its cores γn(αn−1,
xn, αn) onto univariate basis functions. Furthermore, we immediately have, via (64),
a TT representation of the expansion coefficients C := [ci]

N
i=0.

By Theorems 13 and 15, the convergence of the spectral expansion depends on
the regularity of f . Let f ∈ Hkµ(I) for k > d− 1. Then

(66)

‖f − PNfTT ‖L2
µ(I) ≤ ‖f − fTT ‖L2

µ(I) + ‖fTT − PNfTT ‖L2
µ(I)

≤ ‖f‖Hkµ(I)

√
(d− 1)

(r + 1)−(k−1)

k − 1
+ C(k)N−k|fTT |I,µ,k .

This result shows that convergence is driven by the selection of the rank r and the
polynomial degree N , and that it improves for functions with increasing regularity.
Thus we can efficiently compute the expansion coefficients C by (67) and obtain an
approximation PNfTT that converges spectrally.

In practice, the projector PN is replaced by the discrete projector P̃N (19), such
that the coefficients {βn} representing projections of the cores are approximated as

(67) βn(αn−1, in, αn) ≈ β̂n(αn−1, in, αn) =

Nn∑
j=0

γn(αn−1, x
(j)
n , αn)φin(x(j)

n )w(j)
n ,

where {(x(j)
n , w

(j)
n )}Nnj=0 are appropriate quadrature nodes and weights (e.g., Gauss

rules, as described in section 3) for dimension n. This numerical approximation
requires evaluating the cores of the FTT decomposition at the quadrature points. But

these values γn(αn−1, x
(j)
n , αn) in fact are approximated by the cores of the discrete

TT approximation of f(X )—that is, Aw
TT , as described in section 4.4. The end

result of this procedure can be viewed as the TT representation CTT of the spectral
coefficient tensor C. The computational procedure is summarized in Procedure 1.

Once Procedure 1 (FTT-projection-construction) has been run, the spectral
TT approximation can be evaluated at an arbitrary point y = {y1, . . . , yd} ∈ I by the
procedure described in Procedure 2.
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SPECTRAL TENSOR-TRAIN DECOMPOSITION A2423

Procedure 1 FTT-projection-construction

Input: Function f : I → R; measure µ =
∏d
n=1 µn; integers N = {Nn}dn=1 de-

noting the polynomial degrees of approximation; univariate basis functions{
{φin,n}

Nn
in=0

}d
n=1

orthogonal with respect to µn; DMRG-cross approximation
tolerance ε.

Output: CTT (i1, . . . , id) =
∑r
α0,...,αd=1 β̂1(α0, i1, α1) · · · β̂d(αd−1, id, αd), the TT de-

composition of the tensor of expansion coefficients.
1: Determine the univariate quadrature nodes and weights in each dimension,

{(xn,wn)}dn=1, where xn = {x(i)
n }Nni=0 and wn = {w(i)

n }Nni=0

2: Construct the ε–accurate approximation BTT of h (X i) = f (X i)
√
W i using

TT-DMRG-cross

3: Recover the approximation of f(X ) as Aw
TT = BTT /

√
W , with cores {Gn}dn=1

and associated TT ranks r
4: for n := 1 to d do
5: for in := 0 to Nn do
6: for all (αn−1, αn) ∈ [0, rn−1]× [0, rn] do

7: β̂n(αn−1, in, αn) =
∑Nn
j=0Gn(αn−1, j, αn)φin,n(x

(j)
n )w

(j)
n

8: end for
9: end for

10: end for

11: return
{
β̂n

}d
n=1

Procedure 2 FTT-projection-evaluation

Input: Cores
{
β̂n(αn−1, in, αn)

}d
n=1

obtained through FTT-projection-construc-

tion; Ny evaluation points y(i) := {y(i)
1 , . . . , y

(i)
d } ∈ I, i ∈ [1, Ny], collected in

the Ny × d matrix Y := {y1, . . . ,yd}.
Output: Polynomial approximation P̃NfTT (Y) of f(Y).

1: for n := 1 to d do
2: for i := 1 to Ny do
3: for all (αn−1, αn) ∈ [0, rn−1]× [0, rn] do

4: Ĝn(αn−1, i, αn) =
∑Nn
j=0 β̂n(αn−1, j, αn)φj,n(y

(i)
n )

5: end for
6: end for
7: end for
8: BTT (i1, . . . , id) =

∑r
α0,...,αd=1 Ĝ1(α0, i1, α1) · · · Ĝd(αd−1, id, αd)

9: return P̃NfTT (Y) := {BTT (i, . . . , i)}N
y

i=1

4.5.2. Functional tensor-train interpolation. Function interpolation can
easily be extended to tensors, and the TT format can be exploited to save computa-
tion and storage costs. We will first consider linear interpolation, using the notation
of section 3.2. Let X = ×dj=1xj be an Nx

