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On graphs satisfying some conditions for cycles, II. 

B Y A . Á D Á M 

Introduction 

In this paper we study another class (containing all cycles) of finite directed 
graphs, than in Part I. Let a class be introduced as follows : (i) all cycles belong to 
the class, (ii) whenever a graph G0 is contained in the class and we replace a simple 
vertex P of G0 by a cycle, then the new graph G is again an element of the class, 
(iii) the class is as narrow as possible with respect to the rules (i), (ii). The members 
of this class are called the A-constructible graphs. (A more detailed definition will 
be given in § 1.) 

An advantage of this recursive definition is its simplicity; it has, however, thé 
disadvantage that is does not give the A-constructible graphs uniquely (the same 
graph can be produced in essentially different ways). Therefore another recursive 
procedure (called Construction B) will be exposed such that it admits a decomposi-
tion statement (Theorem 1) and it yields all the A-constructible graphs (Theorem 2). 
(As it may be foreseen, Construction B is described more elaborately, than Construc-
tion A.) Finally, it is shown that the class of B-constructible graphs is wider, than 
the class of the A-constriictible ones. We deal with the question (without solving 
it completely) how the A-constructible graphs can be characterized in terms of 
Construction B. 

§ 1. The Constructions A, B 

1.1. 

C O N S T R U C T I O N A. The construction consists of an initial step and a finite number 
( s O ) of ordinary steps. 

Initial step. Let us consider a cycle of length n ( = 2). 

Ordinary step. Suppose that the preceding (initial or ordinary) step has produced 
the graph G0. Consider G0 and a cycle z of length m ( ^ 2 ) such that G0, z are disjoint. 
Choose a simple vertex P in G0; denote by eu e2 the edges incoming to P or out-
going f rom P, resp. Furthermore, choose two different vertices A, B in z. Let us 
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70 A. Ádám 

unite G„ and z such that P is deleted, A becomes the new final vertex of e1 and B 
is the new initial vertex of e2. 

A graph G is called A-constructible if G can be built up by Construction A1. 

1.2. Let G be a graph. We denote by K(G) the maximum of the numbers 
Z(e) where e runs through the edges of G. An edge e0 (of G) is called extremal if 
Z(e0)=K(G). Denote by G' the subgraph of G consisting of the extremal edges 
(in G) and the vertices incident to them. G' is not connected in general. The connected 
components of G' are called the extremal subgraphs of G. If an extremal subgraph 
is a path only (having one or more edges), then we call it an extremal path. 

1.3. 

C O N S T R U C T I O N B. The construction consists of a finite number ( = 1) of steps 
any of which is either an inital step or an ordinary one in the following sense. 

Initial step. Let us consider a graph G such that 

either G is a cycle (of length £ 1), 

or G is 1'-constructible2 and G has no cut vertex (and, of course, G has 
neither a loop nor a pair of parallel edges with the same orientation). 

Ordinary step. Let us consider a graph G0 and a matrix 

'Ai •A2. .Ak 

Bx B2. • Bk 

GI G2 . -Gk 

[Pi Pi- •Pk 

(having four rows and k ( ^ 1) columns) such that 
(a) any of the k+1 graphs G0 , Gx, G2,..., Gk is isomorphic to a graph produced 

' in some earlier step of the construction,3 

(j?) K(G0)Smax (2, K(GJ, K(G2), ..., K(Gk)), 
(y) Ax, A2, ..., Ak, B1, B2, ..., Bk are pairwise different simple vertices of G0 , 
(<5) for any subscript i (1 ~^i=k), G0 has an extremal pa th 4 a t with the follow-

ing properties: 
At precedes Bt along au and 
the set of vertices lying between At, B{ on at is disjoint to the set {A1, A2, ..., 

B2, ..., 
(E) for any i (1 Pi is a simple vertex of G{ and Z ( P , ) = 1 holds (in G,). 
Denote by eP, eil) the edges incoming to P, and outgoing f rom Ph resp. (in G,). 

^ I.e. if there exists a finite sequence of steps such that the first one is an initial step, the other 
ones are ordinary steps and the last step produces G. 

2 We call a graph I*-constructible of it can be produced by Construction I exposed in § 3 
of [1]. The term "I*-constructible" has been used in the same sense in [2]. 

3 It is permitted that both Gj1 and Gj2 are isomorphic to the result of the scuuc previous step, 
t h o u g h h ^ j i . Gj1 and Gja are considered to be disjoint even in this case. 

* The paths ax , a2 , ..., ak are not necessarily different. 
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Let us construct a new graph such 
that, for every subscript i (l^i^k), we 
delete Pt (out of GJ, Ai becomes the new 
final vertex of e[l) and Bi becomes the new 
initial vertex of e P . (This means that the 
situation (a) is replaced by the situation (b) 
on Fig. 1.) 

A graph G is called Q-constructible if 
G can be built up by Construction B. 

1.4. 

Proposition 1. Suppose that G is produ-
ced by an ordinary step of Construction B. 
Then G has precisely k extremal subgraphs, 
namely, the part a'{ ofa{ from Ax to S, for 
each i(l^i^k). 

Proof Denote by Z(e), Zt{e) the number of cycles containing an edge e, 
meant in G, G,, respectively. The rules in the ordinary step (chiefly (<5)) imply 

Z(e) = 1 +Z0(e) = 1 + K(G0) 

whenever e belongs to some a[. It is clear that 

Z(e) = Z0(e)^K(G0) 

is true for the other edges of G0 and, for any i (1 ^i^k), 

Z(e) = Z,(e) £ K(G,) K(G0) 

holds (by (/?)) if e is an arbitrary edge of G, . 

The above proof and (/?) guarantee the following assertion, too: 

Proposition 2. If G can be represented as the result of an ordinary step Con-
struction B, then 

K-{G){=\ + K{G,))^1. 

Proposition 3. If G is B-constructible and K{G) 2, then each extremal sub-
graph of G is a path and the inner vertices of the extremal paths of G are simple. 

Proof. C a s e 1. G results by an initial, step (of Construction B) only. We 
assumed A"(G) = 2, it is hence obvious that K(G)'—2 and G is l*-constri:ctib!e. 
The conclusion is fulfilled because of Construction I in [1]. 

C a s e 2. G is produced by an ordinary step. We use induction: we suppose 
that G0 satisfies the conclusion of Proposition 3. Proposition 1 implies that each 
extremal subgraph of G is a part of an extremal path of G0, thus Proposition 3 
is valid also for G. 

The next result is implied immediately by Propositions 1, ?. ar.d the assumptions 
in Construction B : . ' 

B, 
' t 

A, 

№ 
' p , . 

t t 
t 

"t 

(a) Fig. 1 

'J*. PIJ) 

/ V 
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Proposition 4. Let the graph G be represented as the result of an ordinary 
step of Construction B. Denote the extremal paths of G by at, a2, ..., ak; let the 
initial vertex of at be A-, and the final vertex of at be Bt (where 1 =/s/c). Then 

the degree of A, is (2, 1) and we have Z(e\ly)= 1, Z(e[2))^2 where e[v' and 
e'2> are the edges incoming to At with appropriate superscripts, 

the degree of Bi is (1, 2) and we have Z(e/3 )) = 1, Z(<?/4,) = 2 where e[3> and 
ef4) are the edges outgoing from Bi with appropriate superscripts.5 

§ 2. Some notions concerning Construction B 

2.1. Let us consider a particular application of Construction B consisting 
of q steps. We say that the relation i<j is true (where {',./} = {1,2, ..., <?}) precisely if 

i-^j, 
the /-th step is ordinary, and 
the graph G resulting in the /-th step is isomorphic to one of the graphs G0 , G 1 ; 

G2, •••,Gk used in the./-th step. 
We denote by < the transitive extension of the relation -< (in the set {1, 2 , . . . , q}). 

It is obvious that < is a partial ordering and i c j may hold only if / < / . The defini-
tion of Construction B implies that, to any fixed j, i<j is satisfiable (by some i) 
exactly if the / - th step is ordinary. 

An application of Construction B, consisting of q steps, is called connected 
when all the q— 1 relations \<cq, 2<q, ...,q—\<cq are true. 

2.2. Two initial steps, occurring in particular performances of Construc-
tion B, are called isomorphic if the graphs appearing in them are isomorphic. 

Let us consider two ordinary steps (again in Construction B) such that the 
number k is common. Denote the graphs and vertices, occurring in the first of 
these steps, by G'0, G[, A[, B[, P[, ..., G'k, A'k, B'k, P'k; analogously, let the graphs 
and vertices of the second step in question be G'i, A'{, B'[, P'{, ..., Gk, Ak, Bk, Pk. 
We call the considered steps to be isomorphic if there exist 

(i) an isomorphism a of G'0 onto G^, 

(ii) a permutation n of the set {1 ,2 , . . . , k), and 

(iii) for every choice of / (1 s / ^ / c ) , an isomorphism of G[ onto G'!.(i) 

such that the equalities 

a (AD = A:w, a (5,0 = B ^ , pt{P{) = P ' ^ 

are fulfilled for each / (I ^ i ^ k ) . 
If two ordinary steps are isomorphic, then the originating graphs are again 

isomorphic. 
A performance of Construction B is called simple if the /-th and y'-th steps 

in it are not isomorphic unless i=j. 

6 It is clear that e\l), <?!3) have been taken from G;; ej2), e |4 ) have been taken from G0 . 
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2.3. Two applications Qx, Q, of Construct ion B are said to be similar if the 
number q of their steps is the same and there exists a permutat ion a of the set 
{1,2, . . . , q} such tha t 

the relation i<c i j holds if and only if o{i)< i2G{j) (where <c; means the re-
lation < with respect t o Q,, and 

in case of any the i-th step of is isomorphic to the cr(/)-th 
step of Q2. 

§ 3. The inverse construction 

3.1. Suppose tha t a graph G results by an ordinary step of some part icular 
application of Construct ion B. The main goal of this § is to produce the k + l 
graphs G0 , Gx , G2 , ..., Gk and the 3k vertices A1, Blt P 1 ; A2, B2, P2, ..., Ak, Bk, Pk 
(occurring in the ordinary step) by using the properties of G solely. This will lead 
to the s ta tement tha t each B-constructible graph can be represented by (one and ) 
only one simple, connected performance of Construction B apar t f rom similarity. 

Proposition 5. If G is a graph mentioned in the initial step of Construction B, 
then there-is no Construction B which would give G as the result of an ordinary step. 

Proof. Since any graph G occurring in the initial step satisfies l ^ i s r ( G ) ^ 2 
evidently, the s tatement to be proved follows immediately f rom Proposit ion 2. 

3.2. 

CONSTRUCTION C. Let G be a (finite) graph such that 
[a] K{G) ^ 3, 

[/?] every extremal subgraph of G is a pa th (denote them by a1, a2, ..., ak; 
let the initial and final vertex of at be Au Bi, resp., where l ^ i ^ k ) , 

[y] for any /', each inner vertex of a t is simple, 
[<5] for any /', the degree of At is (2, 1) moreover, Z(e'i1))= 1 and Z(e[2))^2 

hold for the edges incoming to Ai if they are denoted appropriately, 
[E] for any i, the degree of B{ is (1, 2), fur thermore, Z ( e / 3 , ) = 1 and Z ( E / 4 ) ) S 2 

are t rue for the edges outgoing f rom 2?, if they are denoted suitably, 
[£] for any i, the pair e-1', <?/3) can be connected by a chain which contains 

neither Ax nor B{ as an inner vertex; the analogous statement is t rue for the ,pai r 
ef>, e/4> too, 

[r/] for any i, each chain connecting e/1 ' and e/4) contains either A{ or Bt innerly 
and the chains connecting, e[2\ e[3} do the same. 

Let us f o r m k+1 new graphs G0 , Gx, G2, ..., Gk (from G) in the following way: 
(1) we take k new vertices P2, Pk, 
(2) for any i (1 ^i^k), let e-1' go into Pt (instead of At) and let ef3) come out 

of Pi (instead of B J ; denote the resulting (non-connected) graph by G*, 
(3) let G 0 , G 1 ; G2 , . . ., Gk be the connected components of G* with such sub-

scripts t h a t 6 whenever l ^ i ^ k , then G ; contains e[3), and G0 contains none of 
P(L) „(3) P(L) P(3) „(1) A3) 

6 [£] and M guarantee that the number of connected components is k + 1 and the conditions 
to be posed are satisfiable. 
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Thus Construction C is completed. 

It is evident that, if [a]—[r/] are fulfilled, then G uniquely defines k and the 
graphs G0, G l 5 G2, ..., Gk resulting by Construction C (apart f rom the numbering 
of G 1 ; G2 , ..., G t). 

3.3. 

Proposition 6. Assume that the graph G results by an ordinary step of Construc-
tion B such that the graphs and vertices (occurring in the step) are G'n, G[, G.i,..., G'k 
and A[, B[, P[, A',, fij, P',, ..., A'k,. B'k, P'k, respectively. Then Construction C is 
applicable for G. Let us apply Construction C for G; denote the resulting graphs 
by Gq, G'i, G2, • • •, G'k and the vertices, playing essential roles in the construction, 
by Ai, B'i, P'i, A2, B2, P2, ..., A'k, Bk, Pk. In this case G'0 = G," and there exists 
a permutation n of the set {1, 2, .... k) which satisfies 

Gi = G^ii), Ai = An(i), Bi = BK(it, Pi = P K{i) 

for each i (1 ^i^k). 

Proof Let us take into account the obvious fact that the cycles of G'0 and 
(essentially) the cycles of G[, G2, .... G'k become the cycles of G, moreover. G does 
not contain any other cycle. 

The conditions [a]—[7] of Construction C are true for G; in detail, 
[a] is ensured by Proposition 2, 
[/?], [7] are by Proposition 3, 
[<5], [e] are by Proposition 4, 

ll) follow from the suppositions (y), (¡5), (e) occurring in the ordinary 
step of Construction B. 

The applicability of Construction C has been shown. Using Proposition 1, 
we can convince ourselves that G q coincides with G'0 and the system {G'{, G2, .... Gk} 
equals the system {Gi, G'2, ..., G'k} (up to labelling). Hence also the coincidence of 
the vertices A-„ B„ P, (as stated in the Proposition) follows. 

Theorem 1. Let two applications 0}, Q, of Construction B be considered such 
that they produce the same graph G. If Ot and Q.2 are simple and connected, then 
they are similar. " 

Proof. Denote the number of steps of Qu Q, by q3 respectively. In the 
sequel, we shall apply Proposition 6 and the last sentence of Section 3.2 without 
any particular reference. 

Le t a relation Q be defined between the sets = {1, 2, ..., qand R2 = {1,2, . . . ,q2} 
followingly: q{i,j) holds precisely when the graph resulting in the z-th step of Qx 
is isomorphic to the graph originating in they'-th step of Q2 (where 1 1 
Because Q1 and Q2 are simple, Q is a one-to-one assignment between some subset 

of and some subset R2 of R2. We can write a(i)=j instead of g(i,j) = U 
Our next purpose is to show that R l—Ri and R2=R2. Put KRi. Since Q1 

is connected, there exists a sequence /0, i\,i2, •••, is such that 

' = ' 0 - < 1 ' 1 < 1 ' 2 - < 1 ••• < 1 i s = < h 
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0). It is obvious that o(is)=q2, thus / s £ R [ . Whenever /, belongs to R[, then 
/,_! does the same ( l S i ^ s ) . Consequently, and the equality R2—R2 
follows by an 'analogous inference (therefore q1=q2)-

We are going to verify that a establishes a similarity. In order to do this, it 
remains to show that a preserves the relation < (in both directions). If i <1i*. then 

i = io<ih<iU.-<i-<iK = i* 

for suitable numbers i0,ilt ...,/„,. For any t ( l s r g i v ) , the graph resulting in the 
a{t— l)-th step of Q2 is utilized in the <x(f)-th step of Q2, thus a(t— l )<cr ( f ) (since 
Q2 is simple) and <j(/—l)-<2cr(/). Hence a(i) <2er(/*). —Conversely, i <2i* implies 
cr_1(/) <1(T_ 1(/ : t) by a symmetrical inference. 

Corollary. Let Q,, 02, G be as in the.first sentence of Theorem 1. Denote the 
number of the steps of these constructions by qt, q2, respectively. If Qi is simple and 
connected, then q1^q2. 

Proof. We can reduce Q2 into a simple and connected construction Q2 follow-
ingly:. 

whenever 1 =/<<5r2 and neither the i-th, <72-th steps are isomorphic nor the rela-
tion i<q2 holds, then the f-th step is deleted, 

whenever 1 and the ;-th, y-th steps are isomorphic, then the y'-th 
step is deleted. 

Let us define r as the smallest-number with the property that the r-th and ç2-th 
steps of Q2 are isomorphic. It is easy to see that 

each of the (r-l-l)-th, ( r+2)- th , ..., <?2-th steps^of Q2 is deleted by virtue of the 
above rules, and, 

the r-th step of Q2 becomes the last step7 of Q2. ' 
We get qi = q'2 = q2 where q2 is the number of steps of Q2. 

§ 4. Interrelations between 
A-constructibility and B-constructibility 

4.1. 

Theorem 2. Each k-constructible graph is B-constructible. 

Proof. For cycles the assertion is trivial. Otherwise, we use induction for the 
number of edges. Let an A-constructible graph G be considered, suppose that every 
A-constructible graph, having a fewer number of edges than G, is B-constructible. 
By the definition of the A-constructibility,' there is an A-constructible graph G" 
and a simple vertex P of G* such that G can be produced if we insert a cycle (of 
length /) for P in G* (in sense of the ordinary step of Construction A). G* is 
B-constructible by the induction hypothesis. 

' It may happen that some of the first, second, ..., (r— l)-th steps of Q, are also deleted. 
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Let us consider a performance Q* of Construction B which produces G*. 
In what follows, our aim is to modify Q* such tha t the new construction should 
give G. For the sake of simplicity, we agree that the construction steps of Q* will 
always be mentioned as they are numbered in Q*. 

We define a sequence 

D^,D2,...,DS ( j s l ) 

of vertices and a sequence 

h , h , - ~ , h 0 i > ./'2 > • • • > . / ' * ) 

of numbers (indicating steps) in the following (recursive) manner : 
Dt is P (a vertex of the graph G* resulting in the last step of Q*) and is the. 

number of the steps of Q*, 
if D; has already been defined, it belongs to the graph originating in the y' r th 

step of Q* and the step in question is ordinary, then let ji+1 be such a number 
that the result of the ji+j-th step occurs among the graphs appearing (as G0 , G1, G2,..., 
..., Gk) in the y'j-th step and Dt corresponds to some vertex Di+1 of the result of 
the ./,+i-th step (by virtue of an isomorphism ment ioned in Construction B, (a)), 

if Di has been defined as a vertex of a graph originating in the y r t h step of Q * 
such that this step is initial, then we put s—i and the process terminates. 

We remark tha t each D, is a simple vertex of the containing graph. 
Next we define i o r J + 1 new construction steps which are called ji~th step, 

7'2-th step, ..., ys'-th step and, in some cases,y'o-th step. 
C a s e 1. Z(DS) — 1 in the graph G(1> resulting by t h e y > t h step. G<x> is / ^ c o n -

structible. The graph G'W originating f rom G (1) by inserting a cycle of length / a t 
Ds (as in the ordinary step of Construction A) is again /""-constructible. Let the 
j's-th step be initial, let it produce G / (1). — Suppose tha t the y'--th step has been 
defined ( 1 S / < J ) , we define a new construction step and call it the_//+ 1-th one in 
the following manner : the new step differs f rom they'/+ 1-th one only in tha t respect 
that now the (uniquely determined) graph containing Z>s_,- is replaced by the result 
or the y','-th step. (The graph resulting in the y'/+rth step will contain a cycle of 
length I instead of Ds, otherwise it will coincide with the graph originating in the 
js.rth step.) 

Let us draw up a new construction Q followingly: 
it contains all the steps of Q* except the last one (in the original ordering), 
for every i ( l ^ / c j ) , let the /,'-th step be inserted between the _/'s_ i+1-th and 

0 ' s _ i + 3 + l)-th ones, 
the last step of Q is the,/s '-th step. 
It is obvious that Q is an application8 of Construct ion B and Q produces G. 

C a s e 2. Z(DS)=2 in the result G(1) of they's-th step. Let an initial step, called 
7o-th one, be defined in such a manner that it produces a slighthly modified copy 
of GW with the single difference that Ds is replaced by the pa th a whose length 
equals the (directed!) distance d of A and B in the last step of the performance of 
Construction A producing G. 

8 ß is not simple and connected in general even if Q* has these properties. 
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' Now the j[-th step is ordinary such that 
k—\, 
G0 is the result of the y'o-th step, 
G1 is the cycle of length l—d, 
Ax and Bi are the beginning and final vertices of a (see how the y'o-th step is 

defined), respectively, 
P1 is an arbitrary vertex of 
The further treatment of Case 2 is similar to Case 1. Now both the ./'¿-th and 

'x-th steps (in this ordering) are inserted between the y's-th and (y's+ l)-th ones. 

4.2. The collection of A-constructible graphs is properly included in the family 
of B-constructible ones. An example for a B-constructible graph which is not 
A-constructible may be the cycle of length 1; a less trivial counter-example can be 
seen on Fig. 2. (One can check by applying Construction C that this graph is 
B-constructible. On the other hand, it does not contain any cycle which would be 
resulted in the last step of Construction A. — The numbers in Fig. 2 indicate the 
values of Z(e).) 

4.3. The existence of counter-examples (similar to the above one) disproves 
the following statement: whenever each of Gc , G1} G2, •••, Gk in an ordinary step 
of Construction B is A-constructible, then G is again A-constructible. However, 
the converse assertion is valid: 

Proposition 7. Let the graph G be the result of an ordinary step of a performance 
of Construction B. If G is A-constructible, then each of the graphs G0, G1} G2, ..-, Gk 
(in the step) are likewise A-constructible. 

Proof. It is clear that each step of Construction A augments the number of 
cycles (of the constructed graph) by one. Moreover, let a performance of Construc-
tion A be given and denote the number of steps by r. Let us define a mapping 
y of the set {1, 2, ..., r) in the following (recursive) way: 

y(l) is the result of the beginning step, 
if (y(l), y(2), ..., y(J— 1) are defined and) we execute the j'-th step of the con-

struction, then the-meaning of y(l), y(2), ..., y(J— 1) remains the same in G as in 
G0 (with the small modification that P is now substituted by the path f rom A to B) 
and y(j) is defined as the new cycle z (of G)9. It is clear that y is a one-to-one corre-
spondence whose range equals the family of cycles of the constructed graph. 

2 

2 
Fig. 2 

9 G0, G are now used as in describing the ordinary step of Construction A. 
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On the other side, we can convince ourselves by analyzing the ordinary step 
of Construction В that whenever z is an arbitrary cycle of the constructed graph G, 
then z has been present in exactly one of G0, G1, G2, Gk (if this graph is Gt with 
/ > 0 , then apar t f rom the change that Pt is replaced by the chain f rom At to Bt). 

Let now G and some Gt (O^isk) be as in the Proposition. Denote by Q2 the 
application of Construction В in question (yielding G) and let Q1 be a performance 
of Construction A which produces again G. Let us define the increasing sequence 

]ъ]г! •••ÎJS 

containing precisely those numbers j for which y ( j ) is present in Gt (y is now defined 
for (2i)- We can compile a performance 0(i) of Construction A from t h e / r t h , y'2-th, ..., 
..., /s-th steps of Q1 (with some modifications which may be left to the reader), it 
is evident that Q(i> produces Gt. This can be done for every value of / running f rom 
0 to A:. 

Having Proposition 7, the characterization of A-constructible graphs among 
the B-constructible ones requires still to clear up the following question: 

Problem. Suppose that G0,Gi,G.2,...,Gk are A-constructible graphs ( f c ^ l ) . 
Let us apply the ordinary step of Construction В for them (with some choices of 
the vertices having distinguished roles in the step). Let a necessary and sufficient 
condition be given in order the resulting graph G be again A-constructible. 

О графах удовлетворяющих 
некоторым условиям для циклов, II. 

Пусть класс конечных ориентированных графов быть вводим следующим рекурсивным 
образом: (1) каждый цикл содержается в классе, (2) если G0 — граф содержаемый в классе и 
мы заменяем некоторую точку степени (1, 1) графа G0 циклом, то новый граф находится 
опять в классе, (3) класс является минимальным ввиду правил (1) и (2). Члены этого класса 
называются А-конструируемыми графами. 

Эта рекурсивная процедура не даёт возможность для однозначного разложения резуль-
тируемого графа. Вводится другая процедура (называема конструкцией В) так, что она до-
пускает почти единственную декомпозицию и все А-конструируемые графы являются В-кон-
струируемыми. 

MATHEMATICAL INSTITUTE OF THE MATHEMATICS DEPARTMENT OF THE 
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On the Bayesian approach to optimal performance 
of page storage hierarchies 

B y A . B E N C Z Û R , A . K R Â M L I , J . PERGEL 

Introduction 

In connection with the work of operating systems or interactive data base 
systems or large program systems of any other. destination on computers with 
hierarchical memory arises the optimal page replacement problem. In two level 
storage hierarchy a reference to a page not in first level storage is called page fault. 
Optimal replacement algorithms minimize under different conditions.the average 
number of page faults. ' 

A great majority of papers devoted to this problem (see e.g. Aho et al. [1], 
Franaszek and Wagner [5], Easton [6]) assumes that the stochastic behaviour of 
the reference string is known. Therefore the algorithms proposed by them are only 
asymptotically optimal, when the probability distributions have to be estimated 
in the course of the execution of the program. 

In this paper — using the Bayesian method, which first has been applied to 
this problem by Arató [7] — we prove in two extreme cases of loss function the 
optimality of the so called "least frequently used" strategy on every finite time 
interval for reference strings with unknown probability distribution. 

Our considerations remember to the solution of the so called "two-armed 
bandit problem" (see Feldman [4]); we investigate the nature of the basic equation 
of dynamic programming (Bellman equation). 

In § 1 we give the short description of the model and the formulation of the > 
problem. 

§ 1 -

The program consists of n pages 1,2, ...,n, and m pages can be stored in the 
high speed memory and n—m pages (often the whole program) are stored on 
a slow access memory device. The reference string ..., t]t, ...} from probabilistic 
point of view forms a sequence of independent identically distributed random 
variables, the common probability distribution 

P,, = P,A'h = 0 . . 
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of the random variables rjt depends on a parameter w, value of which is unknown. 
The dependence on w is given as follows : the range of parameter w is the set W of 
all permutations of natural numbers 1, ..., n; w(i) denotes the one to one mapping 
of set {1, . . . ,«} realized by w. There is given a fixed decreasing sequence >/>„ 
of probabilities (p!+ •••+pn = 1) and -P;,w=Pw(o-

Following the Bayesian approach to the decision theory we assume that w 
itself is a random variable — as we have no preliminary information about the 
distribution P(t], = i) the a priori distribution of parameter w is the uniform one. 

