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1. Introduction 

In deterministic problems of scheduling tasks on processors (static job-shop 
problems) it is usually assumed that task execution times are known in advance. 
Of course, in practice this assumption is not always met, but even then the solution 
of deterministic problems of scheduling has an important practical meaning. Firstly, 
when the expected values of task execution times are known, then it is possible, 
using established techniques [3], to find an optimistic estimate of the expected value 
of the schedule length. Secondly, upper bounds of execution times of individual 
tasks may be known. Then scheduling using these values corresponds to the analysis 
of the worst case and is applied in hard-real-time problems with strict deadlines 
that must be observed! 

Independently of this one can measure task execution times after processing 
a given set of tasks and use them to find an optimal schedule. This allows one to 
estimate an operational scheduler and to draw conclusions about possible improv-
ments. 

It becomes more and more important to schedule splittable (preemptable) tasks 
i.e. those that may be preempted; the processing of preempted task may resume 
where it left off without any extra work or time being occasioned by the preemption. 
Examining splittable tasks is of a great importance in systems of parallel processors 
using a common operating store. Such systems have increasingly many applications 
in the control of such processes as traffic, telephone switch control organization 
[5, 11] in which several processors using a common data base and computational 
procedures are being used. It is easy to verify that the possibility of preemption is 
profitable for improving the schedule length. 

Scheduling splittable tasks was considered in [8, 9, 10]. Algorithms, presented 
in these papers, concern only homogeneous processors and relatively simple prece-
dence relations among tasks. In [4, 7], the problem was considered of scheduling 
independent tasks on processors that are consistently fast or donsistently slow for 
all the tasks. In the papers mentioned above non-enumerative algorithms were 
presented. However the problem of scheduling dependent, splittable tasks, in the 
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general case, is known to be polynomial complete [4] and hence unlikely to admit 
a non-enumerative solution. Thus, for this case the direct use of scheduling strategies 
in an operating system has rather restricted applications. Finding such strategies 
has, however, practical significance for the following reasons. Firstly, one can use 
them to estimate an operational scheduler. Secondly, the distance between an optimal 
solution and a suboptimal one for a heuristic, non-enumerative approach, may be 
found. Lastly, enumerative algorithms may be used in computer centres that perform 
large and complex numerical computations but not in a real-time environment. 

In this paper such a scheduling strategy will be presented, which gives some 
particular advantages. Then it will be compared for the case of homogeneous proces-
sors with the strategy described in [2]. 

2. Scheduling on heterogeneous processors 

There are given a set of m processors P1, P2, Pm and a set of n tasks 
7 \ , T2, ..., Tn. The execution time of task Tj on processor P, will be denoted 
by r¡j, where T t j is a positive real number. 

We will assume, that precedence relations among tasks are given in the form 
of an activity network in which arcs correspond to tasks and nodes to events. Let 
the number of nodes of the network be equal to r+1. It will be assumed that the 
events are ordered in such a way that event j does not occur earlier than event i 
if / < / . 

The concept of the algorithm for scheduling splittable tasks on heterogeneous 
processors to minimize schedule length was given in [1]. For this purpose the follow-
ing denotations were introduced: 

— Sk, k=l, 2, ..., r, the set of all tasks which may be processed between the 
occurrence of event k and 1. This set is called the main set; 

— K j , j = 1,2, ..., n, the set of indices of these main sets in which task Tj may be 
processed. 

For a given schedule we denote: 

— xijk£{0> 1)> i= 1> ..., w ; 7 = 1 , 2 , . . . , n; k£Kj, a part of task 7} processed 
on processor Pi in Sk\ 

— tijk—Ty the processing time of a part xijk\ 
m 

— Ujk= 2 tijk> 7 = 1 , 2, k£Kj the processing time of a part of task 
>=i 

Tj processed in Sk ; 

— tj = 2 ljk> 7—1, 2, ...,n, the processing time of the whole task Tj] 
k£Kj 

— j>fc, k=l, 2, ..., r, the schedule length in Sk; 
r 

— y = 2 yn' schedule length. 
t = i 
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Using the above denotations, the following linear programming (LP) problem 
may be formula ted: 

Minimize y 
Subject to 

m 

2 = i j = \,2,...,n, (i) 
k i K j i = 1 

i = 1,2,..., m, 
y * ~ 2 x t № T y S 0 (2) 

j£Sk K — 1, z , . . . , r , 

m j — 1, 2, . . . , H, - Z x u k T ' V - ° k c K . ( 3 ) 

Equation (1) guarantees tha t every task will be processed; inequality (2) defines 
yks as the schedule lengths; inequality (3) assures tha t obtaining a feasible schedule 
will be a possible, i.e. one such tha t no task is processed simultaneously on more than 
one processor. 