1 ×· · ·×Nx
d tensor of candidate interpolation

nodes where the function f can be evaluated, and let the matrix Y = {y1, . . . ,yd} of
size Ny × d represent a set of Ny points where one wishes to evaluate the approxi-
mation of f . Define Y = ×dj=1yj . An approximation of f(Y) can be computed using
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the interpolation operator (21) from the grid X to the grid Y ,

(68) f(Y) ' (INf) (Y) = Ef(X ), E = E(1) ⊗ · · · ⊗ E(d),

where E(k) is an Ny × Nx
k matrix defined by E(k)(i, j) = e

(k)
j (y

(i)
k ) as in (20), and

then extracting only the diagonal of the tensor f(Y): f(Y) ' {(INf) (Y)i,...,i}N
y

i=1.
This leads to multilinear interpolation on hypercubic elements. If we use the FTT
approximation fTT instead of f in (68), we obtain

(INfTT ) (Y) = EfTT (X ) = E

[
r∑

α=0,...,αd=1

γ1(α0,x1, α1) · · · γd(αd−1,xd, αd)

]
(69)

=

r∑
α=0,...,αd=1

β1(α0,y1, α1) · · ·βd(αd−1,yd, αd),

with

βn(αn−1,yn, αn) = E(n)γn(αn−1,xn, αn) .

Thus, instead of working with the tensor E, we can work with the more manageable
matrices {E(n)}dn=1. This approach is described in Procedure 3. The “construction”
phase of this approximation corresponds simply to applying the TT-DMRG-cross algo-
rithm to f(X ) to obtain Aw

TT , as described in section 4.4. The listing of FTT-inter-
polation-construction is thus omitted. The basis functions (20) yield quadratic
convergence of the interpolant to the target function. Thus, for k > d − 1 and
f ∈ Hkµ(I),

(70) ‖f − INfTT ‖L2
µ(I) ≤ ‖f‖Hkµ(I)

√
(d− 1)

(r + 1)−(k−1)

k − 1
+ CN−2|fTT |I,µ,2 .

Procedure 3 FTT-interpolation-evaluation

Input: Tensor of interpolation points X = ×dn=1xn, where xn = {x(i)
n }N

x
n

i=1 ⊆ In;
ε-accurate approximation Aw

TT (in general) or ATT (uniform µ, linear in-
terpolation, equispaced points) of f(X ) obtained by TT-DMRG-cross, with

cores {Gn}dn=1 and TT ranks r; evaluation points y(i) := {y(i)
1 , . . . , y

(i)
d } ∈ I,

i ∈ [1, Ny], collected in the Ny × d matrix Y := {y1, . . . ,yd}.
Output: Interpolated approximation INfTT (Y) or ΠNfTT (Y) of f(Y).

1: Construct list
{
L(i)

}d
i=1

of Ny ×Nx
i (linear or Lagrange) interpolation matrices

from xi to yi
2: for n := 1 to d do
3: for all (αn−1, αn) ∈ [0, rn−1]× [0, rn] do
4: Ĝn(αn−1, :, αn) = L(n)Gn(αn−1, :, αn)
5: end for
6: end for
7: BTT (i1, . . . , id) =

∑r
α0,...,αd=1 Ĝ1(α0, i1, α1) · · · Ĝd(αd−1, id, αd)

8: return INfTT (Y) := {BTT (i, . . . , i)}N
y

i=1
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SPECTRAL TENSOR-TRAIN DECOMPOSITION A2425

Because these basis functions have local support (as opposed to the global support
of the polynomials used for FTT-projection), errors due to singularities in f do not
pollute the entire domain.

The same approach can be used for higher-order polynomial interpolation with
Lagrange basis functions. The interpolated values can be obtained by extracting the

diagonal f(Y) ' {(ΠNfTT ) (Y)i,...,i}N
y

i=1 of

(71) f(Y) ' (ΠNf) (Y) = Lf(X ), L = L(1) ⊗ · · · ⊗ L(d),

where L(k) is the Ny × Nx
k Lagrange interpolation matrix [38]. This interpolation

is not carried out directly in high dimensions; as in the linear interpolation case, we
only need to perform one-dimensional interpolations of the cores, i.e.,

(72)
(ΠNfTT ) (Y) = LfTT (X ) =

r∑
α0,...,αd=1

β1(α0,y1, α1) · · ·βd(αd−1,yd, αd) ,

with βn(αn−1,yn, αn) = L(n)γn(αn−1,xn, αn) .

Again, the evaluation procedure is detailed in Procedure 3. Convergence of the FTT
interpolant is again dictated by the regularity of the function f . For k > d − 1 and
f ∈ Hkµ(I), we have

(73) ‖f −ΠNfTT ‖L2
µ(I) ≤ ‖f‖Hkµ(I)

√
(d− 1)

(r + 1)−(k−1)

k − 1
+ C(k)N−k|fTT |I,µ,k .