Let us denote by Z>IjJV the set of all possible sequential decision procedures 
{d„ ...,dN_ J on a finite time interval [t, JV]. A decision d,., which depends only 
on the initial decision d0 and the observed reference string {rç^ ...,?/,'} (t'£[t,N]) 
means the subset of pages being absent of the central memory after the observation 
Of String {f/i, ..., /y,-}. 

The decision d, consists of n — m elements. By Arato 's model (case A) the 
memory can be rearranged without extra cost before each reference r]t, but a page-
fault (r]t£dt_j) increases the cost by 1 unity; i.e. the loss function has the follow-
ing form 

d f 1 if t],£d t_ u 
Xt

dtl=\ (1) 
[ 0 otherwise. 

In this paper there is investigated another extreme case (case B) too : each 
change of a page increases the cost by 1 unity and tj, always must be stored in the 
central memory; i.e., the loss function has the following form 

d ^ d ^ l , (2) 

where | . | denotes the number of elements of a finite set. (Notice that if 
then Xt'-*'-1^.) 

§2 . (Case A) 

Our aim is to find the set of sequential decision procedures {da... f/ jV_r} which 
minimize the risk function 

i à x H 

(E is the expectation taken on the basis of the a priori distribution of vv.) In the 
sequel y, denotes the fixed value of rjt. 

Let 

v(yl,..-,yt,N-t)= min (3) 

(1„ •••, «¡v-lf t " t , n Vr = r + 1 / 

where Eyi Vt denotes the conditional expectation under a given string {yu ...,y,}. 

The class of functions v (yt, ..., y,, N— t) satisfies the Bellman equation (see e.g. [2]) 
~rv\y 1, •••, yt-l, 'It, 

(4) 

v(yi, —,y,-i, N-t+Y) = min Eyi ... yt_l{XÎ'-l + v(ylt..., y^^t],, N-t)). 
-1 ' 
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Solving it recursively we can find the set of optimal strategies. Notice that 
v(yl, ..., yt, N—t) 'does not depend on dt..x, therefore, it is sufficient to minimize 
for every t the conditional expectation 

Eyu-.yt-iiX'''1)-
We shall prove that the optimal strategies are those for which d0 is arbitrarily 

chosen and dt consists of the n—m least frequently occured pages in the string 
{ji> •••> >'<}• Before this we prove a lemma and two corollaries of it. 

Lemma 1. Let us suppose that .the frequency f of the page / in the string 
{ j i , ..., y,} is less than the frequency f ) of the page j. Let w1 and w2 be two permuta-
tions of natural numbers 1, ..., n, and k ^ k ^ n two natural numbers. 

If 
WJXO = kt, WiO") = k2, 
w2(i) = k2, w2(j) = kt, O ) 

Wi(fc) = w2(/c) for every k ^ i,j, 
then 

P(Wl\y>l, )'t) < P{W2Ijj, ..., yt). 
Proof. On the basis of Bayes' theorem 

fllAm 
P ( y f i \ y i , - , y t ) = - ^ = 1 - n • (5) 

- 2" flp'U) 
wew k=i 

Similarly, 
« ^ 

P{w2\yi, ...,yt) = . (6) 

2 i f p f U ) 
w(Wk = l 

The assertion of our Lemma can be obtained by comparison of (5) and (6) using 
the inequality p k 2 < p k v 

Corollary 1. If {y,+i, ••., yt+z}, O W i , 5 > t + t } are two strings (sequences 
of pages) i, j are two pages with the following properties, for every 1 

(i) if y i + Z ' ^ i J , then J w -

(ii) if yt+T- = i, then yt+T, =j, 
/ 

(iii) if yt+X'=j, , then yt+z. = i, 

(iv) the frequency f\ of the page i in the string {v,, ..., y,} is less, than the fre-
quency f j of the page j, "" 

(v) if the frequency of the page j in the string {yt+l, ..., yt+z} is greater than 
the frequency of page i, then 

P(lt+1 = yt+1, •••,rit+z = y, + z\yi, —,y,) > P(l, + i = y,+1, -,rit+T = yt+z\y1,..., yt). 
(7) 
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n ! 
Proof. The set W can be decomposed into the union of — disjoint pairs o f 

permutations {w,, u>2} of property figuring in Lemma 1. Inequality (7) can b e 
obtained by direct comparison applying Lemma 1 to every such pair. 

Remark 1. Corollary 1 means for r = l that the order of aposteriori proba-
bilities of the pages after having observed the string {y1,..., y,} is the same as the-
order of their frequencies in this string. 

Corollary 2. Let {yt+,,..., y,+t} and { j / l + 1 . . . . , j i t + t } be the same strings 
and i.j the same pages as in Corollary 1. Let A and B be two events of the algebra 
geneiated by random variables rj t+T + 1 , ..., t]N, which are invariant under t h e 
changing of /' and./ ; let /" and j' be two pages different from i and j. If 

A\B = fa,+t. = i'}, B\A = {r,t+t„ = j'} 

for a suitable r", then 

\P(l, + i = y, + i> •••>rh + T = + 

~ P ( N , + 1 = J'< + I> •••> ^F+R = y, + t,B\yi, •••> > 

> \P(*l, + i = •••,n, + z = y, + r,A\y1, ...,y,)~ 

-P(n, + 1 = Y , + 1> =y,+r,B\y1,..., J ' , ) [ . ( 8 ) 

The proof is analogous to the proof of Lemma 1 and Corollary 1. Inequality (8) 
can.be obtained by comparison of conditional probabilities for every quadruple 
{ivl5 WO, W3, vf4} of permutations of the following property. 
- If k1, k2, k3, k4^n are 4 different natural numbers, then 

w1(i) = k1, w1(j) = k.2, w1(i') = k3, w1(j') = k4, 

w2(i) = k2, w2(j) = k1, w2(i') = ki, w2(j') = k3, 

w3(i) = k1, w3(j) = k2, wa(i') = k3, w3{j') = k4, 

w4(i) = k2, w4(j) = w4(i') = k4, w4(/) = k3, 
and 

w1(k) = w2(k) = w3(k) = w4(k) for every k ^ k1,k2,ks,k4. 
> ' 

Theorem 1. The set of sequential decision procedures {i/0, ..., i/jy-i} which 

minimize the expected loss - ^ ' " ' j in c a s e A consists of the so called least 

frequently used (LFU) strategies, i.e. d0 is arbitrary, and for every t, d, consists of 
the first n — m least frequently used pages in the string {y1, y,}. 

Proof. Theorem 1 is a straightforward consequence of Remark 1 and the uni-
formity of the a priori distribution of parameter w. 
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§ 3. (Case B) 

In case B form we follow the method of comparing the expected cost of optimal 
continuations of different, decisions d, and d{ after having observed the string 
{A> •••;>'<}• Therefore, we denote by v(y^, ..., yt, dt, N—t) the risk-function 
belonging to the observations y1; ..., y, the state d, of memory at time t and the 
optimal strategy on the time interval [ /+1 , TV], i.e., 

v{ylt...,y„dt,N-t)= min ^ J J 

Our aim is to determine the set of sequential decision procedures {d0, ...', dN_ 
for which 

min e[ J X f " = min v(d0, N) 

is reached. , 
First we prove a lemma, which restricts the set of possible strategies to the so 

called demand paging algorithms. 

Lemma 2. If ri,$dt_1; d, and c// are two different decisions of properties 

(i) d, = i/(_x, 

(ii) \d't\dt\ = I > 0, 

then - ' - -
v(y1,...,yndt,N-t)^l + v(yi,...,y„d't,N-t). (9) 

Proof. There are 4 possible cases 

+ d',\dt, 

1t + i£dt\d',, 

r]l + 1£dtr\d't, 
1 ' r,l+1e{i,...,n}\(dtUd't). 

In every case it is easy to show that for an arbitrary decision dt'+1 the decision 
dt + 1 can be chosen to be equal to d,'+1 paying at most 1 extra cost. 

Remark 2. A similar assertion can be verified for /7,6^,-1- If d, and d,' are two 
different decisions with properties 

' (in) №,V t - i l = 1, 

(iv) KV/,-!! = 1, 

• (V) \d't\d,\ =1-1, 

then 
• v(yJ,...,yt,dt,N-t)^v(y1,...,yt,d'„N-0 + l - l . (10) 
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The Bellman equation for the risk-functions has the form 

v(yu -,y,-i, d,-i, N-t+1) = 

• = m i n £ y i yt_l(X?"d-* + v(y1,...,yl_1,t1„d„N-t)). (11) 

The relations (9) and (10), applying recursively equation (11), show that the 
optimal sequential decision procedures are among those which fulfil the conditions 

d, = d,_1 if r]t£dt_1 
and 

= M if tf.ed.-i- (12) 

The decision procedures of the above type are called "demand paging algo-
rithms" (see e.g. Denning [3]). 

We can deduce from the following theorem that the L F U strategies minimize 
the expected loss in case B, too. • 

Theorem 2. If d, and d,' are two different decisions for which 

d,\d't = {('}, d't\dt = {j} 

and the frequency f of the page /' in the string { j l 5 . . . , y,} is less than the frequency 
f j of the page j, then 

v{yi, ...,y„d„N-t) —>yt> d',,N-t). (13) 

Proof. The proof can be carried out by induction on 6=N—t. If 0 = 1 , then 
the assertion of Theorem 2 is an obvious consequence of Corollary 1. Applying 
the induction hypothesis for 6 = 1, ..., 9=N— 1 — t we get that the optimal decisions 
in every case are those for which d,\d,_1 is one of the least frequently 
used (in the string {yx, ..., v,}) pages of the admissible set {1, ..., n}\dt_1. 

To demonstrate the main idea of the proof of the induction step, first we briefly 
present it in the case « = 3, m = 2. Then dt= {/'}, dt' = {j\. Let us denote by k the third 
page. If then, using the induction hypothesis, it is easy to prove that for 
arbitrary outcome of f / ( + 1 , 

Hyi, •~,y,+i,dt+1, N - t - l ) S v(ylt —,y, + 1,d't+1,N-t-l), (14) 

where dt+1(d,'+1) is the optimal continuation of decision d,(d't). 
But 

EH yt(X,%Vd')^Eyi y,(X?l\l-dh 

by Corollary 1, thus using the equation (11) (Bellman equation) we get inequality (13). 
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If fk < f , then in the case t],+1 =j inequality (14) fails, therefore, we need to 
analyze the strings of the form 

(«) Vt+i = i, 1t+t'-i = h tlt+r- = k, 

(i>) »?r + l - h ...,J?i + t-i= i, Vt + z = )> 

(«') *l,+i = j, -,1t+z'-i=j, 1t+z' = k, 

(b') rjt+1=j, ...,t],+T^1=j, }]t+z = i. 

Using the same arguments as in case fk S / j i t is easy to show that af ter having 
observed a string of type (a), (a'), (b) or (br) the optimal continuation of decision 
dt has a better or equal optimal continuation than those of decision d{. Fo r cases 
(a) and (a') the increments of conditional risks for the optimal continuations of 
the decisions dt and d{ can be compared using Corollary 1. 

For the cases (b) and (b') we have to prove the inequality 

P(*lt+i = ¿bi> •••> yt)+P{lt+i = j, fr+a = i\yi, yt) + ••• 

+P(.1t+i=j, ~,>lN-i = j,tlN = i\yi, —,y,) ^ 

= P(>1,+i =j\yi, —,yt) + P(nt+i = i,*lt+s=j\yi, ...,y,) + ... 

+ P(lt+i = i, -,tlN-i= UIN =j\yu -,yt)- (15) 

Inequality (15) can be verified using Corollary 1 and the obvious relation 

P(n,+i = ibi, yJ+^+i = j, nt+i = i\yi, y,)+ ••• + 

+ PQln-l=j,V, + 2 5* i, ...,r), + z-X ^ i,1t + z = i\yU ...,y,)+...= 

= P(lt+1= i\yi, y,)+P(tl,+i = j\yi, yt) = 

= P(.1t+i=j\yi, -,yt) + P(*lt+i = h nt+z=j\yi, + 

+P0i,+i = Uit+z^j, -,1,+r-i ?ij,m+z = j\yi,..., (16) 
as (15) can be obtained f r o m (16) by leaving pairs on term f r o m the left hand side 
the other f rom the right hand side so that in each pair the left hand side term is 
greater. 

Next we give the proof of the general case. Let us denote by I the subset of 
pages f rom the set {1, ..., n}\dt' with less than ft frequency in the string {yx,..., y,}. 

(17) 

(18) 

(19) 

2 Acta Cybernetica III/2 

If | / | = 0 , then the proof is analogous to that of case A = / i for n = 3. 

. When then X f c 1 ' d ' = X ^ 1 - " ' and 

v(yi, ...,yt+x,dt+1, N - t - l ) rS y(yi, ...,-yt+l,d't+1, N - t - l ) 

by the induction hypothesis. 
For rjt+l=i, 

X f l V 1 ' = 1, x f i \ l - d c = 0 
and 

v(yi, • ••,y„ i,dl+1, N - t - l ) < v(yu ...,y„ i,d't+1, N - t - l ) . 
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Similarly, for r],+1=j, 

dt = o, x f i v d , = 1 (20) 

and by condition | / | = 0 

v<Ji, y„j, i , N-t-1) = v(yls..., y„j, d't+i, N—t~ 1). (21) 

By Corollary 1, f rom (18) and (20) follows the inequality 

Eyi yt 

which together with (17), (19), (21) and the Bellman equation proves the assertion 
of Theorem 2 in case | / | = 0 . 

Let us assume that l /MO, and introduce the mapping <P on the set of strings 
{yt+1, . . . , J ( + T } of length i (T is an arbitrary natural number, and {1, ..., «}) 
as follows 

fo+i, -,yt+x} = H{y,+i, •••,)',+*}) 

a n d f o r every I ^ T ' S T , 

y,+z' = J W if y,+z- * hi, 

yt+z'=j if y,+x-=h 

?t + t' = i if y, + z'=j-

Let us investigate the behaviour of the optimal continuations of decisions 
d, and d,' on the strings of the form 

{y, + i=j,yt + 2 5* U '...,yt+\-1 i,yt + z = i}-

There exists a x" > 1, such that for x' ^ T" the following relations are valid 

(i) dt+z,=dt+z.-1 or the unique element of has less frequency 
in the string {jij, ..., j , + t '} than the page i. 

(ii) dt'+z.=d,'+z^1 or the 'unique element of d,'+z\dt'+I^1 has less frequency 
in the string {y1, ..., y,+T'} than the page i. 

(iii) d,+z\d't+z. = {¿}, 

(iv) d't+z.\dt+z, = m 

and there is at most one in the set {1, . . . , n } \ d t ' + z which has less frequency 
in the string { j i , . . . , y,+ z-} than the page k*. The properties (i), (ii) and (iii) are 
obvious consequences of the induction hypothesis, the property (iv) can be proved 
by induction on T'. 

If the first moment x' for which property (ii) fails, is less than x, then 

d',+z\d't+T--i = {'} i-e- d't+z. = d't+z. (22) 

(Notice, that for such a x' property (/) is still valid.) 
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Therefore, K 

»tPi . ...,y,+z-,dt+z,,N-t-r') = v(y1} ...,y,+z.,d't+x.,N-t-x'). (23} 

If there is no such i ' < t for which property (») fails, and 

= m 

has minimal frequency among the pages {], ..., n}\d,'+z,, then it follows f rom the 
relation 

j>,+1 = i that d, '+t = dt+z, 
i.e., ' . v 

v(yi, ...,y,+x,d,+t,N-t-T) = v(ylf ...,yt+z,d't+t,N-t-z). 

If there exists a unique page k% in the set {1, . . . , n}\d,'+r with less frequency 
than k*, i!e., 

d't+z\d,+z = {kt}, d,+z\d't+z = {k*}, (24) 

then we have to argue more carefully, which we shall do af ter having analyzed the 
behaviour of optimal continuations of decisions d, and d{ on the strings of type 

&({y,+1 = j, y,+2 ^ '»y,+z-1 ^ i, y,+z = «'})• 

Let us denote by 3t+z and 3t'+z the optimal continuations of decisions d, and 
d,' on the string 

^ t f t t + l . - . J ' . + T»-

If for a T'<T, dt+x, and d[+z, fulfil the conditions (/') and (ii) on the string 
{yt+1, ..., yt+Z'\, then so do 3t+z, and d,'+ t . . Moreover, 

(v) d't+z. = a,+z., 

(vi) 3',+t\dt+z, = { j } , -

(vu) dt+z\a;+t. = {¿}. 

Obviously for t],+1 = i,3t+1 and 3,'+1 satisfy the relation 

v(ylt ...,yt,i,dt+1,N-t-1) ...,y„i,3't+1,N-t-l). 

But this inequality is insufficient for the proof of Theorem 2, as we have to ballance 
the difference in expected loss between the continuation of decisions dt and d! on 
the strings of type 

{Jr + i = J, y,+2 ^ U ...,y, + z-i ^ i, yt+z = i}. 

By properties (/)—(vii) , the symmetry of the mapping $ and Corollary 1 the sum 
of expected loss of continuations of decisions d, and 3, on the strings ..., yt+z} 
and <P({y,+1, ..., >'!+T}) is less than those of decisions d{ and 3,'. 

The comparison of probabilities of page faults at the moment r caused by 
decisions 4 + t - i and 3', fz_1 can be carried out analogously to the case n = 3 , using 
the identity (15). It remains to analyze the case when there exists a page k t in the 
set {1, ..., n}\d,'+ r with less frequency t h a n k * . By the symmetry of the mapping <P, 
for the string $({yt+1, ..., j ,+ t}) , - . 

2» 
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d,+z\d'l+z = {k*2} 
and 

a ; + z \ a t + z = m (25) 

(See properties (iv), (v) and relation (24).) 
Let T">T the moment of first page-fault caused by decision dt+z or 

4 + t (respectively by d't+z or 3t+z) on the string {.yI+1, y,+z, >',+ t+ i , yN) 
(respectively on {<P({yt+1, ..., y,+z+i, yN}). Since k t and k t are the 
first two pages of the set 

{1, ...,n}\(dt+T n d,'+z) = {1, ..., n}\(3t+z PI d't+z) 

least frequently used in the string {ylf . . . , yt, yt+1, ..., j ( + r } (respectively 
{ y i , . . . , y „ <i>(0>t+1, J ' t+J)} thus we get 

v(yx, ...,yt+t~,dt+t», N-t-t") = v(yx, ...,yt+z*,d't+f,N-t-x"), (26) 

. v(ylf ...,y„$({yt+1, ...,y(+r}), yt+z+1, ...,y,+T»,dt+I«,N-t-z") = 

= v{yx, ...,y„^({yt+1, ...,yt+z}),yt+T+1, ...,yt+t~,%+t~, N-t-T"). (27) 

If the page fault was caused by an event of type 

rlt+T"£dl+I fl d't+z, 

then the expected loss of the strategy {...d,\ ...,d,'+T, . . .} is greater than the loss 
of the other one. In the opposite case we can compare the common expected loss 
of the strategies 

{... d't,..., d't+z,...} and {... 3't, ...,3't+z,...} 

(respectively 

{... dt,..., dt+z,...} and {... ...,dt+z,...}) 

using Corollary 2, and we get tha t the former is greater. This last remark together 
with relations (26) and (27) completes the proof of Theorem 2. 

Remark 3. Also in case B the decision d0 can be arbitrarily chosen by the 
symmetry of the a priori distribution of the parameter w. 

Remark 4. Our all considerations remain valid for any a priori distr ibution 
in the space of all probability distributions invariant under the permutat ions of pages. 

Abstract 

Using the sequential Bayesian method the authors prove that in a two level storage hierarchy 
the "least frequently used" strategy is optimal for the page fault rate. It is assumed that the refe-
rence string forms a sequence of independent identically distributed random variables with un-
known distribution. Two kind of loss function is discussed. 
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Deadlock problems of dynamic memory allocation on 
minicomputers with multilevel interrupt system 

By J . SOMOGYI 

1. Introduction 

There have been, a number of papers in the last decade dealing with control 
of concurrent processes (see [1] for a comprehensive list of papers). In this paper 
we investigate the applicability of some of the theoretical results to minicomputers 
with multilevel interrupt system. 

In view of concurrent processes the main characteristics of these machines 
can be summarised as follows (see Fig. 1). Let i, j and k denote three interrupt 
levels such that and suppose that a t time t0 the machine works on level i. 
At time t1 a level k interrupt request arrives. Because of k>i the hardware saves 
the context (program counter* indicators, etc.) of level i, and loads the context 
of level k into the appropriate hardware registers. Then program execution goes 
on at the memory address pointed by the new program counter. 

A t time i2 a level / i n t e r r u p t request arrives. Because of j < k (the current level) 
the request is recorded by the hardware, but not dealt with. At time t3 level k 
completes. At this time level j is the highest waiting level. Therefore the hardware 
selects (via context changing) level j for execution. At time i4 level / completes. Then 
the hardware returns to level i interrupted a t time tv 

In section 2 we shall describe a deadlock problem related to the monitor 
program of the VT1005, a Hungarian manufactured minicomputer with an interrupt 
system described before. The design and development of the monitor program was 

level k 

level j 

level i 
i 

11 t2 t3 
Fig. I 

Hardware scheduling .of interrupt levels 
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performed when the complete specification of the machine had not been freezed 
by the manufacturer. Therefore, instead of using a simulator the moni tor was 
written in a higher level language, C D L [2], and was debugged on another mini-
computer, RIO, which is equivalent to CII Mitra 15. 

From programmer's point of view the interrupt system of the two minicomputers 
are identical, so the ascertainments of this paper apply to both machines. 

In section 3 two solutions of the deadlock problem will be described and 
compared in view of their memory requirement. Section 4 is devoted to the 
implementation details. In section 5 we prove that the solution described in section 4 
is deadlock free. 

Suppose that in Fig. 1 the program executed on level i calls for a monitor 
service (e.g. ASCII—EBCDIC conversion), and a t time tx the control is in the 
service routine. At the same time another program on level k enters, and calls for 
the same monitor service. Then there are two possibilities, either queuing the second 
and the possible further requests, or writing re-entrant service routines. 

In the first case the service routines become resources, each forming a separate 
resource type. Moreover the service routines may call for further service routines, 
etc. Avoiding deadlocks so, the deadlock avoidance may become overcomplicated 
for the limited memory of a minicomputer. 

In the second case we have to provide dynamically allocated working areas 
for the service routines, with memory being the only resource type to be dealt with. 
Further simplification can be introduced" by allocating the memory in blocks of 
a fixed size. Though a C D L procedure is available handling variable size blocks, 
it does not fit 8K byte memory of our machine [3].-

After all in our system there is a common memory consisting of fixed size 
blocks, and one C D L procedure can have one such memory block. Suppose tha t 
the programs running on interrupt levels greater than zero are all peripheral device 
handlers. (There is no interrupt associated with level zero, this level is reserved for 
user programs.) Then, in best case an interrupt level requires two memory blocks, 
as shown in Fig. 2. 

2. The deadlock problem 

d e v i c e h a n d l e r 

c h a r a c t e r 
c o n v e r s i o n 

i n p u t - o u t p u t 
m o n i t o r 

Fig. 2 
The best case 
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In the figure CDL procedures are represented by circles. The procedures within 
the same row are executed one by one. Therefore the number of rows is equal to 
the depth of nesting, that is to the maximum number of blocks required by the 
interrupt level. 

The worst case is caused by device errors requiring operator intervention (e.g. 
card jam, paper low). In this case the input-output monitor is called for sending 
the appropriate message to the operator 's console. Then, as Fig. 3 shows, the inter-
rupt level requires five memory blocks. 

d e v i c e 
h a n d l e r 

c o n s o l e 
h a n d l e r 

Fig. 3 
The worst case 

Suppose now that some of the interrupt levels have memory, but none of them 
has enough to complete, and the common memory has been exhausted. Then the 
system contains a deadlock. 
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3. The solution of the deadlock problem 

The maximum memory requirement of each interrupt level is given. Therefore 
the deadlock could be prevented by the known methods [5]. Unfortunately the 
application of these methods to the machines described. before, implies a serious 
efficiency problem. 

When occuring an interrupt, the service must start immediately so as to avoid 
the loss of data or status informations. Doing so, we need at least one memory 
block. Therefore, if we decide to postpone the service of the interrupt for avoiding 
the deadlock, we must do it before starting the input-output operation, that is, the 
operation must not be started. However, this implies significant loss of time, because 
the input-output operation could take place during the waiting time. 

Because of the small memory size of the VT1005, we are forced to look for 
a solution as simple as possible. In the following we shall compare two simple 
solutions in view of their memory requirement. 

We are interested only in the differences of the two solutions, so we ignore the 
memory requirement of the user program, which is the same in the two cases. 

3.1. The trivial solution. Let the size of the common memory be large enough to 
satisfy the memory requirement of each interrupt level simultaneously even in the 
worst case. 

Calculating the total memory requirement we have to take into consideration, 
that the operator 's console can service one request at a time. The other requests are 
queued by the input-output monitor. Therefore only one of the interrupt levels 
can have the maximum number of blocks, the others can require one less. 

Let M denote the maximum number of blocks required by an interrupt level, 
let B be the length of one block, and let N be the number of interrupt levels active 
at a time. Then the total memory requirement is M B+(N— 1)(M— 1) B. 

3.2. A nontrivial solution. Let the size of the common memory be such that the 
minimal memory requirement of each interrupt level could be satisfied simultaneously, 
and one of them could have the maximal requirement. Moreover only one of the 
interrupt levels at a time can have memory exceeding the minimal requirement. 
As a matter of fact, it would be good enough to grant one memory block per inter-
rupt level for starting the interrupt service routine. However, we want to avoid 
the unnecessary suspension of levels when the input-output operation was error free. 

Let M, N, B be as before, let m denote the minimum number of blocks required 
by an interrupt levél, and let C.be the size of code necessary for controlling the 
memory allocation according to the present solution. Then the total memory 
requirement is NmB+(M—m)B+C. 

The nontrivial solution has an advantage over the trivial one, if 

MB + (N—l)(M—l)B> NmB+(M—m)B+C 

and, therefore, if 

^ > 1 + ( M - m - l ) i T : . . . — — 
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4. The implementation 

The common memory consists of Nm+M—m blocks, M—m of which are 
subject to mutual exclusion. The mutual exclusion is implemented via the enqueue 
and remove primitives defined below. 