As the result of solving the described L P problem the optimal values y*, x*Jk, t*Jk 
and t*, / = 1 ,2 , ...,m; j= 1, 2, ... , n; k£Kj, a re obtained. However, all starting 
points of parts of tasks are unknown. These points may be found by using the rule 
shown in Fig. l . As the initial values fo r the rule, the optimal values, obtained by 
solving the L P problem formulated above, are taken. In Fig. 1 t(i), / ' = 1 , 2 , ..., m, 
denotes the processing time tjk of the f t h assigned task, and t(m + 1) the pro-
cessing time tjk of the first unassigned task. 

3. Development of the algorithm 

In the problem described in Section 2. the first feasible solution is known in 
advance — it is the sequential processing of all the tasks on a single processor. 

n 
The number of variables is v=(m + \) •(/•'+ ^ l ^ y l ) , where \Kj\ denotes the 

j=i 
r rt 

number of elements of set Kj. The number of constraints is c=n+mr+ 2! \Kj\- For 
j = i 

solving this problem the. Revised Simplex Method [6] is worthwhile, because for 
most cases v >3c . I t is clear tha t the number of variables and constraints increases 
with increasing of the number of tasks and processors. For example for 5 processors 
and not very complicated networks containing 10 tasks the number of variables 
is about 100, 30 tasks — 500, 60 tasks — 1.5 -10 s and 100 tasks — 5-10 3 . The 
numbers of constraints for the same networks are respectively about 50, 200, 400 
and 800. If we want to use directly one of the simplex methods for solving the L P 
problem, about 107 memory cells for 100 tasks will be needed because of the necessity 
of memorizing the matrix of coefficients which is, the largest one in the problem. 
Thus the direct use of simplex methods has here a very restricted application. 

Below an approach which allows for the great reduction of the difficulty men-
tioned above will be shown. 

3 Acta Cyhernetica III/2 
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Fig. 1 
Finding starting points of ^ „ ' s 
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no 
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yes 

Fig. 2 
Generation of consecutive columns of the matrix of coefFcients in one simplex iteration 
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The idea of this approach is based on a generation of consecutive columns 
of the matrix of coefficients in every simplex iteration. Such generation is possible, 
because in the Revised Simplex Method the elements of the matrix of coefficients 
are constant during computation. As a result only one column of this matrix has 
to be stored a t any moment , and so storage requirements are significantly reduced. 

For the purpose of describing the technical aspects of generation let us distinguish 
among columns of the matrix of coefficients three sets of columns. The first set 

n 

contains r columns corresponding to variables yk; the second set — m • ^ \Kj\ 
j=i 

n 

columns ' corresponding to variables xijk; the third set — mr+ £ \Kj\ columns 
j=i 

corresponding to artificial variables. After identification of the actually generated 
column to which the set does belong, appropr i a t e values are put into the rows 
corresponding to constraints (1), (2) and (3) on the base of the minimum informat ion 
about the structure lof the problem. This information includes n, m, matrix of exe-
cution tiines [ry] and the vector describing the structure of the network, containing 
arcs as ordered pairs 'of riodes. After generation a single column, one check the 
benefit of introducing this .column into the solution of.the L P problem in accordance 
with the p simplex procedure. The number of constraints (1), (2), (3) are equal res-

i I " •• 
pectively to n, r-m and 2\K;\. The block diagram of the generation of consecutive. 

. j - i 
WjiuiïiiiS \JI I.lie iViutiiX Oi COtiiIviëiiLD i."> Giît pimpitX iitaaiiCn IS shown in Fig.; 2. 