4.5.3. Summary of algorithms. The preceding algorithms produce approxi-
mations of f that involve both a (truncated) FTT approximation and polynomial (or
piecewise linear) approximations of the FTT cores. We term these spectral tensor-
train (STT) approximations and summarize the algorithms as follows.

Suppose we have a function f : I → R, where I = ×di=1Ii and Ii ⊆ R for i =
1, . . . , d. We would like to construct an STT approximation of f and to evaluate this
approximation on an independent set of points Y. The construction and evaluation
of the approximation involve the following steps:

1. Select a suitable set of candidate nodes X = ×dn=1xn according to the type of
approximation to be constructed; typically these are tensor-product quadra-
ture or interpolation nodes.

2. In the projection approach, construct the approximation using Procedure 1.
In the interpolation approach, directly construct the approximation Aw

TT

by applying TT-DMRG-cross to h(X ), as described in section 4.4. In both
approaches, we apply TT-DMRG-cross to the quantics folding of the relevant
tensors. This provides important performance improvements, particularly
in low dimensions where TT-DMRG-cross would otherwise require taking the
SVD of f evaluated on hyperplanes.

3. Evaluate the STT approximation on Y using Procedure 2 for the projection
approach or using Procedure 3 for linear or Lagrange interpolation.

Below, we will refer to the FTT-projection and the FTT-interpolation algorithms
as the combination of the two corresponding steps of construction and evaluation. Our
implementation of these algorithms uses data structures to cache computed values and
to store partially computed decompositions. It also supports parallel evaluation of f
during the execution of TT-DMRG-cross, using the MPI protocol.
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Table 1
Normalization parameters for the Genz functions.

f1 f2 f3 f4 f5 f6
bj 284.6 725.0 185.0 70.3 2040.0 430.0
hj 1.5 2.0 2.0 1.0 2.0 2.0

5. Numerical examples. We now apply the spectral TT approximation to
several high-dimensional functions. The construction of the approximation Aw

TT '
A = f(X ) is obtained through the application of the TT-DMRG-cross algorithm to
the quantics folding of B = h(X ), which leads to a sparser selection of the evalua-
tion points. The quality of these approximations will be evaluated using the relative
L2 error

(74) erel := ‖f − LfTT ‖L2
µ(I)/‖f‖L2

µ(I),

where L is one of the projection (PN ) or interpolation (IN , ΠN ) operators. Integrals
in the numerator and denominator of (74) are estimated using Monte Carlo, with the
number of samples chosen so that the relative error in erel is less than 10−2.

5.1. Genz functions and modified Genz functions. The Genz functions
[18, 19] are frequently used to evaluate function approximation schemes. They are
defined on [0, 1]d, equipped with the uniform measure, as follows:
(75)

f1(x) = cos

(
2πw1 +

d∑
i=1

cixi

)
, f2(x) =

d∏
i=1

(
c−2
i + (xi + wi)

2
)−1

,

f3(x) =

(
1 +

d∑
i=1

cixi

)−(d+1)

, f4(x) = exp

(
−

d∑
i=1

c2i (xi − wi)2

)
,

f5(x) = exp

(
−

d∑
i=1

c2i |xi − wi|

)
, f6(x) =

{
0 if x1>w1 or x2>w2 ,

exp
(∑d

i=1 cixi

)
otherwise,

and are known, respectively, as oscillatory, product peak, corner peak, Gaussian, con-
tinuous, and discontinuous functions. The parameters w are drawn uniformly from
[0, 1] and act as a shift for the function. In the classical definition of the Genz func-
tions [18, 19], the parameters c are drawn uniformly from [0, 1] and then normalized
such that dhj‖c‖1 = bj , with j indexing the six Genz functions. The “difficulty” of
approximating the functions increases monotonically with bj . The scaling constants
hj are defined as suggested in [18, 19], while bj are selected in order to obtain the
same test functions used for d = 10 in [1]. These values are listed in Table 1.

By the definition of the Genz functions above, it is apparent that the approxima-
tion difficulty (as measured by the number of function evaluations required to achieve
a certain error) does not increase substantially with dimension. This is also confirmed
by numerical experiments. As an example, consider the Gaussian function f4. It has
the rank-one representation

(76) f4(x) = exp

(
−

d∑
i=1

c2i (xi − wi)2

)
=

d∏
i=1

exp
(
−c2i (xi − wi)2

)
.

Recall that c is normalized such that ‖c‖1 =
bj

dhj
. Then, for d→∞ and for the values
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of hj and bj listed in Table 1, ci → 0 and f4(x)→ 1. Thus, with higher dimensions d
the function becomes nearly constant and hence easier to approximate.

We would instead like to test the performance of the STT approximation on a set
of functions whose “difficulty” continues growing with dimension. To this end, we use
the definition (75) of the Genz functions but refrain from normalizing the coefficients
c ∼ U([0, 1]d). This choice produces functions that do not degenerate into constants
with increasing d, and thus can be used for meaningful tests in higher dimensions.
We will refer to these functions as the “modified Genz functions.”