Let q denote the waiting queue, consisting of the total number of interrupt 
levels plus one element, let p be the pointer of the queue, and let n be the actual 
interrupt level. Then. 

enqueue(n) : 

L: p = 0 0 [ O ] : = u , p:=n return 
I 

p 0 q[p]'-= n, p:=n—:—D1T- g o t o L 

where DIT stands fo r Desactivate InTerrupt. This allows to continue the execution 
of other interrupt levels with lower priorities, 

^remove («): 

p = n p : = 0 return (no levels are waiting) 
' I 
p^n q[0]: = q[n] PIT ?[0] return 

where PIT s tands , for Programmed InTerrupt. This activates the interrupt level 
desactivated by the D I T operation. The execution of the activated level will continue 
in the enqueue primitive just behind the DIT.operation. 

Dealing with a single-processor system, the primitives are implemented by 
interrupt inhibition. 

For allocation and deallocation of memory blocks, let R denote a list consisting 
of the total number of interrupt levels plus one element, and . let n be the level 
requesting or releasing a memory block. 

The allocation procedure: 

/ ? [« ] := i?[n] + 1 m + 1 allocate memory 

R[n] = m 1 enqueue (n) allocate memory 

The deallocation procedure: 

deallocate memory /?[«]•:= /?[n] —1 — — / ? [ n ] ^ m — — ^ e x i t 
.1 

/?[«] - m — remove («). 
Returning to the question of choosing the one of the. two solutions to : be 

advantaged our numerical results are: C = 160 bytes, 5 = 3 2 bytes, M = 5 and m = 2 , 
therefore N ^ 4 . Hence the second solution needs less memory, if at least four of the 
peripheral devices are expected to work simultaneously. 

5. Proof of the nontrivial solution being deadlock free 

For formal treatment of the deadlock problem we adopt the definition of [1] 
with the number of resource types equal to one. To begin with we convert the de-
scription of the interrupt servicing procedure into a chain. Fig. 4 shows the chain ~ 
corresponding to Fig. 2. 
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h a n d l e r c o n v e r s i o n h a n d l e r m o n i t o r 
Fig. 4 

Chain corresponding to Fig. 2 

T ( 5) 

h a n d l e r 

- Within the chain T(J) represents a unit of execution during which the resource 
usage of the chain remains constant. Such a unit will be called a task. The execution 
of a chain implies a sequence of task initiation and termination events. The task 
termination events are associated with both the releasing of resources not needed 
by the next task, and the immediate requesting of the additional resources necessary 
for initiating the next task. The task initiation events are associated with the alloca-
tion of the resources requested at the termination of the previous task. 

The interrupt servicing system consists of the parallel combination of chains 
defined above. Then the state of the system is described by the pair of vectors 

and 
P(k) = (Pl(k),...,PN(k)) 

Q(k) = (gi(/c),..., QN(k)) 

where Pt(k) and Qi(k) denote, respectively, the number of memory blocks held and 
requested_by the ith chain after the &th event. 

Let T(j) and T(J) denote, respectively, the initiation and termination events 
of task T(J). Then Fig. 5 shows the Pt and Q, values of the chain of Fig. 4. 

T( 1) J ( l ) T( 2) J ( 2) T( 3) J ( 3) T(4) J ( 4) T( 5) J ( 5 ) 
1 1 2 1 1 1 2 . 1 1 0 
0 1 0 0 0 1' 0 0 0 0 

Fig. 5 
Pi and Qi values of chain of Fig. 4 

Note that Qt can have values of 0 or 1 only. The interpretation of 
is that the ith chain is awaiting the allocation of a memory block. P ^ k ) ^ ® and 
Qi(k)=0 implies that the ith chain is in execution. 

Let w denote the system capacity, that is, the total number of memory blocks. 
We say that the system in the fcth state contains a deadlock, if there exists a non-
empty set D of chain indices such that for each i in D 

e,(fc)>vv- 2 Pjik). 
j£D 

Applying the notation to our case, we see that 0 ^ P i ( k ) ^ M 
and w=Nm+M—m. Suppose that there exists a subset D of chain indices such that 

Ô , . ( f e ) > w - 2 Pjik) 
jib 

for each i£D. 
We shall come to a contradiction by this. There are three cases to consider. 
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C a s e 1. Pj(k)^m for j=1, 2, ..., N. Then 

w- 2 p j ( k ) = w-\D\m ^ w-Nm = M-m = 3 > Qt(k) 
JiD 

for / = 1 , 2, ...,N. 

C a s e 2. There is a chain index r such that 

Pj(k) m if j ^ r 
and 

w < Pr(k) • M. 

Then we have two subcases. 
a 

C a s e 2A: r$D. Then 

w - 2 Pj(k) = w —|Z)|w ^ w-(N-l)m = M>Qt(k) 
jiD 

for i = l , 2 , ...,N, 

C a s e 2B: r£D. Then 

w- 2Pj(k) s w—Pr(k)—(\D\ — l)m ^ w-Pr(k)-(N-.l)m = M-Pr(k) 

but Pr(k) + Qr(k)^M, therefore M-Pr(k) S Qr(k) so there is an index rgZ), for which 

. 2 r ( f e ) > vv- 2 ^ ( f c ) 

does not hold. 

6. Conclusions 

Because of the modest instruction set of the minicomputers the size of the 
code increases rapidly with the complexity of the algorithm. The optimal solution 
can hardly be found, in general it needs lengthy experimentation. The price given 
for the simplicity of our algorithm is the poor utilization of the memory. We could 
solve the problem using less memory blocks via more complex algorithm. 

The machine independently defined algorithms for deadlock avoidance could 
hardly decrease the timing efficiency. I t is worth noting, that the machine independency 
versus efficiency problem did not occured in the other parts of the system, in spite 
that a machine independent higher level language (CDL) was used. 
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A strategy for scheduling splittable tasks to reduce 
schedule length 

! v 

B y J . B L A Z E W I C Z , W . CELLARY, J . W ^ G L A R Z 

1. Introduction 

In deterministic problems of scheduling tasks on processors (static job-shop 
problems) it is usually assumed that task execution times are known in advance. 
Of course, in practice this assumption is not always met, but even then the solution 
of deterministic problems of scheduling has an important practical meaning. Firstly, 
when the expected values of task execution times are known, then it is possible, 
using established techniques [3], to find an optimistic estimate of the expected value 
of the schedule length. Secondly, upper bounds of execution times of individual 
tasks may be known. Then scheduling using these values corresponds to the analysis 
of the worst case and is applied in hard-real-time problems with strict deadlines 
that must be observed! 

Independently of this one can measure task execution times after processing 
a given set of tasks and use them to find an optimal schedule. This allows one to 
estimate an operational scheduler and to draw conclusions about possible improv-
ments. 

It becomes more and more important to schedule splittable (preemptable) tasks 
i.e. those that may be preempted; the processing of preempted task may resume 
where it left off without any extra work or time being occasioned by the preemption. 
Examining splittable tasks is of a great importance in systems of parallel processors 
using a common operating store. Such systems have increasingly many applications 
in the control of such processes as traffic, telephone switch control organization 
[5, 11] in which several processors using a common data base and computational 
procedures are being used. It is easy to verify that the possibility of preemption is 
profitable for improving the schedule length. 

Scheduling splittable tasks was considered in [8, 9, 10]. Algorithms, presented 
in these papers, concern only homogeneous processors and relatively simple prece-
dence relations among tasks. In [4, 7], the problem was considered of scheduling 
independent tasks on processors that are consistently fast or donsistently slow for 
all the tasks. In the papers mentioned above non-enumerative algorithms were 
presented. However the problem of scheduling dependent, splittable tasks, in the 
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general case, is known to be polynomial complete [4] and hence unlikely to admit 
a non-enumerative solution. Thus, for this case the direct use of scheduling strategies 
in an operating system has rather restricted applications. Finding such strategies 
has, however, practical significance for the following reasons. Firstly, one can use 
them to estimate an operational scheduler. Secondly, the distance between an optimal 
solution and a suboptimal one for a heuristic, non-enumerative approach, may be 
found. Lastly, enumerative algorithms may be used in computer centres that perform 
large and complex numerical computations but not in a real-time environment. 

In this paper such a scheduling strategy will be presented, which gives some 
particular advantages. Then it will be compared for the case of homogeneous proces-
sors with the strategy described in [2]. 

2. Scheduling on heterogeneous processors 

There are given a set of m processors P1, P2, Pm and a set of n tasks 
7 \ , T2, ..., Tn. The execution time of task Tj on processor P, will be denoted 
by r¡j, where T t j is a positive real number. 

We will assume, that precedence relations among tasks are given in the form 
of an activity network in which arcs correspond to tasks and nodes to events. Let 
the number of nodes of the network be equal to r+1. It will be assumed that the 
events are ordered in such a way that event j does not occur earlier than event i 
if / < / . 

The concept of the algorithm for scheduling splittable tasks on heterogeneous 
processors to minimize schedule length was given in [1]. For this purpose the follow-
ing denotations were introduced: 

— Sk, k=l, 2, ..., r, the set of all tasks which may be processed between the 
occurrence of event k and 1. This set is called the main set; 

— K j , j = 1,2, ..., n, the set of indices of these main sets in which task Tj may be 
processed. 

For a given schedule we denote: 

— xijk£{0> 1)> i= 1> ..., w ; 7 = 1 , 2 , . . . , n; k£Kj, a part of task 7} processed 
on processor Pi in Sk\ 

— tijk—Ty the processing time of a part xijk\ 
m 

— Ujk= 2 tijk> 7 = 1 , 2, k£Kj the processing time of a part of task 
>=i 

Tj processed in Sk ; 

— tj = 2 ljk> 7—1, 2, ...,n, the processing time of the whole task Tj] 
k£Kj 

— j>fc, k=l, 2, ..., r, the schedule length in Sk; 
r 

— y = 2 yn' schedule length. 
t = i 
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Using the above denotations, the following linear programming (LP) problem 
may be formula ted: 

Minimize y 
Subject to 

m 

2 = i j = \,2,...,n, (i) 
k i K j i = 1 

i = 1,2,..., m, 
y * ~ 2 x t № T y S 0 (2) 

j£Sk K — 1, z , . . . , r , 

m j — 1, 2, . . . , H, - Z x u k T ' V - ° k c K . ( 3 ) 

Equation (1) guarantees tha t every task will be processed; inequality (2) defines 
yks as the schedule lengths; inequality (3) assures tha t obtaining a feasible schedule 
will be a possible, i.e. one such tha t no task is processed simultaneously on more than 
one processor. 

As the result of solving the described L P problem the optimal values y*, x*Jk, t*Jk 
and t*, / = 1 ,2 , ...,m; j= 1, 2, ... , n; k£Kj, a re obtained. However, all starting 
points of parts of tasks are unknown. These points may be found by using the rule 
shown in Fig. l . As the initial values fo r the rule, the optimal values, obtained by 
solving the L P problem formulated above, are taken. In Fig. 1 t(i), / ' = 1 , 2 , ..., m, 
denotes the processing time tjk of the f t h assigned task, and t(m + 1) the pro-
cessing time tjk of the first unassigned task. 

3. Development of the algorithm 

In the problem described in Section 2. the first feasible solution is known in 
advance — it is the sequential processing of all the tasks on a single processor. 

n 
The number of variables is v=(m + \) •(/•'+ ^ l ^ y l ) , where \Kj\ denotes the 

j=i 
r rt 

number of elements of set Kj. The number of constraints is c=n+mr+ 2! \Kj\- For 
j = i 

solving this problem the. Revised Simplex Method [6] is worthwhile, because for 
most cases v >3c . I t is clear tha t the number of variables and constraints increases 
with increasing of the number of tasks and processors. For example for 5 processors 
and not very complicated networks containing 10 tasks the number of variables 
is about 100, 30 tasks — 500, 60 tasks — 1.5 -10 s and 100 tasks — 5-10 3 . The 
numbers of constraints for the same networks are respectively about 50, 200, 400 
and 800. If we want to use directly one of the simplex methods for solving the L P 
problem, about 107 memory cells for 100 tasks will be needed because of the necessity 
of memorizing the matrix of coefficients which is, the largest one in the problem. 
Thus the direct use of simplex methods has here a very restricted application. 

Below an approach which allows for the great reduction of the difficulty men-
tioned above will be shown. 

3 Acta Cyhernetica III/2 
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start 

k:-. = 1 

order tasks in de-
creasing order of re-

assign arbitrarily m first tasks 
to different processors, denote 
assigned parts of tasks by x,Jk 

find = m i n i'm. 

yes no 

process the assigned tasks 
for a quantum of time 

process the assigned tasks 
for a quantum of time 

M=yk-t{m+\) 

decrease yk, t(i) /'=1,2,..., m 
and respective t,jk by 

a quantum of time M 

no < > 

no 

• , yes 

k:=k+\ 

r 

yes 

Q Stop ^ 

Fig. 1 
Finding starting points of ^ „ ' s 
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^ start ^ 

'I' 
set up the. 

column counter 
/: = 1 

<±L> yes 

y e s 

no 

beginning from the 
row ( M - f ( / — l ) w + 1 ) 
• put m times "1" 

j: — max { p : f \Ks\<l-r-d(i-l)} 
s—1 

k: = the ( / - ; • - ( / - \ ) d - 2 № 1 ) th 
s= 1 

element from the set K, 

beginning from the 

row ( « + « i r + 2 № ' ) p~ I 
put |S,| times "1" 

put "1" into the row j 

put " - T , " into the 
rows ( n + m f c — 1) + /) and 

(«+/— r+rm—(i— 1 )d) 

put "0" into the 
other rows o f " 

the /-th column 

put "—1" into the 
r o w ( l — r — m d + n ) 

isimplex procedurei 

no 

/ : = / + ! 

yes 

Fig. 2 
Generation of consecutive columns of the matrix of coefFcients in one simplex iteration 
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The idea of this approach is based on a generation of consecutive columns 
of the matrix of coefficients in every simplex iteration. Such generation is possible, 
because in the Revised Simplex Method the elements of the matrix of coefficients 
are constant during computation. As a result only one column of this matrix has 
to be stored a t any moment , and so storage requirements are significantly reduced. 

For the purpose of describing the technical aspects of generation let us distinguish 
among columns of the matrix of coefficients three sets of columns. The first set 

n 

contains r columns corresponding to variables yk; the second set — m • ^ \Kj\ 
j=i 

n 

columns ' corresponding to variables xijk; the third set — mr+ £ \Kj\ columns 
j=i 

corresponding to artificial variables. After identification of the actually generated 
column to which the set does belong, appropr i a t e values are put into the rows 
corresponding to constraints (1), (2) and (3) on the base of the minimum informat ion 
about the structure lof the problem. This information includes n, m, matrix of exe-
cution tiines [ry] and the vector describing the structure of the network, containing 
arcs as ordered pairs 'of riodes. After generation a single column, one check the 
benefit of introducing this .column into the solution of.the L P problem in accordance 
with the p simplex procedure. The number of constraints (1), (2), (3) are equal res-

i I " •• 
pectively to n, r-m and 2\K;\. The block diagram of the generation of consecutive. 

. j - i 
WjiuiïiiiS \JI I.lie iViutiiX Oi COtiiIviëiiLD i."> Giît pimpitX iitaaiiCn IS shown in Fig.; 2. 

In Fig. 2. d~2.\kj\. p- ' ; 
J=1 I 

The fact must be stressed that the.computer time used by the algorithm in com-
parison with the time used by the algorithm in which ¡the procedure of generation 
is not used, is reduced, exicept for small problems which dp npt require mass storage. 
Of course, if the networje-node ordering is not given, the obtained schedule is in 
general à suboptimal one. The optimal schedule may be obtained ;by choosing the 
best one f r o m among optimal solutions for all possible orders. 

! 

4. Scheduling on homogeneous processors 4 - a comparison of two algorithms 
i ! 

In the case of homogeneous processors, tasks may be scheduled in accordance 
with the algorithm described in Sections 2 and 3. Let us call it the A-algorithm. 
However, for this case, a special. algorithm has been elaborated [2] which will be 
called the B-algorithm. In this Section we present the conceptual basic of this 
algorithm in comparison with the ^-algori thm. 

In the fi-algorithm we also use the concept of the main sets Sk, k = 1, 2, . . . , /•, 
which was introduced in Section 2. 

Let us number f rom 1 to N the feasible sets, i.e. those subsets of all main sets, 
in which the number of elements is not greater than m. Now let Qj denote the set 
of all numbers of the feasible sets in which task T j may be processed and t( the 
duration of set /'. Thus one obtains the LP problem : 
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Minimize 
N 

y=2h-
¿=1 

Subject to 
2U = t j j = 1 , 2 , . . . , » (4) 

HQj 
or in matrix notation 

At = r 
where A is the matrix of coefficients: 

[ 1 if «€<2j 
, J [ 0 otherwise. 

Obviously, the columns of matrix A correspond to the resource feasible sets. 
The number of variables in this problem is much greater than in ^-algori thm, fo r 
example: for 5 processors and 10 tasks it is about 50, 30 tasks — 2• 103, 60 tasks 
— 3 • 104 and 100 tasks — 2 • 105. On the other hand, the number of constraints 
is much smaller than in ^-algori thm, because it is equal to the number of tasks 
(see (4)). 

In order to avoid the storage of matrix A, the method of automatic generation 
of columns for ¿-algori thm, for this matrix was also elaborated [2]. 

Comparing these two algorithms one should pay attention to core store require-
ments and computer time. 

Core store requirement for both algorithms is equal 16c. So in this respect, 
it is more worthwhile to use the ¿-algori thm, because the number of constraints 
c in it is much smaller. The number of variables as well as the number of constraints 
influence computer time. In Table 1 computer times for A- and ¿-algori thms are 
compared for not very complicated networks and 5 processors. These results were 
produced using programs written in F O R T R A N IV and processed on an O D R A 1305. 

Table 1. 

Iterations Computer time of 

Number to optimum single iteration [S] 

of tasks Algo- Algo- Algo- Algo-
rithm A rithm B rithm A rithm B 

10 65 12 1.5 0.9 
30 250 39 3.5 3.1 
60 500 88 6.2 7.3 

100 1000 151 10.1 18.2 

It proceeds f rom Table 1 that using the ¿-algori thm one reaches the opt imum 
faster within the scope of studied examples. However, it seems that as the size (number 
of tasks) of the problem increases, the performance of .¿-algorithm relatively 
improves, but for both algorithms, the time used to reach the optimum permits 
their practical application to problems of up to 100 tasks. 

Concluding, one should state that the ¿-algori thm is better for the case of 
homogeneous processors and may be used in parctice. 
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Abstract 

This paper deals with deterministic problems of scheduling n preemptable tasks on m parallel 
processors. The structure of the set of tasks is given in the form of an activity network (i.e. a direc-
ted, acyclic graph with only one origin and only one terminal) and the minimizing of the schedule 
length is the performance measure. The cases of identical as well as heterogeneous processors are 
considered. The problem of obtaining the minimal schedule lenght is reduced to a linear programm 
ing problem. In order to provide facilities for solving problems of a practical size, the special pro-
cedure proposed here considerably reduces computer storage requirements. For the case of identical 
processors two approaches for solving the problem have been compared. 

I N S T I T U T E O F C O N T R O L E N G I N E E R I N G , 
T E C H N I C A L U N I V E R S I T Y O F P O Z N A N 
P O Z N A t f j P O L A N D 
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A maximum-selector design in Codd-ICRA cellular automaton 

B y D . V . T A K Á C S 

I. The Codd-ICRA cellular automaton 

Introduction 

The idea of the cellular automaton is created by John von Neumann [4], in 1948. 
The cellular automaton is a set of identical, synchronized, finite, deterministic 

automata — called cells — connected by a homogeneous pattern. The cells directly 
connected with a certain cell, called neighbours of the latter one, and the state of 
a cell in a certain t ime step depends only on its own state and its neighbours' state 
in the last time step. The function, which governs this dependence, is called transi-
tion function. 

In 1968 E. F. Codd published in his book Cellular Automata [1] a transition 
function in explicite form. This and his construction's techniques were our starting 
points in the Hungarian ICRA team since 1971. 

We modified in some measure the Codd's transition function and techniques, 
keeping the main principles of the Codd-type cellular automaton. This new version 
is-named Codd-ICRA.cellular automaton. 

The work of the I C R A team was motivated by practical purposes. Accordingly 
with the present technologies, it's not hopeless anymore- the industrial producing 
such microelectronical circuits, which are the implementation of the Codd-ICRA 
cells. Therefore, one gets the possibility for constructing a new type of computer, 
constituted by cells only, in which-the following advantages would be joined 

— absolutely parallel working, 
— hierarchiless, 
— production homogeneity, 
— flexible connection, 
— flexible transformation, 
— high speed, 
— simple extensibility, 
— absolute invertability of the software with the hardware, 
— the manufacturing use of the selfreproducing ability. 
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Now let us introduce a bit formally the basic concepts of cellular au tomata . 
After having these, we show some Codd-ICRA techniques. Finally, we present 
a possible maximal number selector designed as a Codd-ICRA automaton. 

Cellular automata and Codd-ICRA automaton 

A cellular automaton consists of a collection of identical cells occupying a certain 
set of "places" / , and at each time step they change their states belonging to a finite 
set of possible states S, and this change takes place as a consequence of their mutua l 
influences. 

A cellular automaton, by definition, is a five-tuple 2 I = ( / , L, v, S, ± ) where 
I Q Z* is a subset of the points having integer coordinates in a ^-dimensional 

Euklidian space. We shall associate a cell to each point i of / , and we shall 
identify it with i. 

L ^ Z k Q l is the set of dummy cells. 
v: I—-(/LIZ,)" is the neighbourhood function, where «is the number of all neighbours 

of a single cell. 
( / , L, v) is the socalled cellular space, which is homogeneous in the following sense; 

for every i f j , v(i)=(i+a1, ..., i+a„}, where a1,...,a„ are fixed vectors. 
The cells, having dummy cell neighbour, namely the elements of the set P 

p = {ia\vmi% 
we call boundary cells. 

S is the finite set of the possible states. 
_L : Sx S"—~S is called local transition function. If i f j and S, then the cell, 

located at /, being in state s, with the neighbourhood v(i\ in state 
¿ i , . . ! , v(i)„ in state ¿„', will have the next state J_(J, (si , .. . , s'„)) denoted as 

S ± ( S I , . . . , s'„). 
If s0£S, and i0_L (.v0, ..., s„)~s0, s0 is called quiescent state. 

n-times 
q: I—-S is the global state, or configuration of the cellular automaton, which 

associates a state to each cell. The state of the cell / £ / , will be denoted by 
q(i) or qt, and the set of the global states by S1. 

X: L —• S. The mapping A is the input of the cellular automata, which comes f rom 
the state of the dummy cells. 

n: P—• S is the output of of the cellular automaton, which is a restriction of q(PQT). 
SL: is the set of the inputs. 
Sp: is the set of the outputs. 

The generalization of the local transition function is the global transition function, 
which is the following mapping: 

JL : SIXSL-^SI such that qlLA = q' iff 

( V i € / ) , q'(i) = 9 ( 0 J lXtKOx), r{v{i)n)), where 

U O ) , i f 
r U ) " U O ) , if j€L. 
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The global quiescent state is q0 for which 

(3 ^o = to-

ll 
Fig. 1 

The Codd-ICRA automaton 41 = ( / , L, v, S, ± ) , is a 
special cellular automaton ([5], [6])1, where / c Z 2 (Z2 is 
the plane of integers), 5 = { 0 , 1,2, 3, 4, 5, 6, 7}. For every 
i={h,h)U, V is defined by v{it, ii) = ((i1 +1, i2), ih,i2-\), 
( h ~ 1» h), O'I. h + 1 ) ) (see fig. 1). 

Let v be the mapping 
v: S4—- Si such that v((jj , j2 , j3 , j4)) is the smallest word under lexicographic 

ordering, what one can get f rom {s1, s„, s3, s4) by cyclic permutation: 
min lex {<5, 

J. is defined for all s^S and (¿'i, s'2, s'3,s4)by 
. / / / / / \ -s j_ \s1, s2, s3, s4 ; — 

s if <s)v(si, s2, S3, s4) does not appear in the Codd-ICRA transition 
function table, 

s±v(s'1,s'2,s'3,s'i), if (s)v(si, s2, S3, s4) appears in the Codd-ICRA 
transition function table. 

How to use the transition function table? E.g. we are looking for the transition 

0_l_<7212> 

we have to look instead of this the term 

0 1 ( 1 2 7 2 ) 

which appeares in the list and equal to 1, one can find it in the short form 

0 1272 1 

which means, that the next state of the central cell will be 1. Obviously, the 0 ± (4131), 
instead of which we have to look 0±(1314), and it doesn't occur, it means, the 
central cell in this environment has stable state. By regular notations the first 
example gives 

0±<7212> = 1, 
the second one 

0±<4131> = 0.* 

Codd-ICRA techniques 

Basic operations. Let us make ourself a bit familiar with some Codd-ICRA 
techniques ([1], [3]). 

( The cells themselves are denoted by squares, their states with numbers written 
into them respectively. 1 

* See [l] [7]. 
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2, 2 2 2 
2 1 1 1 1 
2 1 2 2 2 
2 1 2 
2 1 2 
2 1' 2 
2 1 2 

c u r v e d 

1 I 1 I 1. 1 
1 1 2 1 2 
1 2 1 2 
1 2 1 2 
1 2 1 2 
1 2 1 2 

n o t a t i o n o f a cell 

cell in s t a t e 2 

b o u n d a r y cel l 

d u m m y cell 

s h e a t h e d 
p a t h • 

• s h e a t h e d p a t h 
in log ica l d r a w i n g 

2 1' 2 
2 1 2 2 -2 
2 1- 1 1 1 
2 1. 2 2 2 
2 1 2 
2 1 2 

T 
2 1 
2 1 (7 N 
2 1 2 
2 1 2 
2 1 

- c a p 

- s h o u l d e r 

-wal l 

s h e a t h e d p a t h 
b r a n c h i n g . c a p p e d p a t h 

Fig. 2 

We use very often phase figures f rom which one can see the situations in t ime 
steps i = 1 , . . . . For instance we have the following configuration a t time step one. 
The blank place means that the corresponding cell is in 0 state. We have to look 
in the transition table all the instances which appear on the figure. In the upper 
left corner of fig. 3 the cell is in state 2 and its neighbourhood is 2 ±(0021) , which 
is equal to 2 (200212 doesn't appear in the table). And so on, we find three terms 
only, which show state changing, namely 

* ' ' 012621 , 

. - 602120, 

112626, 

so we have the following phase figures. 
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Along the sheathed paths the states' pair is propagating if this is in form 
OS, where S—4, 5, 6, 7. We call this OS couple of the cells signal. The signal 
propagation is basic behavior of cellular automaton.. Since the signal is propa-
gating cell by cell, so the time required for the propagation is strictly propor-
tional to the distance which is made by it expressed with the number of the cells. 
In a fixed automaton this factor is constant. Rather often, with inaccurate speaking 
we say that the distance, which is made is equal to the necessary time. 

