3,631 research outputs found

    Energy Consumption Data Based Machine Anomaly Detection

    Get PDF

    End-to-end anomaly detection in stream data

    Get PDF
    Nowadays, huge volumes of data are generated with increasing velocity through various systems, applications, and activities. This increases the demand for stream and time series analysis to react to changing conditions in real-time for enhanced efficiency and quality of service delivery as well as upgraded safety and security in private and public sectors. Despite its very rich history, time series anomaly detection is still one of the vital topics in machine learning research and is receiving increasing attention. Identifying hidden patterns and selecting an appropriate model that fits the observed data well and also carries over to unobserved data is not a trivial task. Due to the increasing diversity of data sources and associated stochastic processes, this pivotal data analysis topic is loaded with various challenges like complex latent patterns, concept drift, and overfitting that may mislead the model and cause a high false alarm rate. Handling these challenges leads the advanced anomaly detection methods to develop sophisticated decision logic, which turns them into mysterious and inexplicable black-boxes. Contrary to this trend, end-users expect transparency and verifiability to trust a model and the outcomes it produces. Also, pointing the users to the most anomalous/malicious areas of time series and causal features could save them time, energy, and money. For the mentioned reasons, this thesis is addressing the crucial challenges in an end-to-end pipeline of stream-based anomaly detection through the three essential phases of behavior prediction, inference, and interpretation. The first step is focused on devising a time series model that leads to high average accuracy as well as small error deviation. On this basis, we propose higher-quality anomaly detection and scoring techniques that utilize the related contexts to reclassify the observations and post-pruning the unjustified events. Last but not least, we make the predictive process transparent and verifiable by providing meaningful reasoning behind its generated results based on the understandable concepts by a human. The provided insight can pinpoint the anomalous regions of time series and explain why the current status of a system has been flagged as anomalous. Stream-based anomaly detection research is a principal area of innovation to support our economy, security, and even the safety and health of societies worldwide. We believe our proposed analysis techniques can contribute to building a situational awareness platform and open new perspectives in a variety of domains like cybersecurity, and health

    Flow Forecasting for Leakage Burst Prediction in Water Distribution Systems using Long Short-Term Memory Neural Networks and Kalman Filtering

    Get PDF
    Reducing pipe leakage is one of the top priorities for water companies, with many investing in higher quality sensor coverage to improve flow forecasting and detection of leaks. Most research on this topic is focused on leakage detection through the analysis of sensor data from district metered areas (DMAs), aiming to identify bursts after their occurrence. This study is a step towards the development of ‘self-healing’ water infrastructure systems. In particular, machine learning and deep learning-based algorithms are applied to forecasting the anomalous water flow experienced during bursts (new leakage) in DMAs at various temporal scales, thereby aiding in the health monitoring of water distribution systems. This study uses a dataset for over 2,000 DMAs in Yorkshire, containing flow time series recorded at 15-minute intervals over one year. Firstly, the method of isolation forests is used to identify anomalies in the dataset, which are verified as corresponding to entries in the water mains repair log, indicating the occurrence of bursts. Going beyond leakage detection, this research proposes a hybrid deep learning framework named FLUIDS (Forecasting Leakage and Usual flow Intelligently in Distribution Systems). A recurrent neural network (RNN) is used for mean flow forecasting, which is then combined with forecasted residuals obtained through real-time Kalman filter. While providing expected day-to-day flow demands, this framework also aims to issue sufficient early warning for any upcoming anomalous flow or possible leakages. For a given forecast period, the FLUIDS framework can be used to compute the probability of flow exceeding a pre-defined threshold, thus allowing decisions to be made regarding any necessary interventions. This can inform targeted repair strategies that best utilize resources to minimize leakage and disruptions by addressing detected and predicted burst events. The proposed FLUIDS framework is statistically assessed and compared against state-of-practice minimum night flow (MNF) methodology. Finally, it is concluded that the framework performs well on the unobserved test dataset for both regular and leakage water flows

    Enabling Smart Retrofitting and Performance Anomaly Detection for a Sensorized Vessel: A Maritime Industry Experience

    Full text link
    The integration of sensorized vessels, enabling real-time data collection and machine learning-driven data analysis marks a pivotal advancement in the maritime industry. This transformative technology not only can enhance safety, efficiency, and sustainability but also usher in a new era of cost-effective and smart maritime transportation in our increasingly interconnected world. This study presents a deep learning-driven anomaly detection system augmented with interpretable machine learning models for identifying performance anomalies in an industrial sensorized vessel, called TUCANA. We Leverage a human-in-the-loop unsupervised process that involves utilizing standard and Long Short-Term Memory (LSTM) autoencoders augmented with interpretable surrogate models, i.e., random forest and decision tree, to add transparency and interpretability to the results provided by the deep learning models. The interpretable models also enable automated rule generation for translating the inference into human-readable rules. Additionally, the process also includes providing a projection of the results using t-distributed stochastic neighbor embedding (t-SNE), which helps with a better understanding of the structure and relationships within the data and assessment of the identified anomalies. We empirically evaluate the system using real data acquired from the vessel TUCANA and the results involve achieving over 80% precision and 90% recall with the LSTM model used in the process. The interpretable models also provide logical rules aligned with expert thinking, and the t-SNE-based projection enhances interpretability. Our system demonstrates that the proposed approach can be used effectively in real-world scenarios, offering transparency and precision in performance anomaly detection

