267 research outputs found

    Improve OR-schedule to reduce number of required beds

    Get PDF
    After surgery most of the surgical patients have to be admitted in a ward in the hospital. Due to financial reasons and an decreasing number of available nurses in the Netherlands over the years, it is important to reduce the bed usage as much as possible. One possible way to achieve this is to create an operating room (OR) schedule that spreads the usage of beds nicely over time, and thereby minimizes the number of required beds. An OR-schedule is given by an assignment of OR-blocks to specific days in the planning horizon and has to fulfill several resource constraints. Due to the stochastic nature of the length of stay of patients, the analytic calculation of the number of required beds for a given OR-schedule is a complex task involving the convolution of discrete distributions. In this paper, two approaches to deal with this complexity are presented. First, a heuristic approach based on local search is given, which takes into account the detailed formulation of the objective. A second approach reduces the complexity by simplifying the objective function. This allows modeling and solving the resulting problem as an ILP. Both approaches are tested on data provided by Hagaziekenhuis in the Netherlands. Furthermore, several what-if scenarios are evaluated. The computational results show that the approach that uses the simplified objective function provides better solutions to the original problem. By using this approach, the number of required beds for the considered instance of HagaZiekenhuis can be reduced by almost 20%

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    Operating room planning and scheduling: A literature review.

    Get PDF
    This paper provides a review of recent research on operating room planning and scheduling. We evaluate the literature on multiple fields that are related to either the problem setting (e.g. performance measures or patient classes) or the technical features (e.g. solution technique or uncertainty incorporation). Since papers are pooled and evaluated in various ways, a diversified and detailed overview is obtained that facilitates the identification of manuscripts related to the reader's specific interests. Throughout the literature review, we summarize the significant trends in research on operating room planning and scheduling and we identify areas that need to be addressed in the future.Health care; Operating room; Scheduling; Planning; Literature review;

    Visualizing the demand for various resources as a function of the master surgery schedule: A case study.

    Get PDF
    This paper presents a software system that visualizes the impact of the master surgery schedule on the demand for various resources throughout the rest of the hospital. The master surgery schedule can be seen as the engine that drives the hospital. Therefore, it is very important for decision makers to have a clear image on how the demand for resources is linked to the surgery schedule. The software presented in this paper enables schedulers to instantaneously view the impact of, e.g., an exchange of two block assignments in the master surgery schedule on the expected resource consumption pattern. A case study entailing a large Belgian surgery unit illustrates how the software can be used to assist in building better surgery schedules.Assignment; Case studies; Consumption; Decision; Demand; Exchange; Expected; Image; Impact; Management; Operating room scheduling; Resource management; Scheduling; Software; Studies; Visualization;

    A multilevel integrative approach to hospital case mix and capacity planning.

    Get PDF
    Hospital case mix and capacity planning involves the decision making both on patient volumes that can be taken care of at a hospital and on resource requirements and capacity management. In this research, to advance both the hospital resource efficiency and the health care service level, a multilevel integrative approach to the planning problem is proposed on the basis of mathematical programming modeling and simulation analysis. It consists of three stages, namely the case mix planning phase, the master surgery scheduling phase and the operational performance evaluation phase. At the case mix planning phase, a hospital is assumed to choose the optimal patient mix and volume that can bring the maximum overall financial contribution under the given resource capacity. Then, in order to improve the patient service level potentially, the total expected bed shortage due to the variable length of stay of patients is minimized through reallocating the bed capacity and building balanced master surgery schedules at the master surgery scheduling phase. After that, the performance evaluation is carried out at the operational stage through simulation analysis, and a few effective operational policies are suggested and analyzed to enhance the trade-offs between resource efficiency and service level. The three stages are interacting and are combined in an iterative way to make sound decisions both on the patient case mix and on the resource allocation.Health care; Case mix and capacity planning; Master surgery schedule; Multilevel; Resource efficiency; Service level;

    Visualizing the demand for various resources as a function of the master surgery schedule: A case study.