2 2 2 2 2 
1 0 6 1 1 
2 2 2 2 2 

2 2 2 2 2 2 2 2 2 
1 0 7 1 1 1 6 0 1 
2 2 2 2 V 2 2 2 2 

0 • „ 2 2 2 2 2 2 2 2 2 
|o 2 T\ 1 1 0 7 r 6 .0 1- 1 

1 2 2 2 2 2 2 2 2 2 

Fig. 4 i f = 2 

2 2 2. 2 2 
1 0 6 1 1 
2 2 2 2 2 

t = 1 

2 2 2 2 2 2 2 2 2 
•1 1 1 0 1 ' 0 1 1 1 
2 2 2 2 2 2 2 2 2 

f =3 

2 2 2 2 2 
1 1 0 6 1 

2 2 2 2 2 

2 2 2 2 2 2 2 2 2 
1 1 r 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 2 

2 

fig. 5 

t = 4 

Fig. 6 

Along a path collision of signals, can happen. Fig. 6 shows such a case. The effect 
of several collisions depends on the parity of the cells' number is state 1, between two 
signals, and depends on the signal's content ( 5 = 4 or 5 or 6 or 7). The result is always 
the annihilation of the signals, except with the odd parity, homogenous case, where 

0 4 x 0 4 — 05, 

05X05 = 06, " . 

. . . 0 6 X 0 6 = 06 , 

07X07 = 04. 

Fig. 6 gives an example for odd parity, heterogenous collision, fig. 7 an odd, homo-
genous one. 
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In the next part we will show, that the original Codd's operations are valid 
for the Codd-ICRA constructions too. We connect three dummy cells, to three 
neighbouring boundary cells of the empty cellular automaton. (Empty: it contains 
cells in state 0 only.) The two extremal cells have state 2 constantly, and we introduce 
into the middle one the sequences of the Codd-ICRA programmes. 

2 2 2 2 2 2 
2 1 1 1 1 1 1 
2 1 2 2 2 1 2 
2 1 2 2 2 1 2 
0 7 1 1 1 1 2 
2 2 2 2 2 2 

t = 1 

2 2 2 2 2 2 
2 1 1 1 1 1 1 
2 1 2 2 2 1 2 
2 7 2 2 2 1 2 
1 0 7 T 1 1 2 
2 2 2 2 2 2 

f =2 

2 2 2 2 2 2 
2 1 1 1 1 1 1 ' 
2 7 2 2 2 1 2 
2 0 2 2 2 1 2 
1 1 0 7 1 1 2 
2 2 2 2 2 2 

f =3 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 7 1 1 1 1 1 2 0 7 1 1 1 1 2 1 0 7 1 1 1 
2 0 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 
2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 7 2 
1 1 1 0 7 1 2 1 1 1 1 0 7 2 1 1 1 1 1 0 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

f =4 i = 5 f =6 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 1 1 0 7 1 1 2 1 1 0 7 1 2 1 1 1 1 0 7 
2 1- -2 2 2 7 2 2 1 2 2 2 0 2 2 1 2 2 2 1 2 
2 1 2 2 2 0 2 2 1 2 2 2 i 2 2 1 2 2 2 1 2 
1 1 1 1 t 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

f =7 _ t = 8 • t= 9 
Fig. 7 

The Codd-ICRA programme is a word constituted by cells' states: 0, 1 , 4 , 5 
and 7, as elements, where each 1 is followed by 1, 4, 5, 6 or 7; the 4, 5, 6 or 7 are 
followed by one 0, and after a 0 there is at least one 1. With other words, the set of 
the programmes is identical to an arbitrary walking on the following graph on fig. 8. 
E.g. the word (1, 1, 1, 5, 0, 1, 1, 6, 0 ,1 , 6,0, 1) is a programme. Firstly, we show 
a pathway's embryo producing programme, in order to be able to enter into the empty 
automaton. 

• It 's the following: (6, 0, 1, 7, 0, 1, 6, 0, 1). 
The effect of the programme is shown by fig. 9. 
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<1> 
Fig. 8 

The three cells under the double line are dummy cells 

— 

• c 2 I I 2 I - I 2 I I 1 I 1 1 

f = ? f = 8 f = 9 

Fig. 9 

The effect of the pathway embryo producing programme 
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The main functions of the pathway 
which are the Codd's operations. 

Extend <7, 0 , 1 , 6 , 0 , 1).-

2 
2 1 2 

2 7 2 
f = 1 

1 
2 1 2 
2 1 2 

= 3 

1 
2 6 2 
2 0 2 

f = 5 

2 
2 7 2 
2 0 2 

1 
2 1 2. 
2 6 2 

= 4 

6 
2 0 2 
2 1 2 

f = 6 

Extend left <4, 0 ,1 , 4 ,0 , 1, 5, 0 ,1 , 6, 0, 1). 

2 A 2 
f = 1 

2 0 2 
t-2 

2 
2 1 2 
2 1 2 

2 1 2 
f = 7 

/ 

2 1 2 
f=-3 

2 4 2 
f = 4 

2 2 2 2 2 
2 1 2 I 2 1 2 I 2 1 2 I 2 4 2 I 3 1 2 
2 1 2 2 1 2 2 4 2 2 0 2 2 1 2 
2 1 2 2 4 2 2 0 2 2 1 2 2 4 2 

2 0 2 
f = 5 

2 1 2 
f = 6 

2 5 2 
f = 7 

2 0 2 
f - 8 

2 1 2 
t = 9 

2 2 2 2 2 
3 1 2 I 3 4 2 I 1 1 2 1 1 2 I" 1 5 2 
2 4 2 2 0 2 2 1 2 2 5 2 2 0 2 
2 0 2 2 1 2 2 5 2 2 0 2 2 1 2 

2 6 2 
f ; 10 

2 0 2 
f=11 

2 1 2 
f= 12 

2 1 2 
f= 13 

Wg. 7/ 

2 1 2 
t= 14 

2 2 2 2 2 2 2 2 2 
5 0 3 I 1 1 2 1 6 2 I 6 0 2 I 2 1 1 2 
2 1 2 2 6 2 2 0 2 2 1 2 2 1 2 
2 6 2 2 0 2 2 1 2 2 1 2 2 1 2 

2 1 2 
t-15 



A maximum-selector design in Codd-ICRA cellular automaton 

Extend right <5, 0, 1, 5, 0, 1, 4, 0, 1, 6, 0, 1). 

2 5 2 
t =1 f= 2 

2 1 2 
f--3 

2 5 2 
t-4 

2 2 2 2 2 
2 1 2 I 2 1 2 2 1 2 I 2 5 2 I 2 1 3 
2 1 2 2 1 2 2 5 2 2 0 2 2 1 2 
2 1 2 2 5 2 2 0 2 2 .1 2 2 5 2 

2 0 2 
f= 5 

2 1 2 
i=6 

2 4 2 
t=7 

2 0 2 
f = 8 

2 2 2 2 
2 1 3 I 2 5 '3 I 2 1 1 2 1 1 
2 5 2 2 0 2 2 1 2 2 4 2 
2 0 2 2 1 2 2 4 2 2 0 2 

2 f l - 9 2 

2 
2 4 1 I 
2 0 2 
2 1 2 
2 6 2 
f =10 

2 0 2 
f - II 

2 1 2 
<-=12 

2 1 2 
f = 13 

2 1 2 
f = 14 

2 2 2 2 2 2 2 2 
3 0 4 I • 2 1 1 2 6 1 I 2 0 6 2 1 1 2 
2 1 2 

i 
2 6 2 2 0 2 2 1 2 

-
2 1 2 

2 6 2 i 2 0 2 2 1 2 2 1 2 - 2 1 2 
2 1 2 
< = 15 

12 

Retract <4, 0, 1, 5, 0, 1, 6, 0 ,1 , 6, 0, 1 >. 

2 4 2 
< = 1 

T 
|3 1 3 | 

2 2 T 2 2 2 
|2 1 2] H 4 2 | |3 1 2 | 3 1 3 [I 5 3 3 1 3 | 

2 0 2 2 1 2 2 5 2 
f=2 f = 3 f = 4 < = 5 

2 1 2 
<=6 

H 1J 
2 6 2 

< = 7 
2 0 2 2 1 2 2 G 2 

f=9 < = 10 
2 0 2 
<=11 ' 

2 1 2 
<=12 

13 
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Retract left <5, О, 1, 6, О, 1, 6, О, 1, 6, О, 1>. 

2 
2 2 2 1 2 

2 1 1 1 1 2 
2 1 2 2 1 2 

2 2 1 2 
2 1 2 
2 5 2 
f = 1 

2 
2 2 2 1 2 

2 1 1 1 5 2 
2 1 2 2 0 2 

2 2 1 2 
2 6 2 
2 0 2 
< =5 

2 
3 2 2 6 3 

2 0 1 6 0 2 
2 5 2 2 1 2 

2 2 6 2 
2 0 2 
2 1 2 
f =9 

2 2 2 2 
2 1 6 0 1 2 

2 2 6 2 
2 0 2 
2 1 2 

2 
2 2 2 1 2 

2 1 1 1 1 2 
2 1 2 2 1 2 

2 2 1 2 
2 5 2 
2 0 2 

t =2 

2 
2 2 2 5 2 

2 1 1 5 0 2 
2 1 2 2 1 2 

2 2 6 2 
2 0 2 
2 1 2 
f=6 

2 2 2 
2 1 6 0 1 2 
3 1 2 2 6 2 

2 2 0 2 
2 1 2 
2 6 2 

f = ÍO 

2 1 2 
f = 13 

2 2 2 2 
2 6 0 1 6 2 

2 2 0 2 
2 1 2 
2 1 2 

2 
2 2 2 1 2 

2 1 1 1 1 2 
2 1 2 2 1 2 

2 2 5 2 
2 0 2 
2 1 2 

f =3 

2 
2 2 2 1 3 

2 1 5 0 1 2 
2 1 2 2 6 2 

2 2 0 2 
2 1 2 
2 6 2 

= 7 

2 2 2 
2 6 0 1 6 2 
3 1 2 2 0 2 

2 2 1 2 
2 6 2 
2 0 2 
f = 11 

2 2 2 ? 
1 1 6 0 2 
2 2 2 1 2 

2 1 2 
2 1 2 

2 
2 2 2 1 2 

2 1 1 1 1 2 
2 1 2 2 5 2 

2 2 0 2 
2 1 2 

t= 4 

2 
2 2 2 1 3 

2 5 0 1 6 2 
2 1 2 2 0 2 

2 2 1 2 
2 6 2 
2 0 2 
f = 8 

2 1 2 
t-14 

2 1 2 
í = 15 

2 2 2 2 
2 0 1 6 0 2 
3 6 2 2 1 2 

2 2 6 2 
2 0 2 
2 < 1 

= i; 
2 

2 2 2 2 
1 6 0 1 2 
2 2 2 1 2 

2 1 2 
2 1 2 
-2 
t 

1 
=16 

2 

2 2 2 2 2 2 2 2 
6 0 1 ' 1 2 2 '1 I 1 1 2 
2 2 2 1 2 2 2 2 1 2 

2 1 2 2 1 2 
2 1 2 - 2 1 2 
2 1 2 2 5 2 
f = 17 Í=18 

Fig. 23a 
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Retract right <4, 0, 1, 6, 0, 1, 6, 0, 1, 6, 0, 1). 

2 1 2 
f = 6 

2 6 2 
t-7 

2 0 
f=l 

2 1 2 
f = 9 

2 2 2 2 2 2 2 2 2 3 
2 1 1 2 I • 2 r 1 2 I 2 4 1 21 ' 3 0 4 2 | 2 1 1 2 
2 1. 2 2 4 2 2 0 2 2 1 2 2 6 2 
2 4 2 2 0 2 2 •1 2 2 6 2 2 0 2 . 

t = i = 2 
\ 

f.= 3 r 4 f = 5 

2 3 2 3 2 2 
2 6 1 I ] 2 0 6 2 | 2 1 I 2 6 2 1 
2 0 2 2 1 2 2 6 2 2 0 2 2 1 2 

2 6 2 
t - 10 

2 0 2 
' f = 11 

2 -1 2 
f - 1 2 

2 
2 1 I 2 6 I 2 1 2 | 
2 6 2 2 0 2 2 1 2 

2 1 2 
f=13 

/5 

Sheathing (6, 0, 1). 

Sheathed, capped path made by the sheathing signal 

2 
1 1 _J " 1 1 I 1 1 6 1 I 2 0 6 
1 1 6 2 0 2 2 1 2 
1 6 2 0 2 2 1 2 2 1 2 

2 6 2 2 0 2 - 2 1 2 2 1 2 2 1 2 
f = 1 . f = 2 f = 3 f = 4 r = 5 

2 2 
2 1 1 2 | 
2 1 2 
2 1 2 

f = 6 

F&. / 6 

4 Acta Cybernetica III/2 
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Activation <7,0,1) . 

2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 
2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 

2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 7 2 
2 1 1 2 2 1 1 2 2 1 1 2 2 1 7 2 2 7 0 2 

2 1 2 2 1 2 2 7 2 2 0 2 2 1 2 
2 1 2 2 7 2 2 0 2 2 1 2 2 1 2 
2 7 

= 1 
2 2 0 2 

f=2 
2 

f 
1 2 2 1 2 

f=4 
2 1 2 

f= 5 

2 1 2 2 7 2 2 0 2 2 1 2 
2 7 2 2 0 2 2 1 2 2 1 2 

2 3 0 2 2 3 1 2 2 3 1 2 2 3 1 2 
2 0 .1 2 2 1 1 2 2 1 1 2 2 1 1 2 

2 1 2 2 1 2 2 1 2 2 1 2 
2 1 2 2 1 2 2 1 2 2 1 2 
2 1 2 

f=6 

l-O
 

2 1 
f=E 

2 2 1 
= S 

2 

Fig. 17 

The activating signal changes the gates' and transformer ' (see later) suitable 
cells being in state 0 or 1 to state 3. These tools become ready for working by this way. 

Mark <7, 0, 1, 6, 0, 1, 4, 0 ,1 , 5, 0, 1, 7, 0, 1, 6, 0, 1). 

2 
2 1 2 
2 7 2 

= 1 

y 
2 1 2 
2 1 2 
2 4 2 X I = 7 

T 
3 1 3 
2 1 2 

2 
2 7 2 
? 0 2 

f = 2 

2 
2 1 2 
2 4 2 
2 0 2 
f 

T 
3 1 3 
2 7 2 

1 
2 1 2 
2 1 2 

f = 3 • 

2 
2 4 2 
2 0 2 
2 1 2 

= 9 
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2 1 2 
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Fig. 18 



A maximum-selector design in Codd-ICRA cellular automaton 119 

Erase <6, 0, 1, 7, 0, 1, 4, 0, 1, 5, 0, 1, 6, 0, 1, 6, 0, 1). 

1 
2 

2 1 2 
2 6 2 

= 1 

1 
3 

2 .1 2 
2 4 2 

-1 

V 
3 

3 1 3 
2 6 2 

f = 13 

Sense 

1 
2 

2 6 2 
2 0 2 
f = 2 

1 
3 

2 4 2 
2 0 2 

f = 8 

1 
3 

3 6 3 
2 0 2 
f = 14 • 

1 
0 

2 1 2 
2 1 2 
f = 3 

1 
3 

3 1 2 
2 1 2 

f -9 

1 
4 

0 0 0 

1 
0 

2 1 2 
2 7 2 

: 4 

1 
3 

3 1 2 
2 5 2 

f=10 

2 1 2 
f=15 

2 6 2 
t = l 6 

Fig. 19 

( 7 , 0 , 1 , 7 , 0 , 1 ) 
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2 1 2 
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1 

2 1 2 
2 7 2 

i = 5 

1 
1 

2 7 2 
2 0 2 
2 1 2 
'i = 6 
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2 
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2 
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2 1 2 

f = 8 
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Fig. 20 

4* 
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Cap after sense <4, 0, 1,6, 0, 1). 

0 
1 

2 1 2 
2 1 2 
2 4 ; 

f = 1 

1 
1 

2 1 2 
2 1 2 
2 4 

= 1 
2 

0 
1 

2 1 2 
2 4 2 
2 0 2 
f =2 

1 
1 

2 1 2 
2 A 2 

2 0 2 
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0 
1 

2 4 2 
2 0 2 

0 
0 

3 0 2 
2 1 2 

I 1 2 
t--2 

2 6 2 
t -4 

0 
2 

2 1 2 
2 1 2 
2 1 2 

t = 1 

1 
1 

2 4 2 
2 0 2 

1 
0 

3 0 2 
2 1 2 

2 1 2 
t= 3 

2 6 2 
f = 4 

1 
2 

2 1 2 
2 1 2 

2 1 2 
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Fig. 21 

0 
0 

2 1 2 
2 6 2 
2 0 2 

f - 5 

1 
0 

2 1 2 
2 6 2 

2 0 2 
f = 5 

0 
0 

2 6 2 
2 0 2 
2 1 2 

f = 6 

1 
0 

2 6 2 
2 0 2 

2 1 . 2 
i=6 

We have seen, that it 's possible to develop directly sheathed paths in the empty 
cellular space by means of programmes, introduced into the boundary cells f r o m 
the dummy cells. Why we develop in this case, hovewer, unsheathed paths, making 
the sheating afterwards? One has to do this, because branching and looping sheathed 
paths are not programmable directly. So, one has to prepare firstly a simple formed 
sheathed path, and with this, used it as a writing arm, is possible to develop the 
required network by the repeated application the mark and retract operation. Finally 
the stacking of the network is followed by the sheathing and activation. 

Some components. Configurations constituted from a few cells which are 
able to make some prescribed effect on signals propagating along pathways, called 
components. These effects: to close in one direction the way, the signals' trans-
formation, protection of the paths in the case crossover, and creating signal sources. 

One of the most important properties in our cell space is gating. We speak 
about gating if the signal can propagate in one direction along its path but in the 
other direction the signals are annihilated a t a point. The component doing this 
annihilation is called gate. 
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Opened gate Closed gate 

2 2 2 2 2 2 2 2 2 2 
1 ! 1 1 1 "a i 1 1 1 1 
2 2 2 2 2 A 2 2 3 2 2 

2 - 2 
2 1 2 2 1 2 
2 1 2 log ica l d r a w i n g 2 1 2 

"a" 

T 
c o n f i g -
u r a t i o n 

Gate activation by signal 70 

t h e c o n t r o l l e d 
p a t h " a " is 
b i d i r e c t i o n a l 

c o n f i g -
u r a t i o n 

log ica l d r a w i n g 
t h e c o n t r o l l e d 
p a t h " a " is 
u n i d i r e c t i o n a l 

2 2 2 2 2 
1 1 1 1 1 
2 2 2 2 2 

2 
2 7 2 
2 0 2 

2 2 2 2 2 
1 1 1 1 1 
2 2 2 2 2 

\ 3 
2 1 2 
2 1 2 

t 1 t=2 
The annihilation of signals SO coming f rom leftside; S = 4,5,6,7 

2 2 2 2 2 • 2 2 2 2 2 
0 S 1 f 1 1 0 1 1 1 
2 2 3 2 2 2 2 3 2 2 

2 2 
2 1 2 2 1 2 
2 1 2 2 1 2 

2 2 2 2 2 
1 1 1 1 „1 
2 2 3 2 2 

2 
2 1 2 
2 1 2 

S 
K 3 

= 4,5,6,7 

2 2 2 2 2 
1 I 1 1 1 
2 2 3 2 2 

2 
2 1 2 
2 1 2 

•f=1 f= 2 
The propagation of signals SO coming from rightside 

( = 3 

2 2 2 2 2 
1 1 1 S 0 
2 2 3 2 2 

2 
2 1 2 
2 1 2 

2 2 2 2 2 
1 1 S 0 1 
2 2 3 2 2 

2 
2 1 2 
2 1 2 

2 2 2 2 2 
1 5 0 1 1 
2 2 3 2 2 

2 
2 1 2 
2 1 2 

2 2 2 2 2 
S 0 1 1 1 
2 2 3 2 2 

2 
2 1 2 
2 1 2 

f = 1 t = 2 t = 3 t=A 
Gate desactivation by signal, 70 or 60 

2 2 2 2 2 
1 1 1- 1 
2 2 3 2 2 

2 
2 7 2 
2 0 2 

2 2 2 2 2 2 2 2 2 2 
1 1 1 1 1 1 1 1 1 1 
2 2 3 2 2 2 2 2 2 2 

3 
2 1 2 2 1 2 
2 1 2 - 2 1 2 

t = l t- 2 t-3 
Fig. 22 ~ 

Codd type remote controlled gate 
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Codd-type remote controlled gate. On fig. 22 one can see the activation of this 
gate, as well as the phenomenon, which in closed state annihilates the signal coming 
f rom leftside, but permits f rom rightside. The opening or dezactivation of the gate 
can happen by signals 60 or 70. This gate remembers. Its state depends not only on 
the control signal but on its last own state too. Thus, one can call it bistable gate. 

Local gate or valve. On fig. 23 one can see how the local gate is functioning. 
This is built into the sheathing wall during the construction of the controlled pathway, 
and works at any time. 

The location of the local gate can be along straight or branched way. The 
latter case is important in the control of sophisticated networks [2]. 

Gates combinations. By means of gates' combinations, one can build a lot of 
tools for pathway controls. Such tools are shown by fig. 24. Let's see only one 
example 

Local gate for signals 60 and 70 along straight path 

2 1 2 
2 1 2 

2 1 1 2 
2 3 1 2 

2 1 * 
2 1 2 

c o n f i g u r a t i o n l og i ca l d r a w i n g 

The annihilation "of the signals 70 and 60 coming f rom leftside 

2 7 2 
2 1 2 

2 1 1 2 
2 3 1 2 

2 1 2 
2 1 2 

2 0 2 
2 7 2 

2 1 1 2 
2 3 1 2 

2 1 2 
2 1 2 

2 1 2 
2 0 2 

2 1 7 2 
2 3 1 2 

2 1 2 
2 1 2 

2 1 2 
2 1 2 

2 7 0 2 
2 3 1 2 

2 1- 2 
2 1 2 

2 ! 2 2 1 2 
2 1 2 2 1 2 

2 0 1 2 2 1 1 2 
2 3 1 2 2 3 1 2 

2 1 2 2 1 2 
2 1 2 2 1 2 

t = 1 t~ 2 t = 3 i=A t = [ t= 6 

The propagation of the signals 70 and 60 coming f rom rightside 

2 1 2 2 1 2 
2 1 2 2 1 2 

2 1 1 2 2 1 1 2 
2 3 1 2 2 3 7 2 

2 7 2 2 0 2 
2 0 2 2 1 2 

f = f - 2 

2 1 2 2 1 2 
2 1 2 2 7 2 

2 1 7 2 2 7 0 2 
2 3 0 2 2 3 1 2 

2 1 2 2 1 2 
2 1 2 2 1 2 

f = 3 f = 

Fig. 23a 

2 7 2 2 0 2 
2 0 2 2 1 2 

2 0 1 2 2 1 1 2 
2 3 1 2 2 3 1 2 

2 1 2 2 1 2 
2 1 2 2 1 2 

= 5 f = € 
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Rectifier gate in corner and junction 

2 1 2 2 1 2 
2 1 2 t 2 1 2 

2 2 3 1 2 2 2 3 1 2 2 2 
1 1 1 1 2 1 1 1 1 1 I 1 
2 2 2 2 2 2 2 2 2 2 2 

c o n f i g u r a t i o n l og i ca l 
d r a w i n g 

c o n f i g u r a t i o n log ica l 
d r a w i n g 

The annihilation of signals SO coming from leftside; S = 4,5,6,7 

t=A f = 5 
The propagation of signals coming f rom rightside 

f = 1 t-2 

t= 6 

t= 3. 

2 1 2 2 1 2 2 1 2 
2 1 2 2 1 2 2 1 2 

2 2 3 1 2 2 2 2 2 3 1 2 2 2 2 2 3 S 2 2 2 
1 1 1 1 S 0 1 1 1 1 S 0 1 1 . 1 1 1 0 1 1 1 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

f = 1 f = 2 f = 3 

2 2 2 S 2 2 0 2 
2 S 2 2 0 2 2 1 2 

2 2 3 0 2 2 2 2 2 3 1 2 2 2 2 2 3 1 2 2 2 
1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2 1- 2 2 1 2 2 ! 2 
2 1 2 2 1 2 2 1 2 

2 2 3 1 2 2 2 2 2 3 1 2 2 2 2 2 3 1 2 2 2 
0 S 1 1 1 1 1 1 0 5 1 1 1 1 1 1 0 $ 1 1 1 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2- 2 2 2 2 

2 1 2 2 1 2 2 S 2 
2 1 2 2 S 2 2 0 2 

2 2 3 S 2 2 2 2 2 3 0 2 2 2 2 2 3 1 2 2 2 
1 1 1 0 S 1 1 1 1 1 1 0 S 1 1 1 1 1 1 0 S 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

f =4 f = 5 f = 6 
Fig. 23/b 

Local gates or valves 

in details, the socalled monostable gate. This is a Codd-type remote controlled gate 
which has in its control path a duplicating loop. The first sample of the duplicated 
signal closes the normally opened gate for 4 tacts only because the second sample 
of the signal opens it again [3] (see fig. 25). 
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c o n d i t i o n a l 
r e c t i f y i n g 

AZ A 

a d j u s t a b l e 
b i d i r e c t i o n a l 
p a t h w a y lock 

— o 
c o n d i t i o n a l 

b i d i r e c t i o n a l 
p a t h w a y lock 

< h 

p e r m a n e n t 
o n e - w a y l o c k 

Fig. 24 
Some gate combinations 

2 2 2 2 2 2 2 
1. 1 1 1 1 1 1 
2 2 2 2 2 2 2 

2 
2 1 2 
2 1 2 
2 1 2 

2 2 3 1 2 
2 1 1 1 1 1 2 
2 1 2 2 2 1 2 
2 1 2 2 1 2 
2 1 2 2 1 1 2 
2 1 2 2 3 1 2 
2 1 2 2 1 2 
2 1 2 2 2 1 2 
2 1 1 1 1 1 

2 2 2 1 2 
2 1 2 
2 1 2 

c o n f i g u r a t i o n 

5 
log ica l d r a w i n g 

Fig. 25' 
Monostable gate 

Cross-over. It is a hard problem how to cross the paths in the plane (in two 
dimensions). Without any protection obviously false signals propagate f rom one way 
into the other at the cross point. Since this is one of the favourite subject in the 
cellular automata littérature the publication of new crossover solutions, usually 
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designed with a let of roundabout ways. E.g. Codd nimself, in his book made 
a solution, concerning two one-ways, which requires about 1500 cells. Therefore 
we suppose the result by Dettai [2] is significant giving a crossover which requires 
9 cells only for two bidirectional ways, but only for 60 and 70 signals (see fig. 26). 
The minimal following distance between two signals is 6 [see 2]. 

6—7 transformer. On fig. 27 one can see a transformer which is usable in one 
direction only for 60 and 70 signals. For both inputs 60 and 70 the output is 70 
[see 3]. 