    Flow forecasting for leakage burst prediction in water distribution systems using long short-term memory neural networks and Kalman filtering

    Get PDF
    Reducing pipe leakage is one of the top priorities for water companies, with many investing in higher quality sensor coverage to improve flow forecasting and detection of leaks. Most research on this topic is focused on leakage detection through the analysis of sensor data from district metered areas (DMAs), aiming to identify bursts after their occurrence. This study is a step towards the development of ‘self-healing’ water infrastructure systems. In particular, machine learning and deep learning-based algorithms are applied to forecasting the anomalous water flow experienced during bursts (new leakage) in DMAs at various temporal scales, thereby aiding in the health monitoring of water distribution systems. This study uses a dataset of over 2,000 DMAs in North Yorkshire, UK, containing flow time series recorded at 15-minute intervals for a period of one year. Firstly, the method of isolation forests is used to identify anomalies in the dataset, which are cross referenced with entries in the water mains repair log, indicating the occurrence of bursts. Going beyond leakage detection, this research proposes a hybrid deep learning framework named FLUIDS (Forecasting Leakage and Usual flow Intelligently in water Distribution Systems). A recurrent neural network (RNN) is used for mean flow forecasting, which is then combined with forecasted residuals obtained through real-time Kalman filtering. While providing expected day-to-day flow demands, this framework also aims to issue sufficient early warning for any upcoming anomalous flow or possible leakages. For a given forecast period, the FLUIDS framework can be used to compute the probability of flow exceeding a pre-defined threshold, thus allowing decision-making for any necessary interventions. This can inform targeted repair strategies that best utilize resources to minimize leakages and disruptions. The FLUIDS framework is statistically assessed and compared against the state-of-practice minimum night flow (MNF) methodology. Based on the statistical analyses, it is concluded that the proposed framework performs well on the unobserved test dataset for both regular and leakage water flows.</p

    Smart Urban Water Networks

    Get PDF
    This book presents the paper form of the Special Issue (SI) on Smart Urban Water Networks. The number and topics of the papers in the SI confirm the growing interest of operators and researchers for the new paradigm of smart networks, as part of the more general smart city. The SI showed that digital information and communication technology (ICT), with the implementation of smart meters and other digital devices, can significantly improve the modelling and the management of urban water networks, contributing to a radical transformation of the traditional paradigm of water utilities. The paper collection in this SI includes different crucial topics such as the reliability, resilience, and performance of water networks, innovative demand management, and the novel challenge of real-time control and operation, along with their implications for cyber-security. The SI collected fourteen papers that provide a wide perspective of solutions, trends, and challenges in the contest of smart urban water networks. Some solutions have already been implemented in pilot sites (i.e., for water network partitioning, cyber-security, and water demand disaggregation and forecasting), while further investigations are required for other methods, e.g., the data-driven approaches for real time control. In all cases, a new deal between academia, industry, and governments must be embraced to start the new era of smart urban water systems

    Deep learning-based meta-learner strategy for electricity theft detection

    Get PDF
    Electricity theft damages power grid infrastructure and is also responsible for huge revenue losses for electric utilities. Integrating smart meters in traditional power grids enables real-time monitoring and collection of consumers’ electricity consumption (EC) data. Based on the collected data, it is possible to identify the normal and malicious behavior of consumers by analyzing the data using machine learning (ML) and deep learning methods. This paper proposes a deep learning-based meta-learner model to distinguish between normal and malicious patterns in EC data. The proposed model consists of two stages. In Fold-0, the ML classifiers extract diverse knowledge and learns based on EC data. In Fold-1, a multilayer perceptron is used as a meta-learner, which takes the prediction results of Fold-0 classifiers as input, automatically learns non-linear relationships among them, and extracts hidden complicated features to classify normal and malicious behaviors. Therefore, the proposed model controls the overfitting problem and achieves high accuracy. Moreover, extensive experiments are conducted to compare its performance with boosting, bagging, standalone conventional ML classifiers, and baseline models published in top-tier outlets. The proposed model is evaluated using a real EC dataset, which is provided by the Energy Informatics Group in Pakistan. The model achieves 0.910 ROC-AUC and 0.988 PR-AUC values on the test dataset, which are higher than those of the compared models
    • …
    corecore