For the sake of analyzing the following numerical experiments, it is important to
note that most of the Genz functions—modified or not—are analytically low rank,
meaning that they can be exactly written in FTT format with finite rank. As noted
above, the Gaussian Genz function (76) has an FTT rank of one, independent of
d. In the same way, the product peak, continuous, and discontinuous functions are
FTT rank-one functions, while the oscillatory function is an FTT rank-two function.
In contrast, the corner peak function cannot be represented with finite FTT rank,
leading to a dependence of its numerical FTT rank on the dimension d.

The numerical experiments below are performed by randomly sampling 30 in-
dependent sets of parameters w and c for each Genz function and evaluating the
relative L2 error (74) for each approximation. We will show the relationship between
this error and the number of function evaluations employed for different values of the
input dimension d and different polynomial degrees. Both the error and the number
of function evaluations will vary depending on the particular function at hand. In
particular, the number of function evaluations is driven by the procedure for obtain-
ing a discrete TT approximation on the desired tensor grid using the TT-DMRG-cross

algorithm (see section 2.3). We use a conservative value of ε = 10−10 for the target
relative accuracy (10) of the TT-DMRG-cross approximation.

5.1.1. FTT-projection of the modified Genz functions. Our numerical tests
consider dimensions d ranging from 5 to 100 for functions f1, f4, and f5. The corner
peak function f3 was tested only up to d = 15 due to the higher computational
effort required to build its approximations, as discussed below. For the product peak
function f2, we could not run tests for d > 20 due to limited machine precision, because
f2 → 0 as d increases. The results are compared to approximations obtained using
an anisotropic adaptive sparse grid algorithm [10], with Gauss–Patterson quadrature
rules [52].

Figure 1 shows the convergence of the FTT-projection approximation of the six
modified Genz functions for exponentially increasing polynomial degree (N = 2i − 1
for i = 1, . . . , 4), isotropic across dimensions (Nn = N , n = 1, . . . , d), with Gauss–
Legendre points/weights used for quadrature. In particular, we show the relative
error of the approximations versus the number of function evaluations for increasing
polynomial degree. Figure 2 shows the relationship between the number of function
evaluations and the degree of the polynomial basis for varying dimension. The scatter
of the points in the figures reflects the randomness in the coefficients of the modified
Genz functions, the resulting polynomial approximation error, and the approximate
fulfillment of the relative error criterion (10) by TT-DMRG-cross. Due to the inter-
changeability of the dimensions in the modified Genz functions, realizations of the
error are more scattered for the lower-dimensional functions, as these functions are
defined by fewer random parameters. As expected, we observe a spectral conver-
gence rate for the smooth functions f1 through f4. For the continuous modified Genz
function, the convergence is only quadratic, since the function has a first-order discon-
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Fig. 1. FTT-projection approximation of the modified Genz functions. For exponentially in-
creasing polynomial degree (2i − 1 for i = 1, . . . , 4) and for varying dimensions d, we construct 30
realizations of each modified Genz function and evaluate the relative L2 errors of their approxima-
tions. The circled dots represent the mean relative L2 error and mean number of function evaluations
for each polynomial degree. The figures compare the convergence rates of the FTT-projection and
the anisotropic adaptive Smolyak algorithm [10]. (Color available online.)

tinuity. Approximation of the discontinuous function shows very slow convergence,
due to the use of a global polynomial basis for a function that is not even C0.

The number of function evaluations required to achieve a given accuracy increases
linearly with d for functions with finite FTT ranks that are independent of dimension
(e.g., all the modified Genz functions except corner peak). The absence of an exact
finite-rank FTT decomposition for the corner peak function leads to a truncation
effectively controlled by the quadrature level and the DMRG tolerance ε. This, in turn,
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Fig. 2. FTT-projection approximation of the modified Genz functions. For exponentially in-
creasing polynomial degree (2i − 1 for i = 1, . . . , 4) and for varying dimensions d, we construct 30
realizations of each Genz function. The dots show the number of function evaluations required to
construct an STT approximation of the specified polynomial degree. (Color available online.)

leads to FTT approximation ranks that grow with dimension and thus a superlinear
growth (in d) of the number of function evaluations.