Crossover for signals 60 and 70 

Functioning 

2 1 2 
2 1 2 

2 2 1 1 1 2 2 
1 1 1 1 1 1 1 
2 2 1 1 1 2 2 

2 1 2 
2 1 2 

c o n f i g u r a t i o n logica l d r a w i n g 

2 1 2 2 1 2 
2 1 2 2 1 2 

2 2 1 1 1 2 2 2 2 1 1 1 2 2 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 2 1 1 1 2 2 2 2 1 7 1 2 2 

2 7 2 2 0 2 
2 0 2 2 1 2 

f = 1 f=2 

2 1 2 2 1 2 
2 1 2 2 7 2 

2 2 1 • 7 1 2 2 2 2 7 0 7 2 2 
1 1 3 0 3 1 1 1 1 3 1 3 1 1 
2 2 1 1 1 2 2 2 2 1 1 1 2 2 

2 1 2 2 1 2 
2 \ 2 2 1 2 

2 1 2 
2 1 2 

2 2 1 1 1 2 2 
1 1 1 7 1 1 1 
2 2 7 0 7 2 2 

2 1 2 
2 1 2 

= 3 

2 7 2 
2 0 2 

2 2 0 1 0 2 2 
1 1 3 1 3 1 1 
2 2 1 1 1 2 2 

2 1 2 
2 1 2 

f =4 t r 5 

The functioning of the cross- 2 0 2 
over. The minimal following 2 1 2 
distance for the signals is 6. 2 2 1 1 1 2 2 

1 1 1 I 1 1. 1 
2 2 1 1 1 2 2 

> 2 1 2 
2 1 2 

if =7 
Fig. 26 

Bidirectional pathway crossing 

I 
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The 60, 70 transformer 

2 1 2 
2 1 2 

2 3 1 3 2 
2 1 1 1 2 

2 1 2 
2 1 2 

c o n f i g u r a t i o n 

The transformation of signal 60 to signal 70 

2 0 2 
2 6 2 
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2 1 1 1 2 

2 1 2 
2 1 2 

2 1 2 
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2 1 1 1 2 

2 1 2 
2 1 2 

i= 1 t - 2 

2 1 2 
2 1 2 

2 3 1 3 2 
2 0 1 0 2 

2 0 2 
2 7 2 

t =5 

The propagation of signal 70 

2 0 2 
2 7 2 

2 3 1 3 2 
2 1 1 1 2 

2 1 2 
2 1 2 

2 1 2 
2 0 2 

2 3 7 3 2 
2 1 1 1 2 

2 1 2 
2 1 2 

f - 1 f = 2 

2 1 2 
2 1 2 

2 3 1 3 2 
2 0 1 0 2 

2 0 2 
2 7 2 

t- 5 

D><] 

l o g i c a l d r a w i n g 

2 1 2 
2 1 2 

2 3 0 3 2 
2 1 7 1 2 

2 1 2 
2 1 2 

< 

2 1 2 
2 1 2 

2 3 1 3 2 
2 1 1 1 2 

2 1 2 
2 0 2 
f - e 

2 1 2 
2 1 2 

2 3 0 3 2 
2 1 7 1 2 

2 1 2 
2 1 2 
< 

2 1 2 
2 1 2 

2 3 1 3 2 
2 1 1 1 2 

2 1 2 
2 0 2 
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The transformer does not works correctly f rom output 

2 1 2 
2 1 2 

2 3 1 3 2 
2 1 1 1 2 

2 6 2 
2 0 2 

2 1 2 
2 1 2 

2 3 1 3 2 
2 1 6 1 2 

2 0 2 
2 1 2 

t = 1 t= 2 

2 1 2 
2 1 2 

2 3 7. 3 2 
2 6 0 6 2 

2 1 2 
2 1 2 
f 

2 1 2 
2 1 2 

2 3 1. •J 2 
2 7 0 7 2 

2 7 2 
2 1 2 

f = 4 

f =4 

2 1 2 
2 1 2 

2 3 1 3 2 
2 7 0 7 2 

2 7 2 
2 1 2 

2 1 2 
2 7 2 

2 3 0 3 2 
2 0 0 0 2 

2 1 2 
2 1 2 
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Gene. The configuration called gene is constituted by four cells in state 1 
located in square. It is usable only connected to pathway. The gene has three func-
tions: rectifying, signal transformation and signal source. We already have shown 
now the gene rectifies as a local gate. As a transformer the gene runs as a minimal 
sized loop. Fig. 28 shows its two possible situations. The multiplying table is 
identic with the arbitrary sized loop. 

t t 

) 

Î 
Fig. 28 Fig. 29 

The signal transformer gene Sharp turned pathway 
wich is a minimal sized loop 

That is also a possibility, to use the gene as a signal source. Let us make a sharp 
turned way as in fig. 29. 

A single 60 signal makes the sheating, but is is enough to create simoultaneously 
a high intensity signal source giving the sequence 

< 6 , 0 , 1 , 1 , 6 , 0 , 1 , 1 , . . . ) 
as in fig. 30. 

When constructing genes one has to be careful for the activation which must 
be done f rom the opposite direction where the later input will be. 

1 2 1 2 
1 2 1 2 
1 2 1 2 
1 2 0 2 
1 6 
1 1 1 

t -1 

1 2 1 2 
1 2 1 2 
1 2 1 2 
1 2 1 2 
1 1 0 2 
1 1 6 

t=2 

1 2 1 2 
1 2 1 2 
1 2 1 2 
1 2 1 2 
1 1 1 2 
1 6 0 2 

2 
t'- 3 

1 2 1 2 1 2 1 2 
1 -2 1 2 1 2 1 2 
1 2 1 2 k 2 1 2 
1 2 1 2 1 2 1 2 
1 6 1 2 6 0 6 2 
6 0 1 2 12 0 1 1 2 

2 2 2 2 2 
i- 4 . tz 5 

f = 6 f = 7 f=i 

1- 2 1 2 1 2 1 2 1 2 1 2 6 2 1 2 
1 2 1 2 1 2 1 2 6 2 1 2 2 0 2 1 2 
1 2 1 2 6 2 1 -> 2 0 2 1 2 2 1 2 1 2-
6 2 1 2 2 0 2 1 2 2- 1 2 1 2 2 1 2 1 2 

2 0 1 0 2 2 1 1 1 2 2 1 6 1 2 2 6 0 6 2 
2 1 1 6 2 2 1 6 0 2 2 6 0 1 2 2- 0 1 1 2 

2 2 2 2 2 2 2 2 2 2 2 2 

f - 9 
The gene in the sharp turned pathway made by the sheathing signal 60 giving the 
sequence (6,0,1,1,6,0,1,1, . . . ) 

Fig. 30 

Signal source 
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II. The maximum-selector* 

The problem 

Given a word of length 1 

x = (x1, ,.:,xl) 

whose elements x1, ..., x' are binary words of length k f rom Bk, where B— {0, 1}. 
The binary numbers given by these words are denoted by 

n1, n2,.,.,nl, 
i.e.,* 

k " 
n j _ 2 2k~'x{, j = 1 , . . . , /, where xJ = x{, ...,x{ and x{ = {0, 1}. 

•=i 

The problem is to find the binary word n representing the maximal one among 

The solution 

The algorithm. Let us consider an alphabet C = { 0 , 1, 5} which is an extension 
of the binary Boolean alphabet with a "stop signal" S• C=BU {S}. Define the 
Boolean sum function a as the following mapping a: S'—^C such that for a word 
u—iu1, ..., H'), 

S if u1 =...= ul = S, 
a(u) = \l if 3juj= 1, 

0 — otherwise. 

Let us define also the mapping T: C 2 — - C . s u c h that for any (y, y')iC2, 

*(y, / ) = 
0 if y = y' = 0, 
1 if y = y' = I, 
S— otherwise. 

Define also the mapping C1—such that for the any u£Cl, 

d(u) = (?(u\a(uj),...,T(ul;a(u))). 

The function 9 serves as a "s top function". If the relating word contains 1 then 
6 keeps the element of the word having the value 1, giving stop signal otherwise. 
If the relating word does not contain 1, leaves the elements unchanged. 

Let n be the mapping /i: BX C — C for which 

f 5 if c — S, 

[ b if c ^ S 
for any b£~B and_c£C. 

* See [8]. 
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Finally, if x = < x \ ..., xl) is given, define the words >px(x), ..., ip k ( x ) of length I by 
-i r 

{ xx if i = l , 

(fi(xh (x)1) , . . . , e^Ax)1)) if i = 2 , 3 , . . . , k. 
By means of ¡A, we get a stop signal keeping function, which keeps in the stop signal 
at each the place in i/i;(x), where it already appeared for / '-=/. The algorithm 
is running in the following way. 

First step: Calculate the values 

a ^ = aixj) 
and 

# l ( x ) = 0 ( x i ) = (T(X\, CTCxj)), ..., t ( x | , FF(Xi))) 

and 

>A2(x) = <ji(xl, 9(Xiy),..., n{x\, 6 ( X l ) % 

Second step: Calculate the values 

a^/2{x) and 
= < " ¡ # 2 ^ ¡ / 2 ( x ) ) , . . . , T(t/r2(x)', o\l/2{x))) 

and 
fs00 = ( x a , # 2 ( x ) 1 ) , ...,n(xl

3,6ij/2(x)')). 

i'-th step: Calculate the values -

ff'AiW 
and 

# ; ( x ) = <T(>h(xy, oiki(x)), *)', ^ ( x ) ) ) 
and 

•A;+iW = <>(4+1, (x)1),.• •, fi(x\+1, difri(x)')>. 

After the fc-th step the result in the case 

is j • • 
. " n = (z{, ...,rJ

k'). 

Example: x = « l , 1 ,0, 1,0, 1>,.<1, 1 , 0 , 0 , 1, 1), <1,1,0, 1 , 0 , 0 » , (1=3, k = 6). 

First step: 

Xi = <1,1, 1), lAi(x) = x l s ^ ( x ) = 1, 

0 ( * I ) = < T ( 1 , 1 ) , T ( 1 , 1 ) j T ( 1 , 1 ) > = <1, .1,1>; • 

X2 = <1, 1, 1,), = </i(l, 1), n ( l , 1), ju(l, 1> = <1, 1, 1>. 

Second step: 
a\j/2(x) = 1, 

0OA2M) = < t ( l , 1), T(1, 1), T(1, 1 » = < 1 , 1 , 1 > , " 

x3 = <0,0,0), feW = <^(0,1), K 0 , 1 ) 1)> = <0,0,0). 
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Third step: 

ai¡/3(x) = 0 , 

# 3 t o = < t (0 ,0 ) , T(0, 0), t ( 0 , 0 ) ) = < 0 , 0 , 0 > , 

* 4 = <1 ,0 ,1> , >A4(x) = O i ( l , 0 ) , / / ( 0 , 0 ) , p Q , 0) ) = < 1 , 0 , 1 ) . 

Fourth step: 

o\p4(x) = 1, 

Wt(x) = <t(1, 0, t(0, 1), t(1, 1)> = <1, S, 1>, 

JC5 = <0,1,0), <A5(x) = (p(0,1), M1, 5), | |(0, 1» = <0, 5 ,0) . 

Fifth step: 

= 0, 

# 5 ( x ) = <T(0, 0), T(S, 0), T(0, 0)) = <0, 5,0>, 

= <1,1,0)', Mx) = 0), M l . S), p(0,0)) = <1, S, 0). Sixth step: 

a\¡>6{x) = 1, 

# , ( * ) = <t(1>1),T(S,1),T(0,1)) = <1,S,S>. Since j' = 1 thus 
n = x1 = < 1 , 1 , 0 , 1 , 0 , 1 ) . 

The solution principle in Codd-ICRA automaton. The selection of the maximal 
number happens in Codd-ICRA automaton. The solution principle is the following: 
the numbers are introduced into the cellular space simoultaneously; they are propagat-
ing along parallel pathways. After the inputs each number is duplicated and one 
of their sample arrives into a gate system as information. The second samples — after 
delay — go further in their channels as data. In these channels they annihilate or 
move on, according to the situation of the already opened or closed gate system. 
At all those places where the figures with highest local value are 1 the numbers go 
further, while at places where they are 0 the numbers are annihilated. In the second 
step, where the figures with the second highest local value are 1, among the remained 
numbers, those numbers go further, and the numbers are annihilated if they are 0, 
and so an, until the A>th figures, which have the lawest local value (the coefficients 
of 2°). Exception is if at the actual step among the remained numbers 0-s are every-
where. In this case, all the remained numbers go further. The outputs of the channels 
are joined, so at the final, single output one gets the maximal number (even if the 
same one appeared at several channels). 

The maximal number selector is called MAXEL. 

The principal plan. The principal plan shows the parallel pathways, the duplica-
tion, the delay and the selector units, forming the functions t and p. At last we signed 
the feedback for the Boolean sum, and the output giving the maximal number 
(see fig. 31). 
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System scheme./The structure of the system scheme is identical with the prin-
cipal plan, apart from the mapping of the input, and output points. The selecting 
unit here is also almost a black box only, just showing the pathway control role of 
the gates located in the unit (see fig. 32). 

Fig. 33 
The UJ selecting unit of7-MAXEL 

• Logical drawing , 

Logical drawing. Figure 33 shows the complete logical structure of a selecting 
unit. 

The several cases of the functioning are the following, 
a) a(x¡) = 1 
a') . x{ = 1 (the signal content is 60). 

5 Acta Cybemetica HI/2 
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I n p u t s 
The name 

of the cell 

/ 

Mode of application 

x{ information 

Signal 
content 

f 60 1 1 

170 

D D(x{) data 
f 60 

1 1 

170 

G f 70 
U 1 . 

R reset; active once at each (k + l)-th 
time step 

/ 6 0 
i n 

O u t p u t s 
The name 

of the cell 
Mode of application Signal 

content 

H x{ information , / 6 0 
\ H 

F D(x{) data i 
[ 6 0 

1 1 1 
I 70 

J reset;.active once at each (k+ l>th 
time; step ! 

/ 6 0 
t i l 

In this case four events happen. 

I. The régénération of gate P 
y 

x\ : goes via I — f — 6 —• A — P. 

The loops 9 A and the two next assure, that in each case one gets signal 60 a t cell P, 
thus if it was in state 2 then it remains there, and if it was in state 3, it changes 
to state 2. 

II. Information 

x{: goes via 
\ z / 

By this way the signal can not arrive at cell P since the transformer II t ransforms 
both 60 and 70 to 70, and this joins at cell Y with 60, where it annihilates. 

III. The sum a(xt) enters into,the unit at cell G and annihilates at gate P. 

IV. Data 
D(xj) : goes via D — t — F 

à") x{ = 0 (the signal content is 70). 

In this case three events happen. 
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I. The regeneration of gate P 

x{: goes via I — !P — 6 — A — P. 

The signal 60 does not change the state of P cell, if it is 2, but it will be changed 
to 2, if it is 3. 

II. Information 

. x{: goes via I ~ Y ^ T Z ~ II P, 

and changes by the signal 70, the state of P cell f rom 2 to 3. The signal does not 
arrive at point X, thus nor at output H, since 40 arising from the end of the loop 
rv joins with 70 coming from TZ at point W, and because of 7 0 x 4 0 = 11 annihilates 
here. 

III. The sum a{x^ enters into the unit at cell G and goes via 

^ N - M - V. 

This <r(Xi) places to state 3 in the gate cells A, I and W respectively, which have 
had previous state 2. Afterwards, the inputs of the selecting unit are already closed 
for the signals 

xi+i, D(x{) and o(xi + 1), 

P) o ( X i ) = 0 , 

x{ = 0 (the signal context is 70). 

In this case three events happen. 

I. The regeneration of gate P 

x{: goes via I — 5* — 6 — A — P. 

The signal 60 doesn't change the state of P cell, if it's 2, but it will be changed to 2, 
if it is 3. 

II. Information 

x{: goes via I-r{F-*T-*Z-+Il-+Y-*P, 

and changes the state of P cell to 2 from 3. At points X and H no signal arrives 
because it was annaihilated at W. • 

III. Data 
g ° e s via £> -- r — F. 

The 0—1 configuration of the selector unit's. Figure 34 shows the 0—1 configura-
tion of the unit described in the previous point. 
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R 

D 

P r 

M 

v y n ° A 

W Z 

X 
n JI 

J 

C 
A I -

Fig. 34 
The U j selecting unit o f / -MAXEL 

0-1 configuration 

The logical drawing of l-MAXELs. 1=3 is the smallest value of I for which 
one can show the slight assimmetries of the extremal selector units. Apart f rom these 
extremities, the construction of the MAXEL is modular (building bricks system). 

The 0—1 configuration of l-MAXEUs. Figure 36 shows for / = 3 and arbi trary 
k the 0—1 configuration. On the upper part of the figure one can see the input 
synchronization. 
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Coding 

I n p u t s . 

Fig. 36 

I-MAXEL for I = 3 
0-1 configuration 

The Boolean 0 is coded by 70 

The Boolean 1 is coded by 60 
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O u t p u t s f rom the point of junctions 01, 

The Boolean-1 is coded by 60 

The Boolean 0 is coded by (70 
{40 
111 

If Nj(x)={j\xi = n}, 

^t Mj (x) = 1 (mod 3) the Boolean 0 is coded by 70, 

-fr Nj (xj = 2 (mod 3) the Boolean 0 is coded by 40, 

. # N j ( x ) = 3 (mod 3) the Boolean 0 is coded by 11. 

Working times. The distance betwen cells A and B expressed by the number 
of cells between them is denoted AB, when the shortest possible walking on is cho-
sen from A to B. The- retard between points P, P+1 and DJ, DJ +1 consists always 
24 tacts. The retard TID between points P, DJ is the following 

TID = PH1 K1^ ...K^Kl+1Kl+231G1I1-Wl1-\. 

P W K 1 = 55. 

KrK2~7.~Kl = ( I - 1 ) 2 4 . 

KiKi+1 = 4 

K i + i K i + 2 = ( / - 1 ) 2 4 . 

= 29. 

^ G 1 ! 1 = 24. . 
. 1 

F T 1 = 12. 

r i B = 48 ( / - ! ) +99 . 

The periodicity p, in other words the distance between signals x{ and x{+1, is 

P = P M K 1 ^ . . . K ' K ' ^ K ' + ^ G 1 V 1 - F Y - 1 . 

B ^ 1 f 1 = 42. 

FY = 6 . 

p = 48(/— 1) + 123. 
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The T(n) working time for selecting the m maximal number is the running t ime 
for the first figure — nx — plus the time of the remained figures. 

T{n) = T{n1) + (k-Y)p. 

T(RTJ) = T1D+D1F10I + 0I0I... 0L. 

D1F101 = 47. 

0102... 0L = ( / - 1 ) 2 4 . 

T K ) = 7 2 ( / - l ) + 146. 

T(n) = 2 4 / ( l + 2 f c ) + 7 5 f c + l . 
For example in the case 

k = 4, 1 = 3: T,D = 195, p = 219, T(n) = 733; 

k = 10, / = 10: TID = 531, p = 555, 2 » = 5791. 

One has to calculate the necessary time for the reactivization, by this way. The 
effect of putt ing in the gate ¥ last figure of the first number — x\ — is 

kp+PY1. 

By substracting f rom this the propagating time of the reactivating signal, one gets 
its starting time tact trcac: minimal following distance, 

f,eac = kp + p yjl-R1L1M1Y1 + minimal following ditance 

minimal following distance = 6, 

N R1L1M1 W1 = 44. 
Since 

'reac ~ kp 31 
the necessary time interval between two selecting procedure Tmc is 

T r eac = kp+I1W1+ minimal following distance — P Y1 — kp, 

T, c a c = 6. 

Size. Let Sl be the size of an / -MAXEL expressed in terms of the number 
of its constituting cells. Then 

S' = [I (¥7l) +1] (EH1 + ITHJ+ F^0l), 

W J l = 24, 

e l l = 3 2 + ( / - 3 ) 6 , / S 3 , 

VHL = 30, 

F'0L = 17, 

SL = (24 / + 1) [79+(Z—3)6] , / S 3 . 
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For example in the case 

1 = 3, k = 4: S 3 = 73x79 , 

/ = 10, k = 10: S10= 241X121. 

Conclusion concerning the design 

The advantages of the solution. 1. The data according to x{ coefficients are 
propagating along parallel pathways in the /-MAXEL, which permits a high simoul-
taneity within the frames of the task, making the profit f rom the two-dimensionality 
of Codd-ICRA cellular space. 

2. The size of the / -MAXEL depends on the number / of numbers only, it is 
completely i n d e p e n d e n t s the length k of the numbers. 

3. The dependence of the working time the /-MAXEL on both / and k is very 
simple — linear — function. 

4. If / ' > /, / -MAXEL is easily extend ableby the insertion of new selector units. 

The conditions of the solution. I. Inputs 
1. For the inputs x{ one has to assure a constant speed which is independent 

of i and j. 
2. If the inputs are not synchronized, one has to apply 24 tacts retard between 

two neighbouringj'-th and ( J + l)-th inputs, or build in input synchronization blocks. 
3. The p periodicity of the signals as a function of / is 

j» = 4 8 ( Z - l ) + 1 2 3 . 

II. The output periodicity is p, too. 
III. One has to give in advance the values of & a n d / . 
IV. Apart f rom the / inputs the / -MAXEL needs an ( /+ l)-th input for the reactiviza-

tion after a whole selecting procedure. 
The required reactivization time is 

'reac = k p 3 1 . 

Summary 
j 

After becoming acquainted with the basic techniques, and concepts óf cellular automaton and 
cellular space we present a machine, which is able to select the maximal one among the numbers 
simoultaneously introduced into it. 

NATIONAL CENTRE FOR EDUCATIONAL TECHNOLOGY 
VESZPRÉM, HUNGARY 

1 Sometimes differently from the usual way of speaking, we say cellular space for the five-
tuple 31=(/, v, L, S, x) and in these cases by a cellular automaton we mean the ordered pair (91,qQ), 
where q0 is a quiescent state. 

2 This published solution is a corrected version bv means of the simulation experiences on 
PDP 10. 
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T A B L E Codd-ICRA 
s s' s±s' • S I L F ' s s' • S / . I L I ' s s' S s' J _ L I ' J s' 

0 0006 2 0 1214 1 0 1662 1 1 0262 6 1 1242 4 1 2255 5 2 0306 3 
0 0007 3 0 1215 1 0 1666 1 1 0263 6 1 1243 4 1 2263 6 2 0307 3 
00015 3 0 1216 1 0 1717 1 1 0272 7 1 1244 5 1 2266 6 2 0711 1 
0 0016 2 0 1217 1 0 1722 1 1 0273 7 1 1252 5 1 2273 7 2 1117 1 
0 0025 2 - 0 1222 7 0 1727 1 1 0342 4 1 1253 5 1 2277 3 2 1232 3 
0 0026 2 0 1223 I 0 1772 1 1 0343 4 1 1255 6 1 2324 4 2 2324 3 
0 0042 2 0 1224 1 0 1777 1 1 0352 5 1 1262 6 1 2325 5 2 2325 3 
0 0051 3 0 1225 1 0 2226 2 1 0353 5 1 1263 6 J 2326 6 2 2326 3 • 
0 0061 2 0 1226 1 0 2266 2 1 0362 6 1 1266 6 1 2327 7 2 2327 3 
0 0062 2 0 1227 1 1 0004 0 1 0363 6 1 1272 7 1 2334 4 3 0002 2 
0 0066 2 0 1 2 3 2 6 1 0006 6 1 0372 7 1 1273 7 1 2335 5 3 0006 1 
0 0106 2 0 1235 1 1 0007 3 1 0373 7 1 1277 4 1 2336 6 3 0025 1 
0 0107 3 0 1242 1 1 0014 0 1 0411 0 1 1343 7 1 2337 7 • 3 0026 0 
00116 2 0 1244 1 1 0016 6 1 0606 6 1 1353 7 1 2343 4 3 0027 0 
0 0126 2 0 1252 1 1 0017 2 1 0611 6 1 1363 7 1 2353 5 3 0042 1 
00161 2 0 1253 1 1 0024 4 1 0616 6 1 1373 7 1 2363 6 3 0062 0 
0 0162 2 0 1255 1 1 0026 6 1 0621 6 1 1422 4 1 2373 7 3 0072 0 
0 0166 2 0 1262 1 1 0036 6 1 0622 6 1 1424 5 1 2424 4 3 0102 2 
0 0206 2 0 1266 1 1 0041 0 1 0626 6 1 1442 5 1 2433 4 3 0103 0 
0 0207 3 0 1272 1 1 0052 5 1 0661 6 1 1522 5 1 2525 5 3 0106 4 
0 0213 1 0 1273 1 1 0061 6 10722 7 1 1525 6 1 2533 5 3 0107 7 
0 0226 2 0 1277 1 1 0062 6 1 1114 0 1 1552 6 1 2626 6 30111 1 
0 0227 1 0 1313 1 1 0063 6 ' 1 1115 6 1 1616 6 1 2633 6 3 0162 0 
0 0261 2 0 1322 1 1 0066 6 1 1116 6 1 1622 6 1 2727 7 3 0 1 7 2 0 
0 0262 2 0 1324 1 1 0071 7 1 1117 7 1 1626 6 1 2733 7 3 0261 0 
0 0272 1 0 1342 1 1 0104 0 1 1124 4 1 1662 6 1 3334 4 3 0271 0 
0 0363 1 0 1352 1 1 0105 5 1 1125 5 1 1666 3 1 3335 5 3 1111 1 
0 0611 2 0 1362 1 1 0106 6 1 1126 6 1 1717 7 1 3336 6 3 1232 2 

. 0 0621 2 0 1363 1 1 0107 2 1 1127 7 1 1722 7 1 3337 7 3 2324 2 
0 0622 2 0 1372 1 1 0114 0 1 1142 4 1 1727 4 2 0006 0 3 2325 2 
0 0626 2 0 1373 1 1 0116 6 1 1152 5 1 1772 4 2 0007 1 3 2326 2 
0 0661 2 0 1422 1 1 0126 6 1 1162 6 1 1777 3 2 0017 1 3 2327 2 
0 0722 1 0 1424 1 1 0141 0 I 1166 3 1 2224 4 2 0025 3 4 s' 1 

q s O f ) 0 1116 2 0 1432 1 1 0161 6 1 1172 7 1 2225 5 2 0042 3 4 s' 1 
q s O f ) 

0 1124 1 0 1442 1 1 0162 6 1 1177 3 1 2226 6 2 0071 1 5 j ' 1 ( a ) 
5 5 0 C) 0 1125 1 0 1522 1 1 0166 6 1 1214 4 1 2227 7 2 0106 0 5 j ' 1 ( a ) 
5 5 0 C) 

0 1126 1 0 1523 1 1 0226 6 1 1215 5 1 2234 4 2 0107 1 6 s' 1 (C) 
o C) 0 1127 1 0 1525 1 1 0227 7 1 1216 6 1 2235 5 . 20117 1 6 s' 1 (C) 
o C) 

0 1142 1 0 1532 1 1 0242 4 1 1217 7 1 2236 6 2 0142 3 Is' 1 ( C ) 
, s O f ) 0 1152 1 0 1552 1 1 0243 4 1 1224 4 1 2237 7 20171 1 Is' 1 ( C ) 
, s O f ) 

0 1162 1 0 1616 1 1 0252 5 1 1225 5 1 2243 4 2 0206 0 

Is' 1 ( C ) 
, s O f ) 

0 1166 2 0 1622 1 1 0253 5 1 1226 6 1 2244 4 2 0207 3 
0 1212 1 0 1626 1 1 0261 6 1 1227 7 1 2253 5 ' 2 0251 3 

v. 

y : the own state of the cell 
s' = (s'1,s'1,s'3, s'4) : the neighbourhood states 

: the next state of the cell 

(a) : if s' does not contain I 
(b) : if s' contains 1 
(c) : if s' does not contain any even number 
(d) : if s' contains an even number 
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Characteristically free quasi-automata 

B y I . BABCSÄNYI 

In [2], [3] and [4] we dealt with the cyclic state-independent, well-generated 
group-type and reversible state-independent quasi-automata, respectively. In this 
paper we investigate a more gênerai class of quasi-automata : the characteristically 
free quasi-automata. For the notions and notations which are not defined here we 
refer the reader to [3] and [7]. 