    Get PDF
    Case studies; Demand; Problems; Project scheduling; Scheduling; Studies;

    Robust Optimization Framework to Operating Room Planning and Scheduling in Stochastic Environment

    Get PDF
    Arrangement of surgical activities can be classified as a three-level process that directly impacts the overall performance of a healthcare system. The goal of this dissertation is to study hierarchical planning and scheduling problems of operating room (OR) departments that arise in a publicly funded hospital. Uncertainty in surgery durations and patient arrivals, the existence of multiple resources and competing performance measures are among the important aspect of OR problems in practice. While planning can be viewed as the compromise of supply and demand within the strategic and tactical stages, scheduling is referred to the development of a detailed timetable that determines operational daily assignment of individual cases. Therefore, it is worthwhile to put effort in optimization of OR planning and surgical scheduling. We have considered several extensions of previous models and described several real-world applications. Firstly, we have developed a novel transformation framework for the robust optimization (RO) method to be used as a generalized approach to overcome the drawback of conventional RO approach owing to its difficulty in obtaining information regarding numerous control variable terms as well as added extra variables and constraints into the model in transforming deterministic models into the robust form. We have determined an optimal case mix planning for a given set of specialties for a single operating room department using the proposed standard RO framework. In this case-mix planning problem, demands for elective and emergency surgery are considered to be random variables realized over a set of probabilistic scenarios. A deterministic and a two-stage stochastic recourse programming model is also developed for the uncertain surgery case mix planning to demonstrate the applicability of the proposed RO models. The objective is to minimize the expected total loss incurred due to postponed and unmet demand as well as the underutilization costs. We have shown that the optimum solution can be found in polynomial time. Secondly, the tactical and operational level decision of OR block scheduling and advance scheduling problems are considered simultaneously to overcome the drawback of current literature in addressing these problems in isolation. We have focused on a hybrid master surgery scheduling (MSS) and surgical case assignment (SCA) problem under the assumption that both surgery durations and emergency arrivals follow probability distributions defined over a discrete set of scenarios. We have developed an integrated robust MSS and SCA model using the proposed standard transformation framework and determined the allocation of surgical specialties to the ORs as well as the assignment of surgeries within each specialty to the corresponding ORs in a coordinated way to minimize the costs associated with patients waiting time and hospital resource utilization. To demonstrate the usefulness and applicability of the two proposed models, a simulation study is carried utilizing data provided by Windsor Regional Hospital (WRH). The simulation results demonstrate that the two proposed models can mitigate the existing variability in parameter uncertainty. This provides a more reliable decision tool for the OR managers while limiting the negative impact of waiting time to the patients as well as welfare loss to the hospital

    Integral resource capacity planning for inpatient care services based on hourly bed census predictions

    Get PDF
    The design and operations of inpatient care facilities are typically largely historically shaped. A better match with the changing environment is often possible, and even inevitable due to the pressure on hospital budgets. Effectively organizing inpatient care requires simultaneous consideration of several interrelated planning issues. Also, coordination with upstream departments like the operating theater and the emergency department is much-needed. We present a generic analytical approach to predict bed census on nursing wards by hour, as a function of the Master Surgical Schedule (MSS) and arrival patterns of emergency patients. Along these predictions, insight is gained on the impact of strategic (i.e., case mix, care unit size, care unit partitioning), tactical (i.e., allocation of operating room time, misplacement rules), and operational decisions (i.e., time of admission/discharge). The method is used in the Academic Medical Center Amsterdam as a decision support tool in a complete redesign of the inpatient care operations

    Balancing control and autonomy in master surgery scheduling: benefits of ICU quotas for recovery units

    Get PDF
    When scheduling surgeries in the operating theater, not only the resources within the operating theater have to be considered but also those in downstream units, e.g., the intensive care unit and regular bed wards of each medical specialty. We present an extension to the master surgery schedule, where the capacity for surgeries on ICU patients is controlled by introducing downstream-dependent block types – one for both ICU and ward patients and one where surgeries on ICU patients must not be performed. The goal is to provide better control over post-surgery patient flows through the hospital while preserving each medical specialty’s autonomy over its operational surgery scheduling. We propose a mixed-integer program to determine the allocation of the new block types within either a given or a new master surgery schedule to minimize the maximum workload in downstream units. Using a simulation model supported by seven years of data from the University Hospital Augsburg, we show that the maximum workload in the intensive care unit can be reduced by up to 11.22% with our approach while maintaining the existing master surgery schedule. We also show that our approach can achieve up to 79.85% of the maximum workload reduction in the intensive care unit that would result from a fully centralized approach. We analyze various hospital setting instances to show the generalizability of our results. Furthermore, we provide insights and data analysis from the implementation of a quota system at the University Hospital Augsburg. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10729-021-09588-8
    corecore