
Logical Methods in Computer Science
Vol. 8 (4:1) 2012, pp. 1–45
www.lmcs-online.org

Submitted Dec. 21, 2006
Published Oct. 3, 2012

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY:

STEP-INDEXING IN THE TOPOS OF TREES ∗

LARS BIRKEDAL a, RASMUS EJLERS MØGELBERG b, JAN SCHWINGHAMMER c,
AND KRISTIAN STØVRING d

a,b IT University of Copenhagen
e-mail address: {birkedal, mogel}@itu.dk

e-mail address: mogel@itu.dk

c Saarland University
e-mail address: jan@ps.uni-saarland.de

d DIKU, University of Copenhagen
e-mail address: stovring@diku.dk

Abstract. We present the topos S of trees as a model of guarded recursion. We study
the internal dependently-typed higher-order logic of S and show that S models two modal
operators, on predicates and types, which serve as guards in recursive definitions of terms,
predicates, and types. In particular, we show how to solve recursive type equations involv-
ing dependent types. We propose that the internal logic of S provides the right setting
for the synthetic construction of abstract versions of step-indexed models of programming
languages and program logics. As an example, we show how to construct a model of a pro-
gramming language with higher-order store and recursive types entirely inside the internal
logic of S . Moreover, we give an axiomatic categorical treatment of models of synthetic
guarded domain theory and prove that, for any complete Heyting algebra A with a well-
founded basis, the topos of sheaves over A forms a model of synthetic guarded domain
theory, generalizing the results for S .

1. Introduction

Recursive definitions are ubiquitous in computer science. In particular, in semantics of
programming languages and program logics we often use recursively defined functions and
relations, and also recursively defined types (domains). For example, in recent years there
has been extensive work on giving semantics of type systems for programming languages
with dynamically allocated higher-order store, such as general ML-like references. Models
have been expressed as Kripke models over a recursively defined set of worlds (an example

1998 ACM Subject Classification: D.3.1, F.3.2.
Key words and phrases: Denotational semantics, guarded recursion, step-indexing, recursive types.

∗ This is an expanded and revised version of a paper that appeared at LICS’11 [4]. In addition to containing
more examples and proofs, it also contains a more general treatment of models of synthetic guarded domain
theory.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (4:1) 2012

c© L. Birkedal, R.E. Møgelberg, J. Schwinghammer, and K. Støvring
CC© Creative Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50526909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/about/licenses

2 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

of a recursively defined domain) and have involved recursively defined relations to interpret
the recursive types of the programming language; see [5] and the references therein.

In this paper we study a topos S, which we show models guarded recursion in the sense
that it allows for guarded recursive definitions of both recursive functions and relations as
well as recursive types. The topos S is known as the topos of trees (or forests); what is new
here is our application of this topos to model guarded recursion.

The internal logic of S is a standard many-sorted higher-order logic extended with
modal operators on both types and terms. (Recall that terms in higher-order logic include
both functions and relations, as the latter are simply Prop-valued functions.) This internal
logic can then be used as a language to describe semantic models of programming languages
with the features mentioned above. As an example which uses both recursively defined types
and recursively defined relations in the S-logic, we present a model of Fµ,ref , a call-by-value
programming language with impredicative polymorphism, recursive types, and general ML-
like references.

To situate our work in relation to earlier work, we now give a quick overview of the
technical development of the present paper followed by a comparison to related work. We
end the introduction with a summary of our contributions.

1.1. Overview of technical development. The topos S is the category of presheaves on
ω, the first infinite ordinal. This topos is known as the topos of trees, and is one of the
most basic examples of presheaf categories.

There are several ways to think intuitively about this topos. Let us recall one intuitive
description, which can serve to understand why it models guarded recursion. An object X
of S is a contravariant functor from ω (viewed as a preorder) to Set. We think of X as a
variable set, i.e., a family of sets X(n), indexed over natural numbers n, and with restriction
maps X(n + 1) → X(n). Morphisms f : X → Y are natural transformations from X to
Y . The variable sets include the ordinary sets as so-called constant sets: for an ordinary
set S, there is an object ∆(S) in S with ∆(S)(n) = S for all n. Since S is a category of
presheaves, it is a topos, in particular it is cartesian closed category and has a subobject
classifier Ω (a type of propositions). The internal logic of S is an extension of standard
Kripke semantics: for constant sets, the truth value of a predicate is just the set of worlds
(downwards closed subsets of ω) for which the predicate holds. This observation suggests

that there is a modal “later” operator ✄ on predicates Ω∆(S) on constant sets, similar to
what has been studied earlier [3, 11]. Intuitively, for a predicate ϕ : Ω∆(S) on constant set
∆(S), ✄(ϕ) contains n+ 1 if ϕ contains n. (A future world is a smaller number, hence the
name “later” for this operator.) A recursively specified predicate µr.ϕ(r) is well-defined if
every occurrence of the recursion variable r in ϕ is guarded by a ✄ modality: by definition
of ✄, to know whether n + 1 is in the predicate it suffices to know whether n is in the
predicate. There is also an associated Löb rule for induction, (✄ϕ→ ϕ)→ ϕ, as in [3].