1. General preliminaries / 

The /1-sub-quasi-automaton A1~(A1, F, dj) of the quasi-automaton A = ( A , F, 8) 
is the kernel of A if 

Avidia, f)\a^A,feF). (1) 

A is well-generated if A=A1. In [3] and [4] the well-generated quasi-automaton is 
called simply generated quasi-automaton. FA (or simply F) denotes the characteristic 
semigroup of A, and f A (or / ) is the element of FA represented by / ( € F). 

The well-generated quasi-automaton A — (A, F, 5) is said to be characteristically 
free if there exists a generating system G of A such that 

5{a,f)=,8{b,g)=>a = b, J= g(a,b£G; f , g£F). (2) 

G is called a characteristically free generating system of A, and its elements are 
called characteristically free generating elements of A. 

We note that every characteristically free generating system is minimal. 

Theorem 1. The quasi-automaton A —(A, F,6) is characteristically free if and 
only if A is a direct sum of isomorphic characteristically free cyclic quasi-automata. 

Proof. It can easily be seen that the subsets Ab = (S (b,f )\fdF) (b£G) of A 
form a partition on A, where G is a characteristically free generating system of A. 
Quasi-automata A b = ( A b , F , 8 b ) (b£G) are characteristically free cyclic quasi-
automata. LetJ»!, b2 (€G) be arbitrary generating elements. The mapping 

<P 6 l ,> 2 :<5 ( i> i , /W0>2 , / ) ( f € F ) (3) 

is an isomorphism of A6l onto A,,2. 
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Conversely, it is clear that the direct sum of isomorphic characteristically free 
cyclic quasi-automata is characteristically free. 

Theorems 1. and 2. are equivalent for A-finite well-generated quasi-automata. 

Theorem 2. The A-finite well-generated quasi-automaton A —(A, F, d) is charac-
teristically free if and only if there exists a generating system G of A such that 

\A\ = \G\-0(F). 

(In this case G is a characteristically free generating system.) 

Proof Let G be a generating system of the ^-finite well-generated quasi-
automaton A = (A,F,d) such that 

\A\ = \G\-0(F). 

Since \Ab\^0(F) (b£G) and A= 1J Ab therefore . 
i€G . . 

biG 

thus 
\A\= 2\A*\-

bi G 

This means that Ab (b£G) form'a partition on A and \Ab\=0(F).\l is evident that 
the mapping/—¿(¿?,/) ( f £ F ) is one-to-one. Therefore, the quasi-automata Ab (b£G) 
are characteristically free, cyclic, and for every pair b1,b2(£G), Ahl~ Ab2. By 
Theorem 1, the quasi-automaton A = (A,F,S) is characteristically free, and G is 
a characteristically free generating system of A. 

The necessity of this theorem follows from Theorem 1. 

Lemma 1 . ( I . BABCSANYI [3] .) Arbitrary two minimal generating systems of 
a well-generated quasi-automaton have the same cardinality. 

Corollary 1 and 2 follow immadeately from Theorem 2 and Lemma 1. 

Corollary 1. The A-finite cyclic quasi-automaton A = (A,F,6) is character-
istically free if and only if\A\ = 0 (F). 

The necessity of Corollary 1 is true for infinite quasi-automata; thus we get 
the following result: 

Theorem 3. If the cyclic quasi-automaton A = (A, F, 8) is characteristically 
free then \A\ = 0(F). 

It should be noted that the converse of Theorem 3 does not hold. Indeed, in 
Example 1 for the quasi-automaton A = (A, F1(X), 5) we show that \A\ = 0(F1(X)), 
but A is not characteristically free. 

Example 1. A = (i; 2; 3;...), X=(x,y), 

S(\,x) = 2, 5(Uy)=l, 5(i,x) = 8(i,y) = i+1 (i = 2 ,3 , . . . ) . 

It can be seen that F1(X) = (yixJ \ i,j=0, 1, 2, ...). (We note that is the 
empty word.) 
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Corollary 2. Every minimal generating system of an A-finite characteristically 
free quasi-automaton is,.characteristically free. 

In the following example it is shown that Corollary 2 does not hold for infinite 
quasi-automata. \ 

Example 2. Let N be the set of natural numbers, A =NX N and X=(x,y). 
The definition of next state function S is the following: 

<5(0,1),*) = 0 ,2 ) , .. . ' . , , . ' / . ' V 

<5((i, 2), x) = <5((i, 4), x) = (i, 3), 

S{(i, 2j+1), x) = S((i, 2J + 4), x) = (i, 2j + 3j, 

¿ ( ( / , ! ) , > • ) - ( / - 1 , 1 ) , . 

S((i,2),y) = S((i,4),y) = (i,l), 

S ((i, 2j + 1 ),y) = S ((¿, 2 j + 4), y) = (i, 2j + 2) (i, j = 1,2,3,...). 

The quasi-automaton A = (A, F(X), S) is cyclic. <(1,,/')) (j= 1, 2, 3, ..,) are minimal 
generating systems, but only <(1, 1)) is characteristically free. 

Lemma 2. The characteristic semigroup of every characteristically free quasi-
automaton has a left identity element. 

Proof. Let G be a characteristically free generating system of the quasi-auto-
maton A = (A, F, d) and b£G. There exists an eCF such that d(b, e)=b. Thus , 

- V f [ S ( b , f ) = ¿(8(b, e ) , f ) = S(b, ef)], 
f<LF 

that is, ' 
V / [ / = ef]-

f i F 

Theorem 4. Let a0 be a characteristically free generating element of the cyclic 
quasi-automaton A = (A,F,S). 8(a0,h) (h£F) is a characteristically free generating 
element of A if and only, if there exists a k^F such that 3 (an, hk) = a0 and kh is a left 
identity element of F. 

Proof. Let_a0 be a characteristically free generating element of A, S (a0, hk)=a0 
(It, k£F) and Jch a left identity element of F. Furthermore, for f g(CF), let, 

S(a0, hf ) = (5(<5(a0, h)J) = d(S(a0, h)i g) = d(a0, hg). 

Since a0 is a characteristically free generating element, thus, 

hf = hg, 
that is, 

/ = khf = khg = g . 

This means that S(a0,h) is a characteristically free generating element of A. 
Conversely, let 5(a0, h) (h £ F) be a characteristically free generating element'of A. 
There exists a k£F such that a0 = d(a0, hk). Now l e t / P F be arbitrary. By Lemma 2, 
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Mi is a left identity element of F. Therefore 

S(S(a0, h ) , f ) = S(a0, h f ) = S(a0, hkhf) = 3(S(a0, h), khf), 
that is, 

It is clear that every well-generated state-independent quasi-automaton is 
characteristically free. The converse of this statement does not hold (see Example 2). 
However, by Corollary 2, every ^-finite strongly connected characteristically free 
quasi-automaton is state-independent. 

Lemma 3. The characteristic semigroup of a state-independent quasi-automaton 
is left cancellative. 

Proof Let the quasi-automaton A=(^4, F,6) be state-independent and HJ— fig 
(h,f, g£ F). Then for an arbitrary state a(£A). 

5 (a,hf) = 6(S(a,.h),f) = S(d(a,h),g) = d(a,hg). 

Since A is state-independent thus f=g, i.e., the characteristic semigroup F of A is 
left cancellative. 

The converse of Lemma 3 does not hold. Indeed, in Example 3 the characteristic. 
semigroup F(X) of the quasi-automaton \=(A, F(X), 6) is left cancellative, but 
A is obviously not state-independent. 

Example 3. A = (\, 2, 3>, X=(x, y) 

s 1 2 3 F X X 2 y y 

x 2 1 2 X X 2 X y2 y 
y 2 3 2 X 2 X X 2 y y 

y X 2 X y2 y 
r X X 2 y y 

A is not a characteristically free quasi-automaton. 

Theorem 5. A characteristically free quasi-automaton is state-independent if 
and only if its characteristic semigroup is left cancellative. 

Proof. The necessity obviously follows _from Lemma 3. For the proof of 
sufficiency, let the characteristic semigroup F of the characteristically free quasi-
automaton A = ( A , F, <5) be left cancellative. Take the elements a(£A) and f g(£ F) 
such that d(a,f)=5(a, g). Let G be a characteristically free generating system of A. 
t h e r e are ¿ (€G) and h(£F) such that 5(b,h)=a, thus, 

< 5 ( M / ) = ¿ ( M g ) . 

Since A is characteristically free thus RJ=Kg. But F i s left cancellative Therefore, 
f = g . This means that A is state-independent. 
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We note that if a characteristically free quasi-automaton is state-independent, 
then each of its minimal generating systems is characteristically free. 

In the following two paragraphs we generalise some results of papers [2] and [4], 
concerning cyclic state-independent and reversible state-independent quasi-automata 
for characteristically free quasi-automata. 

2. Endomorphism semigroup 

Theorem 6. Let a0 be a characteristically free generating element of the charac-
teristically free cyclic quasi-automaton A = (/t, F, S) and d(a0, c) = a0 (e^F). Then 

E{A) = Fe. 

Proof. Define the following mappings <xao,h: A—A 

<.k(8(a0'f)) = ^(fl0,hf) ( f e F ) . (4) 

If 5(a0,f) = d(a0, g) ( f g£ F) then, by (2), f=g, thus, 

$(a0,hf) = 5(5(a0, h),f) = S(5(a0,h), g) = ¿(a0,hg), 

i.e., aa0ih is well-defined. Let a(£A) and f ( £ F ) be arbitrary elements. Then there 
exists a g((zF) such that<5(a0, Therefore, . 

<Xao,h($(aJ)) = g f ) ) = S(a0, h g f ) = 

= S(5(a0, hg),f) = 5(ccaoih(S(a0, g)), f ) = <5 (aO0 , , ,(«),/), 

i.e., a a 0 : h is an endomorphism of A. Let a be arbitrary endomorphism of A. There 
exists an h£F such that 5(a0, h)=a(a„). Then for every a = d(a0, g)fA, 

a (a) = a(8(a0, g)) = <5(oc(a0), g) = 5(8(a0, h), g) = 8{a0, ftg) = 

= * a o , h { 6 ( a o , g)) = '' 

that is, a = a a o ( , . Therefore, every endomorphism of A is of type (4). 
F rom Lemma 2 it follows that e is a left identity element of F. It can easily 

be seen that the mapping 
«a0,h-~he (h£F) r 

is an isomorphism of E(A) onto Fe. 

Corollary 3. The endomorphism semigroup of a characteristically free cyclic 
quasi-automaton is a liomomorphic image of its characteristic semigroup. 

Proof. The mapping f ^ f e ( f £ F ) is an endomorphism of F. 
' In Example 2 xy is a left identity element of F(X). 

. F\X) = / ; ylxJ^y\j, fe, / = 1,2, 3 , . . . ) , ' 

FWixy = <7; y\xi+iy\j, k, l = 1 , 2 , 3 , . . . ) . , 
- k. 

Let G be a characteristically free generating system of the characteristically 
free quasi-automaton A = (A,F,S). Furthermore, n: G —C? andco .yG—F. 

6 Acta Cybernetica III/2 . 
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Theorem 7. The mapping (pnm: A — Л for which 

<P™(S(b,n) = S(n(b), 01(b) f ) (beG;feF) (5) 

is an endomorphism of A. Furthermore, every endomorphism of A is of type (5) and 

1Pnto = U Фь.п (ft) aft, to (ь) > 
ы G 

where (рь,„(ь) is a mapping of type (3) and abt0l(b) is a mapping of type (4). 

Proof Let 5(b,f)=5(c,g) (b, c£G;f, g£F). F rom (2) it follows tha t b=c 
and f=g, that is, n(b)=n(c) and co(b)j =co(b)g. Therefore, cpna is well-defined. 
Let a=5(b, h) be an arbitrary state of A and f£F. Then 

iP««(3(e,/)) = <P™(<HM/)) = S(n(b), co(b)hf) = 

- d(d(n(b),co(b)h),f) = S(q>K0](d(b, h)),f) = 8(фяа(а),/). 

Therefore, (pnaj is an endomorphism of A. Let a be an arbitrary endomorphism of A, 
<x.(b)£Ac-(b, c £ G ) a n d u(b) = d(c,h) (h£F). Since the subsets Ac (c(G) of A f o rm 
a partit ion on A, thus the mapping я : ¿—c is well-defined. Let со: G-*F such tha t 
5(c, co(b))=a(b). Then 

a(d(b,f)) = 5(a(b)J) = 5(5(c,co(b)),f) = 

= S(c, co(b)f) = S(л(Ь), co(b)f) = cp%a{5(b,f)) (biGJiF), 

that is, a = cpnm. This means that a is a mapping of type (5). Furthermore, 

• <P™(<50>/)) = 3(n(b), сo(b)f) = <рь,п{Ь)(ё(Ь, (o(b)f)) = <pb,„m «¿.сдаОНЬ,/)), 

that is, 
Фтмо\Аь = (Pb.Ttib) ab,oi(b)-

Denote the set of mappings <pn: — IJ (Рь,я(ь) by T and the set of mappings 
bZG 

а и : = (J by H. T and H are subsemigroups of E(A) under the usual multipli-
6€G 

cation of mappings. 

Corollary 4. If the quasi-automaton A = (A, F,S) is characteristically free then 

E(A) = TH and T П H = {г}. 

Proof. It is evident that (pnm == f/>„ am and 

(Pn = a® <Рж = «а, = 1, > 

where 1 is the identity element of E(A). 

CoroHary 5. If the A-finite quasi-automaton A = (A, F, <5) is characteristically 
free and F is a monoid then 

0{E(A)) = \A\M 

where G is a characteristically free generating system of A. 
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Proof. By Theorem 1, 0(7")_is equal to the number of the transformations 
of G, that is, 0 ( T ) = |G | | c | . Since Fis a monoid thus, by Theorem 6, E(Ab)^F(b£G). 

By Theorem 2, 0(F) = j ^ . Therefore, by Theorem 7, 0{H) = № r ) . Thus, by 
| o | - v |&| ; 

Corollary 4, 

0(£(A)) = 0(T).0{H) = |G||G| • ( M ) = . 

Theorem 8. Z.e/ the quasi-automaton A = (A, F, S) be characteristically free. Then 
1) <pn£G(A) if and only if it is a permutation of G, where G is a characteristically 

free generating system of A. 
2) aolf G(A) if and only if G' — {b{b, co(b))\b£G) is a characteristically free 

generating system of A. 
Proof. 1) By Theorem 1, (p„\Ab (b£G) is an isomorphism. Thus (pn£G(A) if 

and only if 
(Pn\A„ = <Px\Ac(b>C£G) =>Ab = Ac, 

that is, b = c. This means that n is a permutation of G. 
2) By (3), aaeG(A) if and only if for every b£G, 

^(bjf=Mb)J (f,geF)=>f= g 

and G'—(5(b, co(b))\b£G) is a generating system of A, i.e., G' is a characteristically 
free generating system of A. 

The quasi-automaton A = (A, F, 5) is called reversible if for every pair a(£A), 
f ( e F ) there exists a g(£F) such that §(a,fg)=a. (s. V. M . GLUSKOV [9].) 

We note that if F is left cancellative (i.e., if the characteristically free quasi-
automaton A is state-independent) then every mapping ota is one-to-one. If every 
Ab (b£G) is strongly connected (i.e., A is reversible) then aw is onto. If A is reversible 
and state-independent then H is a subgroup of G(A) (see [3] and [4]). 

If <p„, a m eG( / i ) then 

<<Pm(Kb,f)) = S(n(b), (o(b)f) = a ,№ ) >„(»($(*(&),/)) = 

that is, 
<Pn<Xa = <Pnco = U (x-n(b),oi(b)<Pb,n(b)= U af>, to ( i t" 1 (6)) <Pn "1

 (i>), b = <^o> <Px 
b(G biG 

where (J xb i i a („-H b ) ) . 
biG 

We denote the set of mappings (d G(A)) by H'. H' is a subgroup of H. Let 
us denote the set of mappings (p„(^G(A)) by P. P is a subgroup of T. 

Corollary 6. If the quasi-automaton A = (A, F, d) is characteristically free then 

G{A) = PH' = H'P and P D H' = {i}. 

Proof. It is evident that PH', H'PJgG(A). Let a£G(A). Then there exist 
<pn£T and a a£H such that a = aro, by Corollary 4. We show that tpn 6 P and xm€H'. 
Using the proof of Theorem 7, we get that the mapping n: b—c (b, c£G), where 
a ( b ) $ A c , is a transformation of G. Assume that a(Z>1), a(b2)^Ac (b1,b2,c£G). 

6* 



152 I. Babcsanyi 

Then there exist h1,h2€F for which a(bi)=d(c, h^ and a(b.2)—d(c, //,), that is, 
bx~d(a.~^(c),h^) and b2 = d(a~1(c), h2). By Theorem 1, Abl = Abt, that is, b1=b2. 
Thus -7t is one-to-one. Since d(b)£Ac thus cc(Ab)QAc. Thus, for every c (£G) there 
exists a b(£G) such that x(b)£Ac, since a is an automorphism. Therefore, n is 
a permutat ion of G, that is, <p„£G(A). This means that aeo = (p~1ac£G(A). Since 
<Z>*a<o=««<?*> w h e r e <x'm£H, thus a^ = (pnci(0(p-1£G(A). 

Corollary 7. If the quasi-automaton A = (A, F, 5) is characteristically free, then 
P can be embedded homomorphically into the automorphism group of H'. 

Proof It is clear that the mapping 0K: a^, is an automorphism of H' 
((p^P,aa,,ai0^H'). The mapping (p„—0x((pK£P) is well-defined. Take arbi trary 
mappings (pni, q>n, (£P) and aa (£H'). If 

= and (pKlaai = «as(pni (aM l , a 
then 

<Pwz2Xo = (P^Vko.Xc* = (Pn^Vn. = <xai,<pni(p„, = ccat(pnini, 
thus, 

©k^OJ = 0,fy_aii) = aM2 = 0ni*,(ccj, 

t h a t i s , 0ni0n2= 0niZ2-

We note that if the quasi-automaton A is reversible and state-independent 
then H'=H (see I. BABCSANYI [4].) 

Example 4. 
A 1 2 3 4 5 6 • F X y y2 

X 3 3 3 6 6 6 X X X X 

y 2 1 3 5 4 6 
y X 7 y 

F- X y y2 

G=( 1; 4) is a characteristically free generating system of A. 

% = (! 4)' = l) ' "» = (4 4)' *« = ( ! l ) ; 

0,1={ lx 3 ' ^ ( i 3 ! 0 , 4 3 « ^ = { l y }3' 

= (y- ^ = {7 3 ' = (£>) ' = ( ? ?)• 
T=(i = cpni, <pK2, cpni), H = (ocji. = 1, 2, ..., 9), 

0(T) = 4, 0(H) = 9, 0(E(A)) = 0(TH) = \A\|G| =-62 = 36, 

TC\H = {i), P = (i = -H'= {xa_,<x.<ai,<xa,i,cte,i = i). 

<Pni «£,5 = <Pn,, (Pn, = ara8 <P* 4 and (p^ 0iraa = ame <pKl, 

that is, G(A)=PH' = H'P, PC\H' = {i}. 

\HT\ = '24. Therefore, E(A) = TH ^ HT. 
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3. Reduced quasi-automata 

In the paper [2] we introduced on the state set A of the quasi-automaton 
A = (A, F, d) the following congruence relation o: c 

aQbo V f [ 5 ( a , f ) = 6(b,f)]. (6) 
/ € F 

The factor quasi-automaton A: = A/Q is said to be the reduced quasi-automaton 
belonging to A. The quasi-automaton A = {A, F, 5) is called reduced if for arbitrary 
a, b (£A): 

aob => a = b. 

We note that if e is a left identity element of F then 

agb(a,b£A) <=> S(a,e) = d(b,e). 

If the characteristic semigroup F o f a well-generated quasi-automaton A is a monoid, 
then A is reduced. The proof is obvious; we only note that A is well-generated if . 
and only if 

V a[5(a, e) = a], 
a£A 

where e is a right identity element of F(see I._BABCSANYI [4]). _ 
_Denote the characteristic semigroup of A = ( A , F, 3) by F. Let / be the element 

of F represented b y / ( £ / " ) . Furthermore a is the element of A represented by a(£A). 
y 

Lemma 4. If the quasi-automaton A = (A, F, 3) is characteristically free then 
the quasi-automaton A = (A, F, 3) is characteristically free as well. 

Proof. Let G be a characteristically free generating system of A. It is clear that 
the set G={a0\a0^G) is a generating system of A. Let 

5(a„ . / ) = 5(50 , g) (a0, b0£G; f , g£F), 
that is, 

V h[d(a0,fh) = d(b0,gh)]. 
h£F 

Since G is characteristically free thus 

v a0 = b0 and V h[jri=gh], 
h£F 

thus, a0 = B0 a n d / = £ / . This means that G is characteristically free. 

Theorem 9. If the quasi-automaton A = (A,F,d) is characteristically free then 
E(A) = E(A). 

Proof. Let G be a characteristically free generating system of A._It is evident 
that all mappings cpnB of type (5) are endomorphisms of A (n: G—G; ¿5: G — F). 

i 
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Take the mapping ¥: E(A) -~E{A) for which 

ViSPnJ = <Pm <=> V a0[n(a0) = n(a0) and a>(a0) = co(a0)]. 
a0(G 

Since the mapping a 0 — a 0 ( a 0 £ G ) is one-to-one, thus the n and co are well-defined. 

<Pn<* = ) =» V a0[ V /[<5(rc(a0), co(a0)f) = 5(n'(a0), e / ( a 0 ) / ) ] ] -
A0£G / € F 

=> V a0[5(7r(a0), eo(a0)) = S(n'(a0), to'(a0))] => 
A0£G 

= > V a 0 [ 5 ( 7 t ( a 0 ) , ro(a0))] = 5 ( 7 t ' ( a 0 ) , « ' ( a 0 ) ) ] fe = < j V e r -

Conversely, 

<Pm = < / W => V a 0 [ V / [¿ (S (a 0 ) , oj(d0)f) = ¿(S'(a0), ra'(a0)/)]] => 

=• V 5 , [ V f[5(M^),w(a0)f) = 5{7{^),m\a,)f)-\l 
S0E G fiF 

Since 7i(a0), n'(a0)£G and G is a characteristically free generating system of A thus 

V a0[7t(a0) = n'(a0)], 
O0£G 

that is, 
; V a 0 [ V f[5(N(A0),f) = S(TI'(a,),/)]]. 

a0€G f£F 

But 7i (aa), n'(aa)£G and G is a characteristically free generating system of A. Thus 

V a0[Ti(a0) = 7i'(a0)l a0£G 

that is, n = n'. F r o m this, using m(a0) = m(ali) and aj'(a0)=o/(a0), we get tha t (pnm = 
=(jon ,a , . This means tha t W is one-to-one. It is clear tha t is onto. 

Let <pniB>l, (pn2a2<=E(A) and 5(a0,f) (a0f_G,f^ F) an arbi t rary state of A. If 
N:=N1N2 and a > ( A 0 ) : = oj1(N2(A0))OJ2(A0) then 

<Pm ai <P«, ojt(a0,f)) = <p,L C,M ((5 (TT2 (a0), co2 («„)/)) = 

= 5(71^(00), co1(Tt2(a0))w2(a0)f) = cpnm(S(a0, / ) ) , 

that is, y a i a , 1 y„ 8 m g = y„c,. But Si (a0) = (n2 (a0)) = 7r1 n2 (a0) = n(a0) and w^n^a,,)) • 
• co2(a0)=co1(7i2(a0))co2(a0)=(o1(7i2(a0))co2(a0). Therefore, 

^ <P^aJS(a0,f)) = <pgiSl(d(n2(a0), oj,(a0)f)) = 

= SfaHziao), « i ( i 2 (ao ) )«2 (ao) / ) = <Paa}(^("o,/)), 

that is, <pSi<3l9n1<52 = cPm- Thus f is an isomorphism of E{A) onto E(A). 

We note tha t if n ^ n ' then 'Pum^'Pro-- Fur thermore , 

= <2W <=»• V fl0[®(«o) = o}'(a0)]. 
o0£G 
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Corollary 8. If the quasi-automaton A = (A, F, <5) is characteristically free, then 
the characteristic semigroup F of A can be embedded isomorphically into the endo-
morphism semigroup F(A) of A. 

Proof Let G be a characteristically free generating system of A and n the 
identity mapping on G. Denote the mapping <pna by <ph if 

V a 0 [ « ( « o ) = h i 
fl„€G 

It can clearly be seen that the mapping cph (h£F) is one-to-one. Let h, k,f£F 
and a0fG. Then 

<Ph<Pk(&(floJ)) = <Ph($(ao> ¥ ) ) = <5(«o, h k f ) = cphk(S(a0,f)), 

that is, <ph<Pk = (Phk- Thus the mapping h — <ph (h6 F) is an isomorphism of F into 
E(A). 

We note that the characteristic semigroup F of the characteristically free quasi-
automaton A = (A, F, d) can be embedded homomorphically into E(A). If O(F) = 1 
then every element of F i s its left identity element. In this case H = {i}. 

Corollary 9. If the cyclic quasi-automaton A = (A, F, 5) is characteristically 
•free then E(A) = F. 

Proof By Theorem 6, E(A) = Fe. Since e is a left jdenti ty element of F, thus 
the mapping je-<~Ji f€ F) is an isomorphism of Fe onto F. 