The comparison to the sparse grid algorithm [10] shows dramatic improvements
in performance. The convergence rate of the sparse grid algorithm analyzed is ac-
ceptable for functions of moderate dimension (d = 5), but deteriorates considerably
with increasing d. The convergence rate of FTT-projection is instead consistently
better, even on the corner peak function where the numerical rank depends on dimen-
sion. It is important to stress that the functions analyzed here are mildly anisotropic
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Fig. 3. FTT linear interpolation of the continuous and discontinuous modified Genz functions.
For exponentially increasing numbers of uniformly distributed interpolation points (21 to 27) and for
varying dimensions d, we construct 30 realizations of each modified Genz function and evaluate the
relative L2 errors of their approximations. The scattered dots show the relative L2 error versus the
number of required function evaluations for each realization. The circled dots represent the mean
relative L2 error and mean number of function evaluations for each level of grid refinement. (Color
available online.)

and that the sparse grid method could perform better on more anisotropic functions.
Nevertheless, very anisotropic functions are in practice effectively lower-dimensional,
whereas the functions analyzed in this example are truly high-dimensional. Another
important aspect of this comparison is that the computational complexity of the
anisotropic adaptivity of the sparse grid algorithm—not in terms of function evalua-
tions, but rather algorithmic overhead—grows exponentially with dimension, because
the set of active indices is defined over a high-dimensional surface. In contrast, the
complexity of the FTT-projection algorithm grows only polynomially in terms of the
dimension and the rank.

5.1.2. FTT-interpolation of the modified Genz functions. We have tested
linear FTT-interpolation on all the modified Genz functions, with an exponentially
increasing number of uniformly distributed points in each dimension, ranging from
21 to 27. For brevity, Figure 3 shows convergence results only for the continuous and
discontinuous Genz functions. For the first four smooth Genz functions we observe at
least second-order convergence rates, as expected from the choice of a linear basis. The
convergence of the FTT-interpolation approximation to the continuous function is
also second order, while the convergence rate for the discontinuous function is almost
first order. Improved convergence for the latter, compared to Figure 1, is due to the
local support of the selected basis functions, which prevents the discontinuity from
globally corrupting the approximation.

We have also tested Lagrange FTT-interpolation for all the modified Genz func-
tions; we omit the results here because they closely follow the results obtained with
FTT-projection, already shown in Figure 1.

5.2. FTT-projection and mixed Fourier modes. An important contrast be-
tween the STT approximation and sparse grid approximations is their behavior for
mixed Fourier modes. It is well understood that sparse grid approximations are most
effective for functions that are loosely coupled, i.e., that do not contain significant
multiplicative terms involving several inputs at high polynomial degree. More pre-
cisely, the convergence of a sparse grid approximation deteriorates when the decay of
the Fourier coefficients is slow for mixed modes.
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(a) f1: d = 2, rank=1, fevals = 209/322
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(b) f2: d = 2, J = [0, 1], fevals = 256/162

d = 5, J = [1, 2], fevals = 3935/165

d = 5, J = [0, 4], fevals = 73307/165

Fig. 4. Magnitude of the Fourier coefficients, in log10 scale, for functions (77), obtained using
the TT-projection algorithm with a tolerance of ε = 10−10. The corresponding maximum TT rank
and number of function evaluations/total grid size are listed for several dimensions d.

We construct two ad hoc functions to highlight some properties of the FTT-pro-

jection when approximating functions with different decays in their Fourier coef-
ficients. Consider functions defined on I = I1 × · · · × Id, where Ii = [−1, 1]. Now
consider the subset of indices J = {ji}ci=1 ⊆ [1, . . . , d]. For every element of J , let
{nji}ci=1 > 0 be the maximum polynomial degree of the function in the ji direction.
The functions are then defined as follows:

(77)

f1(x) =

c∏
k=1

φlk(xjk) ,

f2(x) =

nj1∑
ij1=0

· · ·
njc∑
ijc=0

[
exp

(
−i>Σi

) c∏
k=1

φijk (xjk)

]
,

where Σ is a c× c matrix defining interactions between different dimensions, φi is the
normalized univariate Legendre polynomial of degree i, and i = (ij1 , . . . , ijc)

>. To
simplify the notation, we will set njk = n for all jk.

The function f1 has a single high-degree mixed Fourier mode as shown in Fig-
ure 4a; we use d = c = 2, with l1 = 24 and l2 = 23. Despite this high degree, the rank
of the function is correctly estimated to be one, and thus very few sampling points
are needed in order to achieve the required precision. The success of the STT approx-
imation in this example highlights the fact that, unlike sparse grids, STT always uses
a fully tensorized set of basis functions.

The function f2 is intended to have a slow decay of its mixed Fourier coefficients
in the J dimensions, but is constant along the remaining dimensions. For d = 2 and
J = [0, 1] we set

Σ =

[
1 −0.9
−0.9 1

]
.

The decay of the coefficients, as estimated using the FTT-projection, is shown in
Figure 4b. The function has an high TT rank, which leads to a complete sampling

D
ow

nl
oa

de
d 

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2432 D. BIGONI, A. P. ENGSIG-KARUP, AND Y. M. MARZOUK

x

0.0 0.2 0.4 0.6 0.8 1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

f(
x
,y

)

1.5

1.0

0.5

0.0

0.5

1.0

1.5
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Fig. 5. (a) TT-DMRG-cross approximation of function (78), which has a localized feature as
shown in blue for d = 2. The open and filled circles show the candidate points where the function
has been evaluated. The filled circles are the points used in the final TT-DMRG-cross approximation.
TT-DMRG-cross detects the feature and clusters nodes around it in order to achieve a relative accuracy
of ε = 10−10. (b) The right figure shows the same test for d = 3. (Color available online.)

of the discrete tensor. We can also use this function to experiment with the ordering
problem of the TT decomposition. We let d = 5 and use different combinations of
indices in J . If J contains two neighboring dimensions, J = [1, 2] in the example
above, the TT ranks of the decomposition, obtained through numerical truncation,
will be r = [1, 1, 11, 1, 1, 1], where the maximum is attained between the cores G1 and
G2. If instead we consider a J containing nonneighboring dimensions, e.g., J = [0, 4]
in Figure 4b, we obtain the same function but with reordered dimensions. Now the
TT ranks become r = [1, 11, 11, 11, 11, 1]. This happens due to the sequential con-
struction of the TT decomposition, where information can be propagated only from
one core to the next. The example shows that the consequence of a poor ordering
choice is an increased number of function evaluations, which grows with r2. Impor-
tantly, however, this choice does not affect the accuracy of the approximation.

5.3. Resolution of local features. Many functions of interest present local
features that need to be resolved accurately. An a priori clustering of nodes around
a localized feature typically is not possible, because the location and shape of such a
feature is unknown. The TT-DMRG-cross algorithm is able to overcome this problem
because it adaptively selects the nodes that are relevant for the approximation, thus
exploring the space with increasing knowledge about the structure of the function.
As an illustrative example, consider the Gaussian bump

(78) f(x) = exp

(
−|x− x0|2

2l2

)
.

Let d = 2, x0 = (0.2, 0.2), and l = 0.05; the peak is thus off-center, as shown
in Figure 5a. We let X be a uniform grid with 32 points per dimension and apply
TT-DMRG-cross (with accuracy ε = 10−10) to the quantics folding of f(X ). Open and
filled circles show all the points at which the function is evaluated during iterations
of TT-DMRG-cross. The filled circles correspond to the points selected in the last
iteration. Figure 5b shows the set of points used for d = 3 and x0 = (0.2, 0.2, 0.2).
The same kind of clustering around the Gaussian bump is observed.
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5.4. Elliptic equation with random input data. In our final example, we
approximate the solution of a linear elliptic PDE with a stochastic parameterized
coefficient. Consider the Poisson equation on the unit square Γ = [0, 1]2 3 x,

(79)

{
−∇ · (κ(x, ω)∇u(x, ω)) = f(x) in Γ× Ω ,

u(x, ω) = 0 on ∂Γ× Ω ,

where f(x) = 1 is a deterministic source term and κ is a log-normal random field
defined on the probability space (Ω,Σ, µ) by

(80) κ(x, ω) = exp (g(x, ω)) , g(x, ω) ∼ N (0, Cg(x,x
′)) .

We characterize the normal random field g ∈ L2
µ(Ω;L∞(Γ)) by the squared exponen-

tial covariance kernel:

(81) Cg(x,x
′) =

∫
Ω

g(x, ω)g(x′, ω)dµ(ω) = σ2 exp

(
−‖x− x′‖2

2l2

)
,

where l > 0 is the spatial correlation length of the field and σ2 is a variance parameter.
We decompose the random field through the Karhunen–Loève (KL) expansion [42]

(82) g(x, ω) =

∞∑
i=1

√
λiχi(x)Yi(ω) ,

where Yi ∼ N (0, 1) and {λi, χi(x)}∞i=1 are the eigenvalues and eigenfunctions of the
eigenvalue problem

∫
Γ
Cg(x,x

′)χi(x
′)dx′ = λiχi(x). The KL expansion is truncated

in order to retain 95% of the total variance; i.e., we find d ∈ N+ such that
∑d
i=1 λi ≥

0.95σ2. With a correlation length of l = 0.25 and σ2 = 0.1, this threshold requires
d = 12 terms in the KL expansion. The use of the KL expansion allows (79) to be
turned into a parametric problem, where we seek a solution u ∈ L2(Γ)×L2

µ(Rd). For
the purpose of the current exercise, we will approximate this solution at a particular
spatial location, i.e., seek approximations of u(x0,y) with x0 = (0.75, 0.25).

We construct a surrogate using FTT-projection with Hermite polynomial basis
functions, where X is a full tensor of Gauss–Hermite quadrature points. We consider
polynomial degrees of 0, 1, 3, and 7, and the corresponding tensors of size 1d, 2d,
4d, and 8d. Figure 6 shows the convergence of our approximation in terms of the
relative L2 error (74) for different polynomial degrees and for different settings of
the TT-DMRG-cross approximation tolerance ε. We see that the L2 accuracy of the
function approximation improves spectrally until reaching a plateau that matches ε
closely; beyond this plateau, an increase in the polynomial degree of the surrogate
provides no further improvement; i.e., the convergence plot flattens at a relative ac-
curacy that is O(ε). It is also interesting that, for a given polynomial degree and a
desired relative L2 error, the most efficient way of achieving this error is to choose ε of
the same order as this error. In other words, just as “over-shooting” with too high a
polynomial degree is not computationally useful, it also is not useful to choose ε much
smaller than the desired error. These interactions suggest a direction for future work
on adaptive approaches to choosing both ε and anisotropic polynomial degrees. The
vertical dashed lines in Figure 6 show the total number of function evaluations that
would be required to evaluate a full tensor pseudospectral approximation of the given
degree; as expected, for polynomial degrees larger than one, FTT-projection requires
many orders of magnitude fewer function evaluations than a full tensor approach.
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Fig. 6. Convergence of the FTT-projection of orders 0, 1, 3, and 7 for different target ac-
curacies selected. The vertical dashed lines show the number of function evaluations that would be
required to attain a full tensor approximation.

6. Conclusions. This paper presents a rigorous construction of the spectral
tensor-train (STT) decomposition for multivariate functions. The method aims to
mitigate the curse of dimensionality for functions with sufficient regularity by con-
structing approximations that exploit low tensor rank and that can attain spectral
rates of convergence. We present an iterative procedure for decomposing an arbitrary
function f ∈ L2

µ(I), yielding a format termed the functional tensor-train (FTT) de-
composition (to distinguish it from the TT decomposition of discrete tensors). The
construction of the FTT decomposition relies on the SVD of Hilbert–Schmidt kernels
in L2

µ(I) and on the regularity properties of f (cf. Theorem 13). This regularity is
inherited by the singular functions or “cores” of the decomposition (cf. Theorems 15
and 18). We then develop error bounds that account for truncation of the FTT decom-
position at a given rank and for polynomial approximation of the cores. Collectively,
these theoretical results describe the connections between Sobolev regularity of f , the
dimension of the input space, and approximation rates in terms of tensor rank.

To implement the spectral TT decomposition numerically, we apply the TT-DMRG-
cross sampling algorithm [53] to a discrete tensor comprising suitably weighted point-
wise evaluations of f ; the definition of this tensor reflects a choice of tensor-product
quadrature rule. The user is required to select the polynomial degree of the approx-
imation and the desired relative accuracy. The latter tolerance drives the extent of
dimensional interactions described by the approximation and ultimately the number
of function evaluations demanded by the algorithm. Numerical experiments demon-
strate good performance of this approximation. For analytically low-rank functions,
empirical results confirm that computational effort (i.e., the number of function eval-
uations required to achieve a given accuracy) scales linearly with the dimension. Even
for functions that are not analytically low rank, we observe that the STT approxi-
mation significantly outperforms an adaptive sparse grid approach. Recall that the
FTT approximation is nonlinear in the sense that it does not prescribe a basis for the
separation of the space L2

µ(I); instead, it uses the singular functions of f , which are
optimal. The choice of basis is made when projecting the singular functions onto, for
example, a finite-degree polynomial space. This approach also offers the flexibility
needed to resolve local features of a function by clustering the evaluation points close
to the feature.

Many avenues for further development center on adaptivity. For example, the
ordering of the dimensions can have an important impact on the number of function
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evaluations required to produce an STT approximation; finding an optimal or near-
optimal ordering a priori or adaptively is a topic of ongoing work. Results from the
current work can also pave the way towards a fully adaptive STT decomposition, using
the smoothness properties of the singular functions to indicate whether to increase the
polynomial degree in each dimension. This will allow a more complete automation of
the construction process. Further theoretical developments relating the discrete and
functional representations would also be of great interest: for example, describing the
relationship between cross-interpolation error and the pointwise approximation of the
FTT cores. It would also be useful to extend current results on the convergence of the
FTT decomposition to unbounded domains (e.g., Rd) equipped with finite measure.
These efforts are left to future work.

An open-source Python implementation of the STT approximation algorithm,
including all the numerical examples from this paper, is available at http://pypi.
python.org/pypi/TensorToolbox/.

Appendix A. Hölder continuity and the Smithies condition. In sec-
tion 4.3 we use a result by Smithies [58, Thm. 14] to prove the boundedness of the
weak derivatives of the cores of the FTT decomposition. The conditions under which
Smithies’ result holds are as follows.

Definition 19 (Smithies’ integrated Hölder continuity). Let K(s, t) be defined
for s, t ∈ [a, b]. Without loss of generality, let a = 0 and b = π. For r > 0, let

(83) K(i)(s, t) =
∂iK(s, t)

∂si
, 0 < i ≤ r,

and let K(1), . . . ,K(r−1) exist and be continuous. Let K(r) ∈ Lp(s) a.e. in t for
1 < p ≤ 2. Then integrated Hölder continuity, with either r > 0 and α > 0 or r = 0
and α > 1

p −
1
2 , holds for K if and only if there exists an A > 0 such that

(84)

∫ π

0

{∫ π

0

∣∣∣K(r)(s+ θ, t)−K(r)(s− θ, t)
∣∣∣p ds} 2

p

dt ≤ A|θ|2α .

This definition is somewhat difficult to interpret. Furthermore, in the scope of
this work, we are interested in the case r = 0. A simpler, but not equivalent, definition
is given in [61].

Definition 20 (Hölder continuity a.e.). Let K(s, t) be defined for s, t ∈ [a, b]. K
is Hölder continuous a.e. with exponent α > 0 if there exists C > 0 such that

(85) |K(s+ θ, t)−K(s− θ, t)| ≤ C|θ|α

a.e. in t.

To clarify the connection between these notions, we will show the following.

Proposition 21. Hölder continuity a.e. is a sufficient condition for the inte-
grated Hölder continuity given in Definition 19.

Proof. Let K ∈ Lp(s) for almost all t, 1 < p ≤ 2. For α > 1
2 , let K be Hölder

continuous a.e. in t. Then∫ π

0

{∫ π

0

∣∣∣K(r)(s+ θ, t)−K(r)(s− θ, t)
∣∣∣p ds} 2

p

dt ≤
∫ π

0

{∫ π

0

Cp |θ|αp ds
} 2
p

dt

= C2π
3
p |θ|2α

≤ C2π3 |θ|2α = A |θ|2α ,
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where we recognize the bound (84) of the Smithies integrated Hölder continuity con-
dition.

Appendix B. Proofs of auxiliary results for Theorem 13.

B.1. Proof of Lemma 11. By definition of Sobolev norm, seminorm, and weak
derivative Di,

(86)

|J |2I1×I1,µ,k ≤ ‖J‖
2
Hkµ(I1×I1) =

k∑
|i|=0

‖Di〈f(x, y), f(x̄, y)〉L2
µ(Ī)‖2L2

µ(I1×I1)

=

k∑
|i|=0

‖〈Di1,0f(x, y), Di2,0f(x̄, y)〉L2
µ(Ī)‖2L2

µ(I1×I1) ,

where i is a two-dimensional multi-index. Using the Cauchy–Schwarz inequality, it
holds that
(87)
‖〈Di1,0f(x, y), Di2,0f(x̄, y)〉L2

µ(Ī)‖2L2
µ(I1×I1) ≤ ‖D

i1,0f(x, y)‖2L2
µ(I)‖D

i2,0f(x, y)‖2L2
µ(I).

Now let j and l be two d-dimensional multi-indices. Then (86) can be bounded by

(88)

|J |2I1×I1,µ,k ≤ ‖J‖
2
Hkµ(I1×I1) ≤

k∑
|i|=0

‖Di1,0f(x, y)‖2L2
µ(I)‖D

i2,0f(x, y)‖2L2
µ(I)

≤
k∑
|j|=0

k∑
|l|=0

‖Djf(x, y)‖2L2
µ(I)‖D

lf(x, y)‖2L2
µ(I) ≤ ‖f‖

4
Hkµ(I) .

Since ‖J‖Hkµ(I1×I1) ≤ ‖f‖2Hkµ(I) <∞ by assumption, then J ∈ Hkµ(I1 × I1).

B.2. Proof of Lemma 12. We prove the statement for the first dimension;
the other dimensions will follow in similar fashion. For a particular multi-index i =
[i1, . . . , id], let j := [i2, . . . , id]. Let also I = I1 × · · · × Id and Ĩ = I2 × · · · × Id. Then
(89)

‖f‖2Hkµ(I) =

k∑
|i|=0

∥∥Dif
∥∥2

L2
µ(I)

=

k∑
|i|=0
i1=0

∥∥Dif
∥∥2

L2
µ(I)

+

k∑
|i|=0
i1>0

∥∥Dif
∥∥2

L2
µ(I)

=

k∑
|i|=0
i1=0

∥∥∥∥∥Di
∞∑

α1=1

√
λ1(α1)γ1(x1;α1)ϕ1(α1;x2, . . . , xd)

∥∥∥∥∥
2

L2
µ(I)

+

k∑
|i|=0
i1>0

∥∥Dif
∥∥2

L2
µ(I)

=

k∑
|i|=0
i1=0

∞∑
α1=1

λ1(α1) ‖γ1(·;α1)‖2L2
µ(I1)

∥∥Djϕ1(α1; ·)
∥∥2

L2
µ(Ĩ)

+

k∑
|i|=0
i1>0

∥∥Dif
∥∥2

L2
µ(I)

=

∞∑
α1=1

∥∥∥(√λ1ϕ1

)
(α1; ·)

∥∥∥2

Hkµ(Ĩ)
+

k∑
|i|=0
i1>0

∥∥Dif
∥∥2

L2
µ(I)

,

where the third equality was obtained using the orthonormality of {γ1(·;α1)}∞α1=1 and
the Hölder (α > 1/2) continuity of f , as in the proof of Theorem 15.
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