In Fig. 2. d~2.\kj\. p- ' ; 
J=1 I 

The fact must be stressed that the.computer time used by the algorithm in com-
parison with the time used by the algorithm in which ¡the procedure of generation 
is not used, is reduced, exicept for small problems which dp npt require mass storage. 
Of course, if the networje-node ordering is not given, the obtained schedule is in 
general à suboptimal one. The optimal schedule may be obtained ;by choosing the 
best one f r o m among optimal solutions for all possible orders. 

! 

4. Scheduling on homogeneous processors 4 - a comparison of two algorithms 
i ! 

In the case of homogeneous processors, tasks may be scheduled in accordance 
with the algorithm described in Sections 2 and 3. Let us call it the A-algorithm. 
However, for this case, a special. algorithm has been elaborated [2] which will be 
called the B-algorithm. In this Section we present the conceptual basic of this 
algorithm in comparison with the ^-algori thm. 

In the fi-algorithm we also use the concept of the main sets Sk, k = 1, 2, . . . , /•, 
which was introduced in Section 2. 

Let us number f rom 1 to N the feasible sets, i.e. those subsets of all main sets, 
in which the number of elements is not greater than m. Now let Qj denote the set 
of all numbers of the feasible sets in which task T j may be processed and t( the 
duration of set /'. Thus one obtains the LP problem : 
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Minimize 
N 

y=2h-
¿=1 

Subject to 
2U = t j j = 1 , 2 , . . . , » (4) 

HQj 
or in matrix notation 

At = r 
where A is the matrix of coefficients: 

[ 1 if «€<2j 
, J [ 0 otherwise. 

Obviously, the columns of matrix A correspond to the resource feasible sets. 
The number of variables in this problem is much greater than in ^-algori thm, fo r 
example: for 5 processors and 10 tasks it is about 50, 30 tasks — 2• 103, 60 tasks 
— 3 • 104 and 100 tasks — 2 • 105. On the other hand, the number of constraints 
is much smaller than in ^-algori thm, because it is equal to the number of tasks 
(see (4)). 

In order to avoid the storage of matrix A, the method of automatic generation 
of columns for ¿-algori thm, for this matrix was also elaborated [2]. 

Comparing these two algorithms one should pay attention to core store require-
ments and computer time. 

Core store requirement for both algorithms is equal 16c. So in this respect, 
it is more worthwhile to use the ¿-algori thm, because the number of constraints 
c in it is much smaller. The number of variables as well as the number of constraints 
influence computer time. In Table 1 computer times for A- and ¿-algori thms are 
compared for not very complicated networks and 5 processors. These results were 
produced using programs written in F O R T R A N IV and processed on an O D R A 1305. 

Table 1. 

Iterations Computer time of 

Number to optimum single iteration [S] 

of tasks Algo- Algo- Algo- Algo-
rithm A rithm B rithm A rithm B 

10 65 12 1.5 0.9 
30 250 39 3.5 3.1 
60 500 88 6.2 7.3 

100 1000 151 10.1 18.2 

It proceeds f rom Table 1 that using the ¿-algori thm one reaches the opt imum 
faster within the scope of studied examples. However, it seems that as the size (number 
of tasks) of the problem increases, the performance of .¿-algorithm relatively 
improves, but for both algorithms, the time used to reach the optimum permits 
their practical application to problems of up to 100 tasks. 

Concluding, one should state that the ¿-algori thm is better for the case of 
homogeneous processors and may be used in parctice. 
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Abstract 

This paper deals with deterministic problems of scheduling n preemptable tasks on m parallel 
processors. The structure of the set of tasks is given in the form of an activity network (i.e. a direc-
ted, acyclic graph with only one origin and only one terminal) and the minimizing of the schedule 
length is the performance measure. The cases of identical as well as heterogeneous processors are 
considered. The problem of obtaining the minimal schedule lenght is reduced to a linear programm 
ing problem. In order to provide facilities for solving problems of a practical size, the special pro-
cedure proposed here considerably reduces computer storage requirements. For the case of identical 
processors two approaches for solving the problem have been compared. 

I N S T I T U T E O F C O N T R O L E N G I N E E R I N G , 
T E C H N I C A L U N I V E R S I T Y O F P O Z N A N 
P O Z N A t f j P O L A N D 
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