Corollary 10. The characteristically free quasi-automaton A = (A, F, 5) is 
reduced if and only if its characteristic semigroup is a monoid. 

Proof By Lemma 2, there exists a left identity element e of F, that is, 

V a [ V f [ 5 ( a , f ) = 5(a, e f ) = 5{5(a, e),f)]]. 
aiA f i F 

If A is reduced then 
V a [a = S(a, e)], 

a£A 

i.e. e is the identity element of F. It is evident that if F is a monoid then A reduced. 
The next result follows f rom Theorem 6 and Corollary 10. 

Corollary 11. The characteristically free cyclic quasi-automaton A is reduced 
if and only if F = E(A). 

Lemma 5. Let the quasi-automaton A = (A, F, S) be characteristically free and 
L the set of left identity elements of F. Then 

V a0[a0 = (5(a0,e)\eeL)], 
a0<ZG 

and for arbitrary pair a0, b0(£G), [a„| = |50[, where G is a characteristically free 
generating system of A. 
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Proof. Let a0 = E (a0£G, b£A). Then there exist h£F and b0£G for which 
5(b0, h) — b, thus, 

V Wcio,f) = W , f ) = S(b0,hf)], 
fir 

tha t is, a0=b0 and V f[f=hf.1- Therefore, fi^L. I t is evident that if e(LL then f i F 

5(a0, e)£a0. If <5(a„, e1)=5(a0, e2) (a0£G; elt e2£L) then e1 = e2, thus the mapping 
(5(o0; <?)—e (e£L) is one-to-one; therefore, \a0\ = O(L) (a0£G). 

We note that for every state a(£A): 

a 2 {5(a, e)|egL) 

and a Q A a o , where a 0 £G and a = <5(a0, h) ( / i£F). 

Corollary 12. (I. BABCSANYI [4 ] . ) If the quasi-automaton A = (A, F, S) is 
reversible and state-independent then a~(6(a, e)\e^L) (adA) and for every pair 
a, b(£A), |a| = |5|. 

Corollary 1 3 . ( I . BABCSANYI [4] . ) If the reversible state-independent quasi-
automaton A = (A, F, 5) is A-finite and there exists an a (£A) such that \Aa\ is a prime 
number, then the characteristic semigroup F of A is a group or every element of F is 
its left identity element. 

Proof. By Corollary 12, |a | is a divisor of \Aa\ (a£A). If \Aa\ is a pr ime number 
then ¡«| = 1 or |a | = |/40[. If |a | = l then, also by Corollary 12, |5| = 1 for every b(£A). 
This implies that F is a group. If |a| = \Aa\ then for every state b(£Aa), 

V f l S ( a , f ) = d(b,f)]. 
f i F 

Since for every h(£F), S(a,h)£Aa thus 

M f [ S ( a , f ) = 3(a,hf)], f i F 
tha t is, 

V / [ / = £ / ] • . 
f i F 

Therefore, h is a left identity element of F. 
Let the characteristically free quasi-automaton A = (A,F,8) be cyclic and 

a0 a characteristically free generating element of A. d(a0,h) (h£F) is a charac-
teristically free generating element of A if and only if the mapping cLcah (see (3)) 
is an automorphism of A. This means that the cardinal number of the set of charac-
teristically free generating elements equals 0(G(A)). 

In Example 2 ( 7 j ) = ((/, 1)); _ ( U j = ( ( / , 2); (/,4)>; (/, 2 / + ] ) = < ( / , 2 j + 1 ) ; 

(/, 2./+4)) ( / , y = l , 2 , 3 , . . . ) . F=(xk; xy; ylxk\k, 1=1, 2, 3, . . .). E(A)^F and 
G(A)={i}. 

Theorem 10. If the characteristically free quasi-automaton A=(A, F, 5) is 
cyclic then the quasi-automaton E(A) = (£(/4), F, d') is well-defined, where 

S'(*.t.H,fy=*a9M ( f t ? ) 
and E ( A ) s A . 
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*a0,h = V f[S(a0,hf) = 5(a0,kf)], 
f i F 

Proof. Since 

thus -

Furthermore, 

¿' (« O 0 , ( .» /g) = a « o . h f g = &'Q*a0,hf, S) = S'(d'(aa0th,f), g) 
(/?, k,f,g£F\ a0 is a characteristically free generating element of A.), that is, E(A) 
is well-defined. The mapping W : E(A)—A for which 

*a0,h — aa0,k =>• V f [ a a 0 , h f — ' a a 0 , k f \ -
f i F 

is one-to-one and onto. Finally, we shall show that T is a homomorphism. Take 
arbitrary elements <xa0yh£E(A) a n d / 6 F : Then 

»W«..*,/)) = if («.,.*/) = ¿(a0,hf) =\ 

•=8(6(a0,K),f)=5(5(a0,h),f) = 5(V(aattJ,f). 

Theorem 11. If the characteristically free quasi-automaton A = (A, F,d) is 
cyclic, then E{E{A)) is the semigroup of left translations of E(A) and E{E(A)) Sf E(A). 

Proof. Note that E(E(A)) denote the endomorphism semigroup of E(A). 
Let aao h, aaoik(£E(A)) be arbitrary endomorphisms and ' ¡ i £ E ( E ( A ) ) . Then 

(<*<.„• A "a».*) - V(a"0,hk) = / ' ( < : ' ' k ) ) = (/*(«„„,»), = 

' = (<*<*,, 9> k) = y-aa,,jk = *«„,9 = j"(a«o.h)a«o,fc' 

where h, k, g£F and («„„,&) = «„„,.,. This means that pi is a left translation of E(A). 
Conversely, if pi is a left translation of E(A), then 

/¿(¿'(«oo.A»/)) = V&ao.hf) = H(<Xa0,h<Xa0,f) = = 

= aa0,g*aa,f = ««„,»/ = = U1 (««.„, *)>/)> 

w h e r e / £ F a n d fi(r-tncith) = <y.arii!J, i.e. pi is an endomorphism of E(A). It is well-known 
that every monoid is isomorphic to the semigroup of its left translations. 

We note that if the quasi-automaton A = ( A , F,S) is cyclic and characteristically 
free, a0 is a characteristically free generating element of A, 8(a0, e) = a0(e£F) and 
Ae: = (5(a0,fe)lf€F), then the quasi-automaton Ae=(Ae, Fe, de) is well-defined. 
Ae is a reduced sub-quasi-automaton of A and FeA' = F. 

Theorem 12. If the endomorphism semigroup E{A) of the characteristically 
free cyclic quasi-automaton A =JA, F, 8) is isomorphic to the direct product of semi-
groups Ei ( / = 1 , 2 , . . . ,«) then A is isomorphic to the A-direct product of reduced 
characteristically free cyclic quasi-automata Ai=(Ai, F, <5;) and E{A^Et. 

Proof. It is sufficient to prove this theorem for n = 2. Let E(A)^E1<g>£2. 
We can assume that E{A) = E1^E2. ByTheorem 10,E(A)s=A. Le ta a 0 i f t : = (a1)h ,a2) f t) 
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(ai:h£Eh / = 1 , 2). Since 

(«1 ,hf><*2,hf) = *a0,hf = af lo, / iao0 > / = ( a l ,»> a 2 , / i ) ( a l , / > a 2 , / ) = ( « l . A « ! , / , « , ^ « , ^ ) 

thus This means that the mappings ¿¡: f j X F ^ f , - given by 

¿¡(a,-,/,,/) = a,-.»/ 

are well-defined. Furthermore, the quasi-automata Ej=(£,-, F, 5,-) are also well-
defined. 

¿'((«I,»» « a , » ) » / ) = <5'(aao.ft>/) = a « o , v = 

= ( a i ,h /> a 2 , h/) = ( < 5 i ( a i , * , / ) , ¿2 («2, /» / ) )> 
that is, E(A)=E1<g»E2. Thus A s E ^ E j . It is evident that aO0>e is a charac-
teristically free generating element of E(A), where a0 is a characteristically free 
generating element of A and 5(a0, e)=a0 (e£ F). Prove that ai e ( / = 1, 2) is a charac-
teristically free generating element of E ; . Let 

<*i,f = <5,(a;,e,7) = <5,(«;,<>, g) = ai,g ( f , g £ £ ) . 
Then for every /z£F, 

<5;(a;,/ , , /) = a,-,»/ = « i , / . « ; , / = «¡ .a«; ,» = = g), 

that i s ] E t = g E i . Therefore, the quasi-automata E ; are cyclic and characteristically free. 
From Theorem 6 it follows that Ph: aitf— a; hf ( / G F ) is an endomorphism of E,-, 
and for arbitrary endomorphism p of E ; there exists an /z£Fsuch that P=Ph. 

Ph = Pk(K fc€F) V f[<xilhf = ahlf] <=> atM = aiM. 
/ € f 

But 0Lith = a.i he and aitk=oiiike. Therefore, the mapping Ph—a.Uh (h£F) is a one-to-one 
mapping of £ (£ , ) onto £ ; . Since PfPq=Pfg i f , F), thus the mapping Ph-~alih 

(h£F) is an isomorphism. Let a ; > f t =a, i t , that is, 

/6 F 

Thus «¡, h = 0 i i , h e = f e e = « ¡ , t • Therefore, the quasi-automata E ; are reduced. 

Corollary 14. The reduced characteristically free cyclic quasi-automaton A is 
isomorphic to the A-direct product of reduced characteristically free cyclic quasi-
automata A; ( / = 1 , 2 , . . . , « ) if E(A)^E(A^®E(A^®...®E(An). 

Example 5. 
AI 1 2 A2 3 4 A ^ A A (1,3) (1,4) (2,3) (2,4) 

X 1 2 X 4 -3 X (1,4) (1,3) (2,4) (2,3) 

y 2 2 y 4 3 y (2,4) (2,3) (2,4) (2,3) 

1 is characteristically free generating element of Ax . 3 and 4 are characteristically 
free generating element of A2. A t and A2 are reduced. £(A1) = (a1, ft), where 

a i = ( l 2) a " d 2) = <«2.^2), where <x2 = ^ and = 3). 
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4. Homomorphism 

Let A = ( A , F, 5) be a quasi-automaton and / ((f F) an arbitrary symbol. Define 
the semigroup Fl to be FU {/}, multiplication in F is unchanged and / acts as an 
identity for FU {/}. Furthermore, let cp be a mapping of A into itself and 

A X F r - * A such that 
( S ( a , f ) if f e F 

6 ^ = U a ) if / = / ^ 

Lemma 6 . (I. BABCSANYI [4].) The quasi-automaton' Atp: = (A, F1, 8V) is well-
defined if and only if (p is an idempotent endomorphism of the quasi-automaton 
A = (A, F, 5) and the restriction of cp to the kernel of A is the identity mapping. In this 
case A is sub-quasi-automaton of A(p. 

Proof. Necessity." Assume that the quasi-automaton A,, is well-defined. Let 
a{£A) be an arbitrary state. Then 

<p(a) = 8v{a, I ) = 3v(a, P) = <5,,(<5„(a, I), / ) = cp2(a), 

that is, cp2 = cp. Furthermore, if f£F then 

d9(a, I f ) = 5j(a,fl) = d ^ a j ) = 5(a,f), 

Sy(5<p(a,f),l) = 8<p(d(a,f),l) = <p{d(a,f)), 

S9(Sv(a, I ) , f ) = 3v(cp(a),f) = %(«),/), 

Since A v is well-defined, thus 

8(a,f) = cp{8{a,f)) = 8(<p(a),f). 

This means that <p is an idempotent endomorphism of A and cp\A^i (At is the 
state set of the kernel of A (see (1))). The proof of sufficiency is similar. Since F is 
a subsemigroup of F1 and <5 coincides with the restriction of d,P to AX F, thus A is 
sub-quasi-automaton of Av. 

Theorem 13. (I. BABCSANYI [4].) Every homomorphism of the quasi-automaton 
Aip = (A, F', drp) is a homomorphism of the quasi-automaton A = (A, F, 8). Conversely, 
if f is a homomorphism of A onto the quasi-automaton B = (fi, F, 8'), then ¥ is a homo-
morphism of Ay onto B(/). if and only if Wcp = (p'iF. 

Proof Since A is the state set of A and Av, furthermore, A is a sub-quasi-
automaton of Ay, thus every homomorphism of A,p is a homomorphism if A. 
Conversely, let W be a homomorphism of A onto B. cp and cp' are mappings of 
type (7). It is clear that W is a homomorphism of A v onto B^,., if and only if 

V a[¥cp(a) = V(d9(a, /)) = ¿'^(a), /) = q>"F(a)], 
aiA 

that is, xFcp = (p'<F. 

We note that if cp is the identity mapping of A, then the homomorphisms of 
A and A,, coincide. In this case denote A9 by A ¡ = ( A , F1, Sj). 
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Theorem 14. Let A = (A,F,8) be an arbitrary quasi-automaton. There exists 
a characteristically free quasi-automaton В= {B,F,8') such that is the homo-
morphic image of Band the characteristic semigroups of A ¡"and В are equal. 

Proof. Take the quasi-automaton A 2 = ( A , F1, 8j). Let G be a generating 
system of Aj. Define the following relation т on GXF1: 

(b,f)?(c,g)<*b = c and jAi = gA'(b, c£G; f , g£F]). 

It is clear that т is an equivalence relation. Let Cz be the partition on GxF1 induced 
by т. CZ(A) is the set of the classes Cz(b,f)(b£G,f£F'). Consider the mapping 
d': Cr(A)XF'~Ct(A) for which. 

8'(Cz(b,f), h) = Cx(b,fh). 
Let g, h £ F1. Then 

S'(CT(b,f), gh) = Cz(b,fgh) = 8'(Cz{b,fg), h) = 5'(5'(Gz(b,f), g), h), ' -

that is, the quasi-automaton CT(A)=(CZ{A), F1, 8') is well-defined. We prove t ha t 
F1 is the characteristic semigroup of С Z (A): 

JA, _ gAj ^ у h[hAifAi ='hAigAi] о 
hiF1 

V h[ V b[Cz(b, h f ) = Cz(b, hg)]] о 
hiF1 6£G 

; ~ V Cz(b,h)[S'(Cz(b,h),f) = d'(Cz(b,h),gy]ofCM) = gCM\ 
CT(B, h)iCT(A) 

The set Gj: = {Cz(b, I)\b£G) is a generating system of CZ(A). Let 

Cz(b,f) = 8'(Cz(b, I ) J ) = 8'{Cz(c, / ) , g)-=Cz(c, g) 

(b ciGifgtF1). Then 6 = c and JA-=gA>. Thus Cz(b, F)=Cz(c, / ) and / Л . м > = 
= gCx(A), i.e., CZ(A) is characteristically free. The mapping 

- ' Y: Cz(b,f) — 8I(b,f)(b£G,f£FI) 

is a homomorphism of СZ(A) onto A¡. 

Example 6. Take again the quasi-automaton A given in the Example 3. 

A, 1 2 3 G = {2) 

/ 1 2 3 F* = (x,¥,y,7M) 
x 2 1 2 
> > 2 3 2 

С Z(A) C t ( 2 , / ) C t(2, x) Cz(2,x2) Cz(2,y)' Cz(2, y'2) 

I 
X 

У 

CZ{2,1) Cz(2,x) C t(2, x2) CT(2, y) 
Cz(2,x) Ct(2,x2) CJ2, x) Cz(2, x'2) 
A (2 ,У) Cr(2, y-) Cz(2, y) CT(2, y2) 

Cz(2,y2) 
СЛ 2,x) 
Cz(2,y) 

_(CZ(2,I) Cz(2,x) Cz(2, x2) Cz{2,y) Cz{2, / ) ) 
2 1 2 3 2 J 
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Corollary 15. Let the quasi-automaton A = (A, F, 8) be well-generated and 
FA a monoid. There exists a characteristically free quasi-automaton B = (B, F, 3') 
such that A is a homomorphic image of B and FB=FA. 

By Theorem 14 the proof is evident. (The identity element of FA acts as I.) 

Характеристично свободные квазиавтоматы 

А-подквазиавтомат A1 = (/í1 F, <5t) квазиавтомата А = (A', F, ö) называется ягром ав-
томата А, если A1 = {ő(a, f)\aí A, fíF). А называется верно-порождённым если A =AL. 
Верно-порождённый квазиавтомат А называется характеристично свободным если (2) вы-
полняется. (G есть неприводимая сустема образующих в квазиавтомате A) FA (или F) является 
характеристической подгруппой квазиавтомата A. N 

Квазиавтомат A = {A,F,5) характеристично свободный тогда и только тогда, когда' 
он прямая сумма изоморфных характеристично свободных циклических квазиавтоматов (Тео-
рема 1.). Если циклический квазиавтомат А характеристично свободный, тогда | /4 |=0(F) . 
(Теорема 3.). Если А ещё А-конечный, тогда теорема 3. можно повернуть. (Следствие 1.). 
Характеристично свободный А от состоянии независимый тогда и только тогда, когда его 
характеристическая полугруппа авляется с левым сокращением (Теорема 5.). 

Во втором цункте получаем все ендоморфизмы характеристично свободных'квазиавто-
матов (Теорема 6. и 7.) 

В третем пункте проводим отношение Q (В. ешё [2]) на множестве состояний А квазиавто-
мата A = (A,F, ő). Отношение о конгруепция. А называется ограниченным, если aob (a, bí А=>-
=>а = Ь. Если А характеристично свободный, тогда факторквазиавтомат Л: =А/<? квазиавто-
мата А тоже характеристично свободный (Лемма 4.) и E(A)szE(A) (Теорема 9). (Через 
Е{А) обозначаем полугруппу всех ендоморфизмых А.) 

Если А характеристично свободный циклический квазиавтомат и Е(А)=Е1®Е2<& 
®...®Е„, тогда А й А 1 ® А а ® . . .®А„, где А( (;'=1, 2, ..., п) характеристично свободные цик-
лические ограниченные квазиавтоматы и E(Ai)SzEi (Теорема 12.). 

Если А = (Л, F, 3) верно — порождённый квазиавтомат и Ёл обладает двусторонной 
едишщей, тогда существует такой характеристично свободный квазиавтомат В = (В, F, <5'), 
что А есть гомоморфный образ квазиавтомата В и FA = F° (Следствие 15.). 

' E N T Z B R U D E R V O C A T I O N A L S E C O N D A R Y SCHOOL 
Н—9700 S Z O M B A T H E L Y , H U N G A R Y 
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Verallgemeinerte Superposition bei binären Automaten 

V o n M . GÖSSEL u n d H . D . M O D R O W 

Das große Interesse, das die linearen Automaten innerhalb der Automaten-
theorie gefunden haben, beruht zu einem erheblichen Teil auf der Gültigkeit des 
Superpositionsprinzips bezüglich der Addition. Aufgrund der Gültigkeit dieses 
Prinzips ist z. B. das Input-Output-Verhalten eines linearen Automaten (für den 
Initialzustand 0) mit eindimensionalem Input schon durch die sog „Impulsantwort" 
des Automaten vollständig bestimmt, s. z. B. [1]. 

Ausgehend vom Superpositionsprinzip für lineare Automaten mit eindimensio-
nalem Input und Output über GF(2) wird in der vorliegenden Arbeit untersucht, 
inwieweit sich dieses Prinzip von der Operation + (Addition modulo 2, Antivalenz) 
auch auf andere Operationen (Boolesche Funktionen) und Automatenklassen 
übertragen läßt. 

Ein Ansatz für die Übertragung des Superpositionsprinzips auf andere Boolesche 
Funktionen findet sich in [2]. Dor t wird gezeigt, daß für sog. „disjunktive" Auto-
maten, die in Analogie zu den linearen Automaten eingeführt werden, das Super-
positionsprinzip für die Disjunktion gilt. 

In der vorliegenden Arbeit wird nicht von gegebenen Automatenklassen aus-
gegangen, sondern es wird für jede zweistellige Boolesche Funktion die Klasse aller 
Automaten charakterisiert, die dem Superpositionsprinzip bzgl. dieser Booleschen 
Funktion genügen. Diese Charakterisierung ist nicht explizit zustandsabhängig. Eine 
derartige Beschreibung auf der Grundlage der hier gegebenen Charakterisierung 
findet sich in [3]. 

In dieser Note werden nur initiale vollständig definierte synchrone Automaten 
21 = 1^, Y, Z, z0, ö, X] mit X= Y= {0, 1}, z0£Z betrachtet. Diese Automaten werden 
binäre Automaten genannt. Ist 21 = [X, Y, Z, z0 , ö, 1] ein binärer Automat, so be-
zeichnen wir den letzten von 21 ausgegebenen Buchstaben (aus F = { 0 , 1}) nach 
Eingabe eines nicht leeren Wortes p=x1...x, ( ? S l ) durch gf (x1; ..., xt), 

g?(xi, . . . , * , ) = ^ ¿ ( ¿ ( Z o . X i ••• 

Damit is 21 ein System {gf\t=\,2, ...} von Booleschen Funktionen zugeordnet; 
gf:{0, !}'-{(), 1}. 
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D e f i n i t i o n . -Es bezeichne Fe ine zweistellige Boolesche Funktion, F : {0, 1 }2 — 
— {0, 1}. Dann nennen wir einen binären Automaten 21 F-superponierbar, wenn für 

jedes gilt: 

gf (F (x 1 ; xl),..., F(x, , x,')) = F(g?(Xl,..., x,), g?(xi,..., x,')) (1) 

(xx, . . . , x „ x i , . . . ,x t '€{0,1}) . 

Unmittelbar einsichtig ist, daß ein binärer Automat 91 F-superponierbar für 
jede 2-stellige Boolesche Funktion F ist, wenn er die folgende Eigenschaft besitzt: 

Es gibt eine eindeutige Abbildung T^,: NZ+ —JVZ+ *) mit T^(T)st, so daß 

g ^ X j , . . . ,x,) = x t 2 ( W - (2) 

für jedes t , t s l , x1; ..., x (6{0, 1} gilt. Für einen solchen Automaten ist also in 
-jedem Takt t die Funktion gf die Projektion auf eine (die ra l(/)-te) Variable. In 
jedem Takt t wird von 21 einer der bisher eingegebenen Inputs ausgewählt und als 
Output direkt ausgegeben. 

Automaten, für die (2) gilt, nennen wir auswählende Automaten; die Klasse 
aller dieser Automaten bezeichnen wir durch aafAusw. 

Man zeigt nun umgekehrt auch leicht, daß nur Automaten aus ^Ausw F-super-
ponierbar für jede 2-stellige Boolesche Funktion sind. 

Dazu stellen wir jede Funktion gf ( i s l ) in ihrer antivalenten Normalform da r : 

g ^ ( X i , . . . , x , ) = a 0 + 2 arxt+ 2 a u - x r x j + . . . 

...+ai.. ,,-xi-...-xt; (3) 

dabei bezeichnet + die Antivalenz (Addition modulo 2), • die Konjunkt ion (Multipli-
kation) — im folgenden wird das Zeichen • nicht geschrieben —, und die a0, ax, ..., a,', 
al2, .~..,at^lit ß123, ...,<¡1.., sind feste Koeffizienten aus {0, 1}. Die Darstellung (3) 
einer f-stelligen Booleschen Funktion ist eindeutig; vgl. [5]. 

Verschwänden nun in (3) alle Koeffizienten, so widerspräche dies der voraus-
gesetzten =-Superponierbarkeit (vgl. Tab. 1) von 21; denn dann wäre ) 

0 = g f ( 0 , . . . , 0) 

= (g?(0 , . . . ,0 ) = g ? ( l , . . . , l ) ) 

= ( 0 - 0 ) 

= 1. 

Wäre in (3) a0 — l> s o widerspräche dies der vorausgesetzten -(--Superponier-
barkeit von 21; denn dann wäre 

) -
, l = g?(0 , . . . ,0 ) = g?(0, . . . ,0) + g«(0, ...,<» = 1 + 1 = 0 , 

Wir nehmen nun an, es wäre =... =a,=0. Dann muß es einen nicht-ver-
schwindenden Koeffizienten ah ik mit 1 geben; o.B.d.A. sei k minimal 

M № + = o f { 1,2, 3 , . . . } 
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und ai . . . i t=l . Wegen der +-Superponierbarkeit von 31 gilt aber 

g f O ^ . O , ..., 0) = g*(0 ,1 ,_ . . . J , 0 , . . . , 0 ) + gP(l , 0 , . . . , 0 ) . 
k l . k-1 

Nach unserer Annahme wäre aber 

¿ » ( l ^ ^ , 0, . . . , 0) = 1* = 1, g * ( 0 , 0, . . , 0) = 0 = g « ( l , 0, . . . , 0). 
k k-1 

Aus diesem Widerspruch folgt, daß es mindestens ein T (1 ̂  t ^ t) mit a , = \ geben muß. 
Gäbe es nun zwei verschiedene nicht-verschwindende Koeffizienten mit je 

einem Index, etwa a 1 = a a = l , so folgte wegen der vorausgesetzten -(--Super-
ponierbarkeit von 21 

g«( l , 1 , 0 , . . . , 0 ) - g ? ( l , 0 , 0 ) + g f ( 0 , 1 , 0 , . . . ,0) = 1 + 1 = 0 

und damit wegen der v -Superponierbarkeit von 21 

0 = g « ( l , l , 0 , . . . , 0 ) = g « ( l , 0 , . . . , 0 ) v g « ( 0 , l , 0 v . . , 0 ) = l v 1 = 1. 

Es gibt also höchstens — und damit genau — einen nicht verschwindenden Koeffi-
zienten aT mit \ '~x = t in (3). 

Wir nehmen nun an, es gäbe einen nicht-verschwindenden Koeffizienten 
ah -'k ^ = 2; o.B.d.A. sei k minimal, aik=\. 

F a l l 1. x ^ k . O.B.d.A. sei r = l , also ^ = 1, a t k = l . Dann folgt der Wider-
spruch 

0 = fli+ai...» = g ^ O - - ^ ] , 0 , . . . , 0) 
k 

= g« ( l , 0 , . . . ,0) + g f ( 0 , 1 ^ 2 , 0 , . . . ,0) 
k — 1 

= ax + 0 = 1. 

F a l l 2. t > k . O.B.d.A. sei t = f. Dann folgt der Widerspruch 

0 = ßi . . . k + a t = g H U ^ J . 0 , . . . , 0 , 1) 
k 

= gp(l , 0 , . . . , Oj + g ^ O , 0 , . . . , 0, 1) 
fc-1 

= 0 + a , = 1. 

Damit ist gezeigt: 

Satz 1. Ein binärer Automat 21 ist für jede zweistellige Boolesche Funktion F 
F-superponierbar genau dann, wenn 216 ĵ AUSW l s t-

Aus dem Beweis folgt sogar: 

K o r o l l a r . Ist ein binärer Automat + - , v - und =-superponierbar , so 
ist er für jede zweistellige Boolesche Funktion F F-superponierbar. 

