893 research outputs found

    First steps in synthetic guarded domain theory: step-indexing in the topos of trees

    Get PDF
    We present the topos S of trees as a model of guarded recursion. We study the internal dependently-typed higher-order logic of S and show that S models two modal operators, on predicates and types, which serve as guards in recursive definitions of terms, predicates, and types. In particular, we show how to solve recursive type equations involving dependent types. We propose that the internal logic of S provides the right setting for the synthetic construction of abstract versions of step-indexed models of programming languages and program logics. As an example, we show how to construct a model of a programming language with higher-order store and recursive types entirely inside the internal logic of S. Moreover, we give an axiomatic categorical treatment of models of synthetic guarded domain theory and prove that, for any complete Heyting algebra A with a well-founded basis, the topos of sheaves over A forms a model of synthetic guarded domain theory, generalizing the results for S

    A Temporal Logic for Hyperproperties

    Full text link
    Hyperproperties, as introduced by Clarkson and Schneider, characterize the correctness of a computer program as a condition on its set of computation paths. Standard temporal logics can only refer to a single path at a time, and therefore cannot express many hyperproperties of interest, including noninterference and other important properties in security and coding theory. In this paper, we investigate an extension of temporal logic with explicit path variables. We show that the quantification over paths naturally subsumes other extensions of temporal logic with operators for information flow and knowledge. The model checking problem for temporal logic with path quantification is decidable. For alternation depth 1, the complexity is PSPACE in the length of the formula and NLOGSPACE in the size of the system, as for linear-time temporal logic

    FunTAL: Reasonably Mixing a Functional Language with Assembly

    Full text link
    We present FunTAL, the first multi-language system to formalize safe interoperability between a high-level functional language and low-level assembly code while supporting compositional reasoning about the mix. A central challenge in developing such a multi-language is bridging the gap between assembly, which is staged into jumps to continuations, and high-level code, where subterms return a result. We present a compositional stack-based typed assembly language that supports components, comprised of one or more basic blocks, that may be embedded in high-level contexts. We also present a logical relation for FunTAL that supports reasoning about equivalence of high-level components and their assembly replacements, mixed-language programs with callbacks between languages, and assembly components comprised of different numbers of basic blocks.Comment: 15 pages; implementation at https://dbp.io/artifacts/funtal/; published in PLDI '17, Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, June 18 - 23, 2017, Barcelona, Spai

    Geometric Aspects of Multiagent Systems

    Get PDF
    Recent advances in Multiagent Systems (MAS) and Epistemic Logic within Distributed Systems Theory, have used various combinatorial structures that model both the geometry of the systems and the Kripke model structure of models for the logic. Examining one of the simpler versions of these models, interpreted systems, and the related Kripke semantics of the logic S5nS5_n (an epistemic logic with nn-agents), the similarities with the geometric / homotopy theoretic structure of groupoid atlases is striking. These latter objects arise in problems within algebraic K-theory, an area of algebra linked to the study of decomposition and normal form theorems in linear algebra. They have a natural well structured notion of path and constructions of path objects, etc., that yield a rich homotopy theory.Comment: 14 pages, 1 eps figure, prepared for GETCO200

    The inheritance of dynamic and deontic integrity constraints or: Does the boss have more rights?

    Get PDF
    In [18,23], we presented a language for the specification of static, dynamic and deontic integrity constraints (IC's) for conceptual models (CM's). An important problem not discussed in that paper is how IC's are inherited in a taxonomic network of types. For example, if students are permitted to perform certain actions under certain preconditions, must we repeat these preconditions when specializing this action for the subtype of graduate students, or are they inherited, and if so, how? For static constraints, this problem is relatively trivial, but for dynamic and deontic constraints, it will turn out that it contains numerous pitfalls, caused by the fact that common sense supplies presuppositions about the structure of IC inheritance that are not warranted by logic. In this paper, we unravel some of these presuppositions and show how to avoid the pitfalls. We first formulate a number of general theorems about the inheritance of necessary and/or sufficient conditions and show that for upward inheritance, a closure assumption is needed. We apply this to dynamic and deontic IC's, where conditions arepreconditions of actions, and show that our common sense is sometimes mistaken about the logical implications of what we have specified. We also show the connection of necessary and sufficient preconditions of actions with the specification of weakest preconditions in programming logic. Finally, we argue that information analysts usually assume constraint completion in the specification of (pre)conditions analogous to predicate completion in Prolog and circumscription in non-monotonic logic. The results are illustrated with numerous examples and compared with other approaches in the literature

    A Step-indexed Semantics of Imperative Objects

    Full text link
    Step-indexed semantic interpretations of types were proposed as an alternative to purely syntactic proofs of type safety using subject reduction. The types are interpreted as sets of values indexed by the number of computation steps for which these values are guaranteed to behave like proper elements of the type. Building on work by Ahmed, Appel and others, we introduce a step-indexed semantics for the imperative object calculus of Abadi and Cardelli. Providing a semantic account of this calculus using more `traditional', domain-theoretic approaches has proved challenging due to the combination of dynamically allocated objects, higher-order store, and an expressive type system. Here we show that, using step-indexing, one can interpret a rich type discipline with object types, subtyping, recursive and bounded quantified types in the presence of state

    10351 Abstracts Collection -- Modelling, Controlling and Reasoning About State

    Get PDF
    From 29 August 2010 to 3 September 2010, the Dagstuhl Seminar 10351 ``Modelling, Controlling and Reasoning About State \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. Links to extended abstracts or full papers are provided, if available

    Adaptability Checking in Multi-Level Complex Systems

    Full text link
    A hierarchical model for multi-level adaptive systems is built on two basic levels: a lower behavioural level B accounting for the actual behaviour of the system and an upper structural level S describing the adaptation dynamics of the system. The behavioural level is modelled as a state machine and the structural level as a higher-order system whose states have associated logical formulas (constraints) over observables of the behavioural level. S is used to capture the global and stable features of B, by a defining set of allowed behaviours. The adaptation semantics is such that the upper S level imposes constraints on the lower B level, which has to adapt whenever it no longer can satisfy them. In this context, we introduce weak and strong adaptabil- ity, i.e. the ability of a system to adapt for some evolution paths or for all possible evolutions, respectively. We provide a relational characterisation for these two notions and we show that adaptability checking, i.e. deciding if a system is weak or strong adaptable, can be reduced to a CTL model checking problem. We apply the model and the theoretical results to the case study of motion control of autonomous transport vehicles.Comment: 57 page, 10 figures, research papaer, submitte
    • …
    corecore