Here we show that in fact there is a later operator not only on predicates on constant
sets, but also on predicates on general variable sets, with associated Löb rule, and well-
defined guarded recursive definitions of predicates.

Moreover, there is also a later operator ◮ (a functor) on the variable sets themselves:
◮(X) is given by ◮(X)(1) = {⋆} and ◮(X)(n + 1) = X(n). We can show the well-
definedness of recursive variable sets µX.F (X) in which the recursion variable X is guarded
by this operator ◮. Intuitively, such a recursively specified variable set is well-defined since

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 3

by definition of ◮, to know what µX.F (X) is at level n+1 it suffices to know what it is at
level n.

In the technical sections of the paper, we make the above precise. In particular, we detail
the internal logic and the use of later on functions / predicates and on types. We explain
how one can solve mixed-variance recursive type equations, for a wide collection of types.
We show how to use the internal logic of S to give a model of Fµ,ref . The model, including
the operational semantics of the programming language, is defined completely inside the
internal logic; we discuss the connection between the resulting model and earlier models by
relating internal definitions in the internal logic to standard (external) definitions. Since S
is a topos, S also models dependent types. We give technical semantic results as needed for
using later on dependent types and for recursive type-equations involving dependent types.
We think of this as a first step towards a formalized dependent type theory with a later
operator; here we focus on the foundational semantic issues.

To explain the relationship to some of the related work, we point out that S is equivalent
to the category of sheaves on ω, where ω is the complete Heyting algebra of natural numbers
with the usual ordering and extended with a top element ∞. Moreover, this sheaf category,
and hence also S, is equivalent to the topos obtained by the tripos-to-topos construction [21]
applied to the tripos Set(, ω). The logic of constant sets in S is exactly the logic of this
tripos.1

In the first part of this paper we work with the presentation of S as presheaves since
it is the most concrete, but in fact many of our results generalize to sheaf categories over
other complete well-founded Heyting algebras. Indeed, we include a more general axiomatic
treatment of models of synthetic guarded domain theory and prove that, for any complete
Heyting algebra with a well-founded basis, the topos of sheaves over the Heyting algebra
yields a model of synthetic guarded domain theory. We present this generalization after the
more concrete treatment of S, since the concrete treatment of S is perhaps more accessible.

1.2. Related work. Nakano presented a simple type theory with guarded recursive types
[30] which can be modelled using complete bounded ultrametric spaces [6]. We show in
Section 5 that the category BiCBUlt of bisected, complete bounded ultrametric spaces is a
co-reflective subcategory of S. Thus, our present work can be seen as an extension of the
work of Nakano to include the full internal language of a topos, in particular dependent
types, and an associated higher-order logic. Pottier [32] presents an extension of System F
with recursive kinds based on Nakano’s calculus; hence S also models the kind language of
his system.

Di Gianantonio and Miculan [10] studied guarded recursive definitions of functions in
certain sheaf toposes over well-founded complete Heyting algebras, thus including S. Our
work extends the work of Di Gianantonio and Miculan by also including guarded recursive
definitions of types, by emphasizing the use of the internal logic (this was suggested as future
work in [10]), and by including an extensive example application. Moreover, our general
treatment of sheaf models includes sheaves over any well-founded complete Heyting algebra,
whereas Di Gianantonio and Miculan restrict attention to those Heyting algebras that arise
as the opens of a topological space.

1Recall that the tripos Set(, ω) is a model of logic in which types and terms are interpreted as sets and
functions, and predicates are interpreted as ω-valued functions.

4 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

Earlier work has advocated the use of complete bounded ultrametric spaces for solving
recursive type and relation equations that come up when modelling programming languages
with higher-order store [5, 7]. As mentioned above, BiCBUlt is a subcategory of S, and
thence our present work can be seen as an improvement of this earlier work: it is an
improvement since S supports full higher-order logic. In the earlier work, one had to show
that the functions defined in the interpretation of the programming language types were
non-expansive. Here we take the synthetic approach (cf. [20]) and place ourselves in the
internal logic of the topos when defining the interpretation of the programming language,
see Section 3. This means that there is no need to prove properties like non-expansiveness
since, intuitively, all functions in the topos are suitably non-expansive.

Dreyer et al. [11] proposed a logic, called LSLR, for defining step-indexed interpretations
of programming languages with recursive types, building on earlier work by Appel et al. [3]
who proposed the use of a later modality on predicates. The point of LSLR is that it
provides for more abstract ways of constructing and reasoning with step-indexed models,
thus avoiding tedious calculations with step indices. The core logic of LSLR is the logic
of the tripos Set(, ω) mentioned above,2 which allows for recursively defined predicates
following [3], but not recursively defined types. One point of passing from this tripos to the
topos S is that it gives us a wider collection of types (variable sets rather than only constant
sets), which makes it possible also to have mixed-variance recursively defined types.3

Dreyer et al. developed an extension of LSLR called LADR for reasoning about step-
indexed models of the programming language Fµ,ref with higher-order store [13]. LADR is a
specialized logic where much of the world structure used for reasoning efficiently about local
state is hidden by the model of the logic; here we are proposing a general logic that can be
used to construct many step-indexed models, including the one used to model LADR. In
particular, in our example application in Section 3, we define a set of worlds inside the S
logic, using recursively defined types.

As part of our analysis of recursive dependent types, we define a class of types, called
functorial types. We show that functorial types are closed under nested recursive types, a
result which is akin to results on nested inductive types [1, 14]. The difference is that we
allow for general mixed-variance recursive types, but on the other hand we require that all
occurrences of recursion variables must be guarded.

1.3. Summary of contributions. We show how the topos S, and, more generally, any
topos of sheaves over a complete Heyting algebra with a well-founded basis, provides a
simple but powerful model of guarded recursion, allowing for guarded recursive definitions
of both terms and types in the internal dependently-typed higher-order logic. In particular,
we

• show that the two later modalities are well-behaved on slices;
• give existence theorems for fixed points of guarded recursive terms and guarded nested
dependent mixed-variance recursive types;
• detail the relation of S to the category of complete bounded ultrametric spaces;

2Dreyer et al. [11] presented the semantics of their second-order logic in more concrete terms, avoiding
the use of triposes, but it is indeed a fragment of the internal logic of the mentioned tripos.

3The terminology can be slightly confusing: in [3], our notion of recursive relations were called recursive
types, probably because the authors of loc.cit. used such to interpret recursive types of a programming
language. Recursive types in our sense were not considered in [3].

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 5

• present, as an example application, a synthetic model of Fµ,ref constructed internally in
S;
• give an axiomatic treatment of a general class of models of guarded recursion.

Our general existence theorems for recursive types in Section 8 are phrased in terms of
Sh(A)-categories, i.e., categories enriched in sheaves over a complete Heyting algebra A
with a well-founded basis, and generalize earlier work on recursive types for categories
enriched in complete bounded ultrametric spaces [9].

2. The S Topos

The category S is that of presheaves on ω, the preorder of natural numbers starting from 1
and ordered by inclusion. Explicitly, the objects of S = Setω

op

are families of sets indexed
by natural numbers together with restriction maps rn : X(n + 1) → X(n). Morphisms are
families (fn)n of maps commuting with the restriction maps as indicated in the diagram

X(1) ✛ X(2) ✛ X(3) ✛ . . .

Y (1)

f1
❄

✛ Y (2)

f2
❄

✛ Y (3)

f3
❄

✛ . . .

If x ∈ X(m) and n ≤ m we write x|n for rn ◦ · · · ◦ rm−1(x).
As all presheaf categories, S is a topos, in particular it is cartesian closed and has a

subobject classifier. Moreover, it is complete and cocomplete, and limits and colimits are
computed pointwise. The n’th component of the exponential Y X(n) is the set of tuples
(f1, . . . , fn) commuting with the restriction maps, and the restriction maps of Y X are given
by projection. We sometimes use the notation X → Y for Y X .

A subobject A of X is a family of subsets A(n) ⊆ X(n) such that rn(A(n+1)) ⊆ A(n).
The subobject classifier has Ω(n) = {0, . . . , n} and restriction maps rn(x) = min(n, x).
The characteristic morphism χA : X → Ω maps x ∈ X(n) to the maximal m such that
x|m ∈ A(m) if such an m exists and 0 otherwise.

The natural numbers object N in S is the constant set of natural numbers.
Intuitively, we can think of the set X(n) as what the type X looks like, if one has at

most n time steps to reason about it. The restriction maps rn : X(n+ 1)→ X(n) describe
what happens to the data when one time step passes. This intuition is illustrated by the
following example.

Example 2.1. We can define the object Str ∈ S of (variable) streams of natural numbers
as follows:

N1 ✛ N2 ✛ N3 ✛ . . .

where the restriction maps rm : Nm+1 → Nm map (n1, . . . , nm, nm+1) to (n1, . . . , nm).
Intuitively, this is the type of streams where the head is immediately available, but the tail
is only available after one time step. If we have n time steps to reason about this type we
can access the n first elements, hence Str(n) = Nn.

The successor function succ on streams, which adds one to every element in a stream,
can be defined in the model by

succm : Nm → Nm = (n1, . . . , nm) 7→ (n1 + 1, . . . , nm + 1).

6 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

Clearly succ is a natural transformation from Str to Str ; hence it is a well-defined map
in S. Observe that succm can also be defined by induction as succ1(n) = n + 1 and
succm+1(n1, n2, . . . , nm+1) = (n1 + 1, succm(n2, . . . , nm+1)).

The subobject A ⊆ Str of increasing streams can be defined by letting Am ⊆ Nm be
the set of tuples (n1, . . . , nm) that are increasing (i.e., ni > nj, for i > j). Note that A is
trivially closed under the restriction maps, and thus it is a well-defined subobject of Str .

2.1. The ◮ endofunctor. Define the functor ◮ : S → S by ◮X(1) = {⋆} and ◮X(n +
1) = X(n). This functor, called later, has a left adjoint (so ◮ preserves all limits) given by
◭X(n) = X(n + 1). Since limits are computed pointwise, ◭ preserves them, and so the
adjunction ◭ ⊣ ◮ defines a geometric morphism, in fact an embedding. However, we shall
not make use of this fact in the present paper (because ◭ is not a fibred endo-functor on
the codomain fibration, hence is not a useful operator in the dependent type theory; see
Section 4).

There is a natural transformation nextX : X → ◮X whose 1st component is the unique
map into {⋆} and whose (n + 1)th component is rn. Although next looks like a unit ◮ is
not a monad: there are no natural transformations ◮◮→ ◮.

Since ◮ preserves finite limits, there is always a morphism

J : ◮(X → Y)→ (◮X → ◮Y). (2.1)

2.2. An operator on predicates. There is a morphism ✄ : Ω→ Ω mapping n ∈ Ω(m) to
min(m,n+1). By setting χ✄A = ✄ ◦χA there is an induced operation on subobjects, again
denoted ✄. This operation, which we also call “later”, is connected to the ◮ functor, since
there is a pullback diagram

✄m ✲ ◮A

X
❄ nextX✲ ◮X

◮m
❄

for any subobject m : A→ X.

2.3. Recursive morphisms. We introduce a notion of contractive morphism and show
that these have unique fixed points.

Definition 2.2. A morphism f : X → Y is contractive if there exists a morphism g : ◮X →
Y such that f = g ◦ nextX . A morphism f : X × Y → Z is contractive in the first variable
if there exists g such that f = g ◦ (nextX × idY).

For instance, contractiveness of ✄ on Ω is witnessed by succ: ◮Ω→ Ω with succn(k) =
k+1.

Lemma 2.3.

(1) If f : X → Y and g : Y → Z and either f or g are contractive also gf is contractive.
(2) If f : X → Y and g : X ′ → Y ′ are contractive, so is f × g : X ×X ′ → Y × Y ′.

(3) A morphism h : X × Y → Z is contractive in the first variable iff ĥ : X → ZY is
contractive.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 7

If f : X → Y is contractive as witnessed by g, the value of fn+1(x) can be computed from
rn(x) and moreover, f1 must be constant. If X = Y we can define a fixed point x : 1→ X by
defining x1 = g1(⋆) and xn+1 = gn+1(xn). This construction can be generalized to include
fixed points of morphisms with parameters as follows.

Theorem 2.4. There exists a natural family of morphisms fixX : (◮X → X)→ X, indexed
by the collection of all objects X, which computes unique fixed points in the sense that if
f : X×Y → X is contractive in the first variable as witnessed by g, i.e., f = g◦(nextX×idY),
then fixX◦ĝ is the unique h : Y → X such that f◦〈h, idY 〉 = h (here ĝ denotes the exponential
transpose of g).

2.4. Internal logic. We start by calling to mind parts of the Kripke-Joyal forcing semantics
for S. For X1, . . . ,Xm in S, ϕ : X1 × · · · ×Xm → Ω, n ∈ ω, and α1 ∈ X1(n), . . . , αm ∈
Xm(n), we define n |= ϕ(α1, . . . , αm) iff ϕn(α1, . . . , αm) = n.

The standard clauses for the forcing relation are as follows [26, Example 9.5] (we write
α for a sequence α1, . . . , αm):

n |= (s = t)α⇔ [[s]]n(α) = [[t]]n(α)

n |= R(t1, . . . , tk)α⇔ [[R]]n([[t1]]n(α), . . . , [[tk]]n(α)) = n

n |= (ϕ ∧ ψ)(α)⇔ n |= ϕ(α) ∧ n |= ψ(α)

n |= (ϕ ∨ ψ)(α)⇔ n |= ϕ(α) ∨ n |= ψ(α)

n |= (ϕ→ ψ)(α)⇔ ∀k ≤ n. k |= ϕ(α|k)→ k |= ψ(α|k)

n |= (∃x:X.ϕ)(α)⇔ ∃α∈ [[X]](n). n |= ϕ(α,α)

n |= (∀x:X.ϕ)(α)⇔ ∀k ≤ n, α∈ [[X]](k). k |= ϕ(α|k, α)

Proposition 2.5. ✄ is the unique morphism on Ω satisfying 1 |= ✄ϕ(α) and n+1 |=
✄ϕ(α)⇔ n |= ϕ(α|n). Moreover, ∀x, y : X.✄(x= y) ↔ nextX(x)=nextX(y) holds in S.

The following definition will be useful for presenting facts about the internal logic of S.

Definition 2.6. An object X in S is total if all the restriction maps rn are surjective.

Hence all constant objects ∆(S) are total, but the total objects also include many non-
constant objects, e.g., the subobject classifier. The above definition is phrased in terms of
the model; the internal logic can be used to give a simple characterization of when X is
total and inhabited by a global element4 : that is the case iff nextX is internally surjective
in S, i.e., iff ∀y : ◮X.∃x : X.nextX(x) = y holds in S. The following proposition can be
proved using the forcing semantics; note that the distribution rules below for ✄ generalize
the ones for constant sets described in [11] (since constant sets are total).

Theorem 2.7. In the internal logic of S we have:

(1) (Monotonicity). ∀p : Ω. p→ ✄ p.
(2) (Löb rule). ∀p : Ω. (✄ p→ p)→ p.
(3) ✄ commutes with the logical connectives ⊤, ∧, →, ∨, but does not preserve ⊥.
(4) For all X, Y , and ϕ, we have ∃y : Y.✄ϕ(x, y) → ✄(∃y : Y. ϕ(x, y)). The implication

in the opposite direction holds if Y is total and inhabited.

4X is inhabited by a global element if there exists a morphism x : 1 → X

8 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

(5) For all X, Y , and ϕ, we have ✄(∀y : Y. ϕ(x, y)) → ∀y : Y.✄ϕ(x, y). The implication
in the opposite direction holds if Y is total.

We now define an internal notion of contractiveness in the logic of S which implies (in the
logic) the existence of a unique fixed point for inhabited types.

Definition 2.8. The predicate Contr on Y X is defined in the internal logic by

Contr(f)
def
⇐⇒ ∀x, x′ : X.✄(x = x′)→ f(x) = f(x′).

For a morphism f : X → Y , corresponding to a global element of Y X , we have that if
f is contractive (in the external sense of Definition 2.2), then Contr(f) holds in the logic of
S. The converse is true if X is total and inhabited, but not in general. We use both notions
of contractiveness: the external notion provides for a simple algebraic theory of fixed points
for not only morphisms but also functors (see Section 2.6), whereas the internal notion is
useful when working in the internal logic.

The internal notion of contractiveness generalizes the usual metric notion of contrac-
tiveness for functions between complete bounded ultrametric spaces; see Section 5.

Theorem 2.9 (Internal Banach Fixed-Point Theorem). The following holds in S:

(∃x : X.⊤) ∧ Contr(f)→ ∃!x : X. f(x) = x.

The above theorem (the Internal Banach Fixed-Point Theorem) is proved in the internal
logic using the following lemma, which expresses a non-classical property. The lemma can
be proved in the internal logic using the Löb rule (and using that N is a total object) —
below we give a semantic proof using the Kripke-Joyal semantics.

Lemma 2.10. The following holds in S:

Contr(f)→ ∃n : N.∀x, x′ : X. fn(x) = fn(x′).

Proof. We must show that any m forces the predicate. Unfolding the definition of the
forcing relation, we see that it suffices to show that for all m and all f ∈ XX(m) there
exists an n such