(Dies ergibt sich auch unmittelbar aus dem unabhängig bewiesenen Satz 6.) 

7 Acta Cybernetica TII/2 
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Tabelle 1 

Die zweistelligen Booleschen Funktionen 

Die Funktionen sind nach den Koeffizienten ihrer antivalenten 
Normalform geordnet: F(xt, x2) = Ats+A1x1+A2x2+A12x1x2. 

Im unteren Teil sind die Wertetabellen angegeben 

F0 Fi F° F3 Ft Fs Fe Fi Fe F% Fi, F u F13 Fi 4 Fi. 

A0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
Ai 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
A2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
A\2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

Zeichen 0 1 Xl X, x2 + = A - V 

*1 x2 

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 
0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 
1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 

Im folgenden soll für jede der 16 zweistelligen Booleschen Funktionen F0 
i=0, ..., 15 (vgl. Tab. 1), die Klasse derjenigen binären Automaten angegeben 
werden, die /-"¡-superponierbar sind. 

Zunächst ergibt sich für die nicht echt von zwei Variablen abhängigen Funk-
tionen F0, ..., F-a (s. Tab. 1) der 

Satz 2. Es sei 21 ein binärer Automat. Dann gilt: 
1. Jeder binäre Automat ist F2- und F^-superponierbar. 
2. 21 ist F0-superponierbar genau dann, wenn für jedes 1 gf (0, ..., 0) = 0 gilt. 

21 ist F^-superponierbar genau dann, wenn für jedes gilt: gf (1, ..., 1) = 1. 
3. 21 ist F3- bzw. F5-superponierbar genau dann, wenn für jedes 1 die Funktion 

gf selbstdual ist, d.h. wenn für jedes xx, ..., x,£{0, 1} gilt: 

gf{x1,...,xt) = gf(xi,...,x^. 

U m zu Aussagen für die echt von 2 Variablen abhängigen Funktionen Fe,..., F15 
zu kommen, ordnen wir jeder Funktion g f , jeder (partiellen) Belegung b der t 
Variablen von g f , i S 3 , mit t—2 fixierten Werten und jedem F£{F6, ..., _F16} zwei 
zweistellige Boolesche Funktionen Gb und Hb, folgendermaßen zu. 

Ist Ä=[x l 5 x 2 , •••, x?] mit X3, ..., x°£ {0, 1} (o.B.d.A sind hier gerade den 
letzten t—2 Variablen fixierte Werte zugeordnet), so sei 

Gb(xu x2) = Df g f ( x u x2,x%, ..., x?), (4) 

Hb
F(Xl, x2) = Df g?(x 1 ; x2 , F(x3°, x«), ..., F(x°, x?)). (5) 
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Ist 21 nun / '-superponierbar, so muß nach (1) für jede derartige Belegung b und 
jedes x1} x[, x2, x ^ l O , 1} gelten: 

Hb
F{F{Xl, x[), F(x2, x2)) = F(G»(Xl, x2), Gh(x[, x2)). (6). 

Ausgehend von (6) werden wir die Automatenklassen bestimmen, die /ysuper-
ponierbar sind, { f 6 , ..., F15}. Wir setzen G"=G,H%=H und stellen, F,G,H 
in antivalenter Normalform dar. 

F(Xi, x 2 ) = A0 + A 1 ~h A 2 X2 A 12 9 

G(x1 , x2) — Bf) + B1 Xj + B2 x2 + B12 XiX2, 

H(x1,x2) = b0+b1x1 + b2x2 + b12x1x2 (7) 

mit A0, Ax, A2, A12, B0, B1,B2, B12, b0, bx, b2, Z>126{0, 1}. Aus (6) und (7) ergibt 
sich dann (8): 

F(G(x1,x2), G(xi, x2)) 

^ A g + A ^ + A ^ + A^Bg 

+ X1(A1B1 + A12B0B1) 

+ X2(A1B2 + A12B0B2) 

+ xi(A2B1 + A12B0B1) 

+ x2(A2B2 + A12B0B2) 

+ x1 x2 (A ! B12 + A12 B0 B12) 

+ Xi x2 (A 2 B12 + A12 BQ Bi2) 

+ X1X'1(A12B1) 

+ x2xi(A12 

+ x1X'2(A12B1B2) 

(-^12 ^2) 

+ X1X2X'1(A12B12B1) 

X1X2 X2 (^12-^12^2) 

+ x1 x1 x2 (A12 B12 Bj) 

-f~ x% Xi x% (A12 B2) 

-f- Xi x2 Xi X2 (A12 -^12) • 

= H(F{x1, x[), F(x2 , x'2)) 

= bo + biAo + b ^ + b^Ao 

+ x1(b1A1+b12A0A1) 

+ x2(b2A1 + b12A0A1) 

+ x'1(b1A2 + b12A0A2) 

+ x2{b2A2 + b12A0A2) 

+ x%x2(b12A1) 

+ x'1x,
2(b12A2) 

+x1x1(b1A12 + b12A0A12) 

+ x2xi(b12A1A2) 

+ x1x2(b12A1A2) 

+ x2 x2 (b2 A12 + b12A0A12) 

+ x1x2xi(b12 Ad 

-\-X1X2 XQ A^Ai) 

-f- Xi Xj X2 (^12 A12 A 2) 

X2 Xi x2 (^12 A12 A 2) 

H- XiX2 Xi X2 (-^12 ^12)- (8) 

Jede Funktion F ^ { F 6 , ..., F ^ ist in (7) und (8) durch Vorgabe der Koeffizienten 
A0, A1, A2, A12 festgelegt. 

(8) gilt genau dann, wenn die Koeffizienten an gleichen Variablenkombinationen 
gleich sind; und aus (8) ergibt sich gleichwertig ein System von 16 Gleichungen 
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für die Koeffizienten B0, Blt B2, B12, b0, ¿>1; b2, b12 der antivalenten Normal form 
von G und H. Aus (8) bestimmen wir zunächst G und H und schließen dann auf 
g?(xi,x2, ..., x,) für jedes r s l . 

Wir wollen das allgemeine Verfahren am Beispiel der Funktionen Fe und 
anschließend Fu (vgl. Tab. 1) ausführlich darstellen. 

Es gilt F^x^xz) = xx+x2 und somit A0=A12 =0, A1 = A2 = l. Damit erhalten 
wir aus (8) 

b12 = 0, B12 = 0, B2 = b2, Bx = bx, b0 = 0. 

Lösungen sind somit H{x!, x2) = b1xl + b2x2, (9) 

Cix^xJ = B0 + blXi + b2x2. (10) 

U m auf gf {xx, ..., x,) zu schließen, stellen wir gf wieder in antivalenter Normal-
form (3) dar : 

gf(x1,...,x,) = a0 + 2 aixi+ 2 aijXixj+...+a1_tx1...xt. 
i s i s i l s i^ j ' s t 

Mit F6 (x, x)=x+x = 0 und (5) gilt 

H(x1,x2) = gf(x1,x2,0,...,0). ( 1 1) 

Wegen H(0, 0 ) = 0 (nach (9)) ergibt sich aus (11), (9), (3): a„=0 . 
Wir nehmen nun an, es gäbe einen Koeffizienten ailAk=\ mit k sei 

minimal. O.B.d.A. sei a1 2 . s = l . Es gilt dann fü r die spezielle (partielle) Bele-
gung b = [xx, x2, 1, ..., 1, 0, ..., 0] die Beziehung gf (b) = c1x1 + c2x2 + c0+x1x2 mit 

T-t 
c0, c26{0, 1} im Widerspruch zu (10), (4). Damit hat gf die Form 

g f ( X l , . . . ,* ,) = 2 "iXi mit alt ...,ate{0, 1}. (12) 
ISiSt 

Da man unmittelbar überprüft , daß jeder Automat 9t, für den gf die Bedingung (12) 
erfüllt, +-superponierbar ist (d.h. (1) genügt), ist gezeigt: 

Satz 3. Ein binärer Automat 9t ist + -superponierbar genau dann, wenn es 
für jedes i s l Koeffizienten . . . , at

(t) € {0, 1} so gibt, daß stets gilt: 

g?(xlt...,xt)= Zaf'>x,. 
i = 1 

Wir betrachten jetzt die Disjunktion (F14 in Tab. 1). Es gilt 

FL 4 (XI , XO ) ^ X ̂  V X2 —— .V ̂  -{- X2 "I- X ̂  • x2, 

Aq = 0, Ai = A2 = A12 — 1. 

Aus (8) ergeben sich für G{x1, x2) die 5 Lösungen G1, G2, G3, G4, G5: 
G1(x1, x2) = 0 , G 2 ( X 1 ; X2) - 1, 

G3(xi, x2) = Xi, Gi(xi,x2) = x2, 
G5(xlt x2) = Xj.+Xi+X^ (13) 
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und H=G. Um auf g ^ f o , ..., x,) zu. schließen, gehen wir wieder von der anti-
valenten Normalform (3) aus. 

F a l l 1. a 0 = l . — Wir nehmen an, es gäbe einen von a0 verschiedenen nicht-
verschwindenden Koeffizienten a^ J k , fcsl; o.B.d.A. sei k minimal, a l k = \ . 
Für k= \ ergibt sich gf(x1; 0, ..., 0 ) = 1 + x 1 u n d für k^2: gf(xx, x2, 0, ..., 0 ) = l + x 1 x 2 
im Widerspruch zu (13). Im Fall a 0 = 1 verschwinden also alle anderen Koeffizienten. 

F a l l 2. ö0 = 0. — Es sei o.B.d.A. a1 = ...=ak = l, ak+1 = ...=a,=0, O^kst. 
Wir zeigen zunächst: 

a h = 0, falls ! , > / c ( 1 ^ 2 ) . (14.1) 

Wir nehmen, (14.1) gilt nicht und betrachten einen Koeffizienten mit l> 
ii^-k, 1^2,1 minimal. O.B.d.A. sei am+1 m + / = 1, 2, m + l>k, lminimal. Dann gilt-
gf(0, ..., 0, xm+1, 1, ..., 1, xm+l, 0, ...,.0) = C1xm+1+xm+1xm+l+C2 mit C 1 ; C2€{0, 1} 
im Widerspruch zu (13). Damit ist (14.1) nachgewiesen; gf hängt von den Variablen 
xk+1, ..., xt nicht ab. 

Wir zeigen nun: 
ah„Al = 1, falls (/ = 2). (14.2) 

Für k < 2 ist nichts zu zeigen. Es sei jetzt k ^ 2 . Wir nehmen an, (14.2) gilt nicht 
und betrachten einen Koeffizienten ah u mit 1^2, i ^ k , ah_ A l = 0 , / minimal. 
O.B.d.A. sei Oi.../ = 0, /minimal . Dann ist im Fall l=2gf(x1,x2, 0, . . . ,0) = 
=x1+x2 im Widerspruch zu (13). Im Fall / > 2 gilt 

g f ( x 1 , x 2 , l , . . . , l , 0 , . . . , 0 ) = 

= 2('12) + (X1 + X2) £ (i72) + ^i^!z(,72)-l+^iX2 
¡ = 1 ¡ = 0 ¡=0 

wegen 2! I . | = 2 i = 0 (mod. 2). Mit diesem Widerspruch zu (13) ist (14.2) veri-
>=o v i ) 

fiziert; Koeffizienten, deren sämtliche Indizes zwischen 1 und k liegen, verschwinden 
nicht. 

Gilt also nicht gf = 1, so läßt sich gf allgemein schreiben in der Form 

g?(x1,...,xt)= Z x,Xj + ...+ (15) 
ig/ lSi-=jS! i(I 

¡ja 
wobei / Q {1, ..., i} ist. Gilt (15), so ist 

[1 , falls es ein i g / mit xt = 1 gibt, 
g f ( * i . . . . . * ) = { 0 s o n s t . 

d.h., (15) läßt sich auch schreiben in der Form 

g?(x1,...,x,)=V Xi. (16) 
i=I 

Man prüf t sofort nach, daß die konstanten Funktionen mit dem Wert 1 und die 
durch (16) festgelegten Funktionen tatsächlich v-superponierbar sind. Dami t haben 
wir gezeigt: 
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Satz 4. Ein binärer Automat 91 ist v -superponierbar genau dann, wenn für jedes 
i S l gilt: gf{xx, ..., x () = 1 oder es gibt Koeffizienten a[°, . . . , a(

(<)£{0, 1} so, daß gilt: 

gf{xx,...,x,) = V afW 
i = l 

Mit der Beweismethode zu Satz 3 bzw. Satz 4 zeigt man weiter: 

Satz 5. Ein binärer Automat 91 ist 
a) F7-superponierbar ( = -superponierbar) 
b) Fg-superponierbar ( A -superponierbar) 
c) F^-superponierbar 
d) F10-superponierbar 
e) F^-superponierbar (—-superponierbar) 
f ) F12-superponierbar 
g) Fls-superponierbar 
h) F1&-superponierbar, 
genau dann, wenn für jedes / s l gilt: 

Für die Koeffizienten a0, ax, ..., at, a12,..., ax , in der antivalenten Normalform 
von g f , 

t 
gf{x1,...,xt)=a0+2aixi+ 2 aili2xhxh+...^a1_tx1...xl, l — l l S i ^ i . S i 

gilt: 
t 

a) ao+ 2ai~ 1 und alle Koeffizienten mit mehr als einem Index verschwinden 
i=1 

b) Höchstens einer der Koeffizienten verschwindet nicht 
c) Es verschwindet genau ein Koeffizient nicht, dies ist einer der Koeffizienten ax, ..., at 

(d.h. 9 I6^ A u s w ) 
d) Es verschwindet höchstens ein Koeffizient nicht, dies ist dann einer der Koeffizienten 

a-i, ..., a, 
e) Es verschwindet genau ein Koeffizient nicht, dies ist einer der Koeffizienten ax, ...,at, a0 
f ) wie d) 
g) wie e) 
h) wie c). 

Nennen wir einen binären Automaten wesentlich, wenn es ein t = 2 so gibt, 
daß die Funkt ion gf(xx, ..., x,) von mindestens 2 Variablen echt abhängt , so gilt: 

Satz 6. 
1. Es gibt keine wesentlichen binären Automaten, die Fä-, F10-, Fn-, F12-, Fi?-oder 

F15-superponierbar sind. 
2. Ein wesentlicher binärer Automat 9t ist 

a) + -superponierbar (F6) 
b) = -superponierbar (F7) 
c) A -superponierbar (Fg) bzw. 
d) v -superponierbar (F14) 

genau dann, wenn es für jedes 1 eine Menge I,Q {1, ..., i} so gibt, daß 
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a) g?(*i, . . . , * , ) = 2 xi 

b) g?(xu ...,xt) = = Xi 
ieit 

c) g f O i , ...,xt) = A oder gf(xlt ...,xt) = 0 bzw. 
¡61, 

d) g?(xlt ...,x,)= \/ x, oder gf(xt,..., xt) = 1 . . 
¡€/t 

gilt (vgl. Tab. 1); dabei ist 2xi=y x^ = 0, = xt= A *.• = !• 
i 60 ¡60 ¡60 ¡60 

Die im Satz 6.2 charakterisierten wesentlichen binären Automaten werden 
in [3, 4] explizit zustandsabhängig charakterisiert. 

Kurzfassung 

Ausgehend vom Superpositionsprinzip für lineare Automaten mit eindimen-
sionalem Input und Output über GF(2) wird in der vorliegenden Arbeit dieses Prinzip 
von der Operation + (Addition modulo 2, Antivalenz) auf andere Operationen 
(Boolesche Funktionen) übertragen. Für jede zweistellige Boolesche Funktion 
wird die Klasse aller Automaten charakterisiert, die dem Superpositionsprinzip 
bzgl. dieser Booleschen Funktion genügen. 

Generalized Superposition by Binary Automata 

In this paper the superposition principle for one-dimensional linear automata 
over GF(2) is extended f rom the operation + (addition mod. 2) to other operations 
(Boolean functions). For every Boolean function of two variables is characterized 
the class of all automata, for which hold the superposition principle with respect 
to this Boolean function. 

Обобщенный принцип суперпозиции у бинарных автоматов 

Исходя с принципа суперпозиции для линейных автоматов с одномерным входом и вы-
ходом над полем GF(2) (сложение по модулю 2, антивалентность) обобщается этот принцип 
на другие операции (булевы функции). Для каждой двухместных булевых функций характери-
зуется класс всех автоматов, подчиняющихся этому принципу относительно данной булевой 
функций. 
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Multicontrol Turing machines 

B y G Y . REVESZ 

Multitape and multihead Turing machines are well-known generalizations 
of the basic model. All these generalizations have the common feature that they 
have a single finite state control and thus, they work in a synchronous manner. 
That is, the finite state control device coordinates the moves of the read-write heads 
so that they work at the same speed [1]. 

The new model introduced in the present paper can be considered as an abstract 
model of multi-processor systems, where the working speeds of the individual 
processors are independent f rom each-other. The only restriction is the exclusion 
of a symultaneous acces to the same storage location, i.e., each storage location 
can be accessed by only one processor at a time. This limitation is quite reasonable 
whenever more than one processors share the storage device. The model is asynchro-
nous as there is no other connection between the individual processors except the 
common storage device through which they can pass information. 

Suppose we have two Turing machines sharing a single tape (see Figure 1). 

Figure 1 

Each finite state control works at its own speed that may also vary in the course 
of the computation. If they at tempt to access the same square on the tape one of 
them will be delayed until the other completes one step. If this step does not change 
the position of the corresponding read-write head then another choice is made for 
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the finite control to be the next. The choice can be made in many different ways 
depending on some preassigned priorities or on the basis of some probabilities, 
etc. Here we are not concerned with the details of how to make this choice, but we 
are interested in the computational power of the general model. We will show that 
the computational power of multicontrol Turing machines is the same as that of 
the basic model. For this purpose we shall give first our formal definitions. 

Definition. A single-control mondeterministic Turing machine is a quintuple 
T=(K, Z, q0, B, M), where AT is a finite nonvoid set of internal states, Z is a finite 
nonvoid set of tape symbols, q0£K is the initial state, B£Z is the blank symbol, 
M is a mapping from KXZ into the subsets of / D < ( Z - { f l } ) X { - l , 0, +1}, 
called moves. 

Definition. A configuration of a single-control nondeterministic Turing machine 
is a word XqY, where A'and Yare words over Z — {B} and q£K. 

The configuration denotes the nonblank portion of the tape, the actual position 
of the read-write head, and the actual internal state of the finite control. 

The symbol scanned by the read-write head in this configuration is the first 
symbol of Y, or B if Y is the empty word. 

A move of the Turing machine will change its configuration in the following 
steps. 

a) The internal state of the finite state control is changed. 
b) A symbol of Z—{B) is printed on the tape in place of the scanned symbol. 
c) The read-write head moves one square to the left, remains unchanged, or 

moves one square to the right as expressed by the values —1,'0, or + 1 , respectively. 
The transformation of the configuration induced by the mapping M defines 

the relation =>• such that Xlq1Y1=>X2q2Y2 iff there is a move in M that changes 
the configuration XlqlY1 into X2q2Y2. In fact, the mapping M can be given as 
a set of rewriting rules. Namely. 

(i) qy-pziM iff (p, z, 0 K M ( q , y), 

(ii) xqy^pxz^M for all x£Z iff ( p , z, — 1 )£M(q, y), 

(iii) qy-zp^M iff (p,z, + 1 ) ^ ( 9 , J')-

The reflexive and transitive closure of the relation => will be denoted as usual 
by 

Definition. A configuration XqY is final if for the first symbol y of Y the set 
M(q, .y)=0, or if Y is the empty word and M(q, B) = 0. 

Definition. A computation of a Turing machine is a sequence of moves 
q0P^>XqY, where q0 is the initial state, P is a word over Z, and XqY is final. The 
input value of the computation is P while the output is represented by XY, the 
final contents of the storage tape. 

Definition. A two-control mondeterministic Turing machine is an 8-tuple 
T=(K',K",Z,q'0,qlB,M',M"), where T' = (K', Z, q'0, B, M') and T" = {K", 
Z,ql, B, M") are single-control Turing machines such that 
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Definition. A configuration of a two-control Turing machine is a word Xq'Uq"Y, 
where X, U, Y are words over Z-{B}, q'£K' and q"£K". 

The relations =>• and => can be defined in a similar fashion as in the case of 
single-control Turing machines, taking into account that a symbol of K' will be 
adjacent to a symbol of K" whenever the two read-write heads are scanning the 
same square. In such cases either of the two controls (but only one of them) 
may perform the next move as if the other were not there. Otherwise they work 
parallel and do not disturb each-other. Now we will show the following. 

Theorem. Every computation performed by a two-control Turing machine 
can be performed by a single-control one. 

Proof. In order to prove this theorem we will simulate the computations of 
a two-control Turing machine with the aid of a single-control one. 

The essential feature of the simulation is that the parallel moves of the two 
control devices will be performed in a serial manner such that only one of them 
will be activated at a time while the other will be frozen. But the active and the 
frozen status can be exchanged between them any time that makes the simulation 
of every parallel computation possible. 

Let T2 = (K', K", Z, q'0, ql, B, M', M") be a two-control Turing machine. 
Then let T± = {K, Zx, q0, B, M) be defined such that 

K=((K' U {1, 2}) X (K" U {1,2}))U {L, R, J , SL, F, =|, H), 

z ^ z u f t r u r i x z ) . 

Internal states of the form [q', q"] represent the coincidence of the two read-
write heads. A pair of the form [q\ 1] or [q", 1], ([q, 2] or [q'\ 2]) means that the 
corresponding control device is acive and it is currently to the left (to the right) 
of the other. The meanings of the special state symbols are the following: 

L (R): activating is passing over to the left (right), 
J (%): activating is passing over to the left (right) leaving a final configuration 

frozen behind, 
F p ) : completely final configuration obtained on the left (right), 
H : simulation halted. 

The actual state of the frozen control device will be encoded onto the tape as 
a tape symbol of the form [q\ y] or [q",y\. Now we have to specify the mapping M. 

1) M([q', q"ly) = 0 iff M'{q', y) = M"(q", y) = 0, and 

M([q\ q'l y) = M([q", q'\ y) for all q'£ K', q"£ K" and y £ Z , ' 

2a) ([p',q"],z,0)£M([q',q'ly) iff (p\ z,0)ZM'(q', y), 

2b) ([q',p"lz,Q)cM(W,q"ly) iff (p", z, 0)£M"(q", y). 
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From here on a pair of related specifications like 2a and 2b will be given by 
describing just the first of them. 

3«) ([/,!],[<?", 4 - \ ) i M ( [ q ' , q ' % y ) iff (p',z,-\)iM'(q',y). 

4 a) ([p',2],[q",z), + \)(LM([q',ql,y) iff (p', z,+ \)£M'(q\y). 

5a) For i = l , 2 and j = — 1 ,0, +1, 

([p',i),z,№M([q',ily) iff (p',z,j)eM'(q',y). 

6a) ' M([q', 1], [q", y]) = M([q\2], \q", y]) = M{[q', q'\ y) 

for all q'iK\q"£K" and y e Z . 

la) (R,W,yl + ^M{[q',\],y) and (L, [q', y\, — 2], y) 

iff M(q',y)^Q. 

8) (R,y, + \)M(R,y) and (L, y, - \)^M(L, y) for all y£Z. 

9a) {X,[q',yl+ViM{[q',\},y) and U,[q',y],-\)iM([q\2],y) 

iff M(q', >0 = 0. 

10) (fl , y, + l)£M(ii,y) and ( J , j > , - 1 ) € M ( J , y) for all y£Z. 

11a) ([q',2ly,0)iM(R,[q',y]) and ([q\ 1], y, 0)£M(L, [q\y]) 

for all q'£K' and y£Z. 

12a) ([q',2ly,0)iM(X,[q',y]) and ([?', 1], y, 0 ) £ M ( J , [q\y]) 

iff M'(q', y) 0. 

13a) [q\y]) and ( F , y , + l ) e M ( J , [ q ' , y ] ) 

iff M'(q', y) = 0. 

14) (\y,-\)iM(^,y) and (F,y, + \)iM(F,y) for all 

15) { H , y , Q ) i M { M q ' , y ] ) and (H, y, 0)£M(F, [q',y]) 

for all q'£K' and y£Z. 

N o w let us see how Tx simulates T2. Suppose we have a computat ion of T2 
starting with a configuration q'0qlP and ending with a final configuration Xq'Uq"Y. 
Then Tx will be started with [q'0q'¿]P. As long as the two read-write heads are scanning 
the same square the simulation is guaranted by specifications 1, 2a and 2b. As soon 
as they are parted one of them becomes active while the other becomes frozen 
(3a—b, 4a—b) and the control device of 7\ follows exactly the actions of the active 
control of T2 (5a—b). 

If the frozen control is encountered by the active one, either of them will be 
enabled to proceed (6a—b). The simulation of the active control may be suspended 
any time by Tx so that Tx switches over to the other. This is realized by Tx with the 
aid of special states R, L, 5i and J which cause a search for the frozen control 
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on the tape. Tx always remembers the correct direction for the search via the state-
suffix 1 or 2. (see la—b, 9a—b, 8, 10). The search is ended by activating the previously 
frozen control device (11a—b, 12a—b) unless both of them happen to be in a final 
configuration. In the latter case the frozen state will be cancelled from the tape and 
a message will be sent back to cancel the other encoded state as well and to stop 
the simulation (13a—b, 14, 15). If the final configuration of T2 is of the form Xq'q"Y 
then the simulation in Tx will be finished with the configuration X[q', q"] Y. In this 
case the resulting tape inscription of will be exactly the same as that of T2, but 
in other cases we must first get rid of the encoded final states (13a—b, 15). 

The nondeterministic order of parallel steps in T2 is properly simulated by the 
nondeterministic active — frozen status switching in 7 \ , and this completes the proof. 

It can be observed that Tx makes use of the same amount of tape squares as 
T2 does. In particular, if T2 is linearly bounded then so is Tv On the other hand 
the above theorem can be extended to more than two control devices and thus, 
we have the following: 

Corollary. Every asynchronous parallel computation performed by a multicontrol 
Turing machine can be also performed by a single-control Turing machine using 
the same amount of tape. 

A number of interesting special cases of multicontrol Turing machines can be 
considered. One of them could be an abstract model of the so called pipeline process-
ing where a streamlike information flow is processed simultaneously at different 
stages by several control units. The tape alphabet Z can be partitioned for this 
purpose in such a way that the input alphabet of each control unit forms a subset 
of the output alphabet of the previous one. This means that each control unit would 
work at full speed as long as the tape inscription permits. 

Finally it should be mentioned that the simulation of asynchronous parallel 
processes was given above by a nondeterministic model even if the individual control 
units are deterministic. It is known that nondeterminism can be reduced to deter-
ministic operation in case of Turing machines, but this would very likely require 
additional tape [2]. 
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