112 research outputs found

    Non-Preemptive Scheduling on Machines with Setup Times

    Full text link
    Consider the problem in which n jobs that are classified into k types are to be scheduled on m identical machines without preemption. A machine requires a proper setup taking s time units before processing jobs of a given type. The objective is to minimize the makespan of the resulting schedule. We design and analyze an approximation algorithm that runs in time polynomial in n, m and k and computes a solution with an approximation factor that can be made arbitrarily close to 3/2.Comment: A conference version of this paper has been accepted for publication in the proceedings of the 14th Algorithms and Data Structures Symposium (WADS

    Nützliche Strukturen und wie sie zu finden sind: Nicht Approximierbarkeit und Approximationen für diverse Varianten des Parallel Task Scheduling Problems

    Get PDF
    In this thesis, we consider the Parallel Task Scheduling problem and several variants. This problem and its variations have diverse applications in theory and practice; for example, they appear as sub-problems in higher dimensional problems. In the Parallel Task Scheduling problem, we are given a set of jobs and a set of identical machines. Each job is a parallel task; i.e., it needs a fixed number of identical machines to be processed. A schedule assigns to each job a set of machines it is processed on and a starting time. It is feasible if at each point in time each machine processes at most one job. In a variant of this problem, called Strip Packing, the identical machines are arranged in a total order, and jobs can only allocate neighboring machines with regard to this total order. In this case, we speak of Contiguous Parallel Task Scheduling as well. In another variant, called Single Resource Constraint Scheduling, we are given an additional constraint on how many jobs can be processed at the same time. For these variants of the Parallel Task Scheduling problem, we consider an extension, where the set of machines is grouped into identical clusters. When scheduling a job, we are allowed to allocate machines from only one cluster to process the job. For all these considered problems, we close some gaps between inapproximation or hardness result and the best possible algorithm. For Parallel Task Scheduling we prove that it is strongly NP-hard if we are given precisely 4 machines. Before it was known that it is strongly NP-hard if we are given at least 5 machines, and there was an (exact) pseudo-polynomial time algorithm for up to 3 machines. For Strip Packing, we present an algorithm with approximation ratio (5/4 +ε) and prove that there is no approximation with ratio less than 5/4 unless P = NP. Concerning Single Resource Constraint Scheduling, it is not possible to find an algorithm with ratio smaller than 3/2, unless P = NP, and we present an algorithm with ratio (3/2 +ε). For the extensions to identical clusters, there can be no approximation algorithm with a ratio smaller than 2 unless P = NP. For the extensions of Strip Packing and Parallel Task Scheduling there are 2-approximations already, but they have a huge worst case running time. We present 2-approximations that have a linear running time for the extensions of Strip Packing, Parallel Task Scheduling, and Single Resource Constraint Scheduling for the case that at least three clusters are present and greatly improve the running time for two clusters. Finally, we consider three variants of Scheduling on Identical Machines with setup times. We present EPTAS results for all of them which is the best one can hope for since these problems are strongly NP-complete.In dieser Thesis untersuchen wir das Problem Parallel Task Scheduling und einige seiner Varianten. Dieses Problem und seine Variationen haben vielfältige Anwendungen in Theorie und Praxis. Beispielsweise treten sie als Teilprobleme in höherdimensionalen Problemen auf. Im Problem Parallel Task Scheduling erhalten wir eine Menge von Jobs und eine Menge identischer Maschinen. Jeder Job ist ein paralleler Task, d. h. er benötigt eine feste Anzahl der identischen Maschinen, um bearbeitet zu werden. Ein Schedule ordnet den Jobs die Maschinen zu, auf denen sie bearbeitet werden sollen, sowie einen festen Startzeitpunkt der Bearbeitung. Der Schedule ist gültig, wenn zu jedem Zeitpunkt jede Maschine höchstens einen Job bearbeitet. Beim Strip Packing Problem sind die identischen Maschinen in einer totalen Ordnung angeordnet und Jobs können nur benachbarte Maschinen in Bezug auf diese Ordnung nutzen. In dem Single Resource Constraint Scheduling Problem gibt es eine zusätzliche Einschränkung, wie viele Jobs gleichzeitig verarbeitet werden können. Für die genannten Varianten des Parallel Task Scheduling Problems betrachten wir eine Erweiterung, bei der die Maschinen in identische Cluster gruppiert sind. Bei der Bearbeitung eines Jobs dürfen in diesem Modell nur Maschinen aus einem Cluster genutzt werden. Für all diese Probleme schließen wir Lücken zwischen Nichtapproximierbarkeit und Algorithmen. Für Parallel Task Scheduling zeigen wir, dass es stark NP-vollständig ist, wenn genau 4 Maschinen gegeben sind. Vorher war ein pseudopolynomieller Algorithmus für bis zu 3 Maschinen bekannt, sowie dass dieses Problem stark NP-vollständig ist für 5 oder mehr Maschinen. Für Strip Packing zeigen wir, dass es keinen pseudopolynomiellen Algorithmus gibt, der eine Güte besser als 5/4 besitzt und geben einen pseudopolynomiellen Algorithmus mit Güte (5/4 +ε) an. Für Single Resource Constraint Scheduling ist die bestmögliche Güte eine 3/2-Approximation und wir präsentieren eine (3/2 +ε)-Approximation. Für die Erweiterung auf identische Cluster gibt es keine Approximation mit Güte besser als 2. Vor unseren Untersuchungen waren bereits Algorithmen mit Güte 2 bekannt, die jedoch gigantische Worst-Case Laufzeiten haben. Wir geben für alle drei Varianten 2-Approximationen mit linearer Laufzeit an, sofern mindestens drei Cluster gegeben sind. Schlussendlich betrachten wir noch Scheduling auf Identischen Maschinen mit Setup Zeiten. Wir entwickeln für drei untersuche Varianten dieses Problems jeweils einen EPTAS, wobei ein EPTAS das beste ist, auf das man hoffen kann, es sei denn es gilt P = NP

    Acta Cybernetica : Tomus 3. Fasciculus 2.

    Get PDF

    Algorithms for Scheduling Problems and Integer Programming

    Get PDF
    The first part of this thesis gives approximation results to scheduling problems. The classical makespan minimization problem on identical parallel machines asks for a distribution of a set of jobs to a set of machines such that the latest job completion time is minimized. For this strongly NP-complete problem we give a new EPTAS algorithm. In fact, it admits a practical implementation which beats the currently best approximation ratio of the MULTIFIT algorithm. A well-studied extension of the problem is the partition of the jobs into classes which impose a class-specific setup time on a machine whenever the processing switches to a job of a different class. For these so-called scheduling problems with batch setup times we present a 1.5-approximation algorithm for each of the three major settings. We achieve similar results for the likewise natural variant of many shared resources scheduling (MSRS) where instead of imposing a setup time each class is identified by a resource which can be occupied by at most one of its jobs at a time. For MSRS we present a 1.5-approximation and two EPTAS results. The second part provides results for fixed-priority uniprocessor real-time scheduling and variants of block-structured integer programming. We give a new approach to compute worst-case response times which admits a polynomial-time algorithm for harmonic periods even in the presence of task release jitters. In more detail, we prove a duality between Response Time Computation (RTC) and the Mixing Set problem. Furthermore, both problems can be expressed as block-structured integer programs which are closely related to simultaneous congruences. However, the setting of the famous Chinese Remainder Theorem is that each congruence has to have a certain remainder. We relax this setting such that the remainder of each congruence may lie in a given interval. We show that the smallest solution to these congruences can be computed in polynomial time if the set of divisors is harmonic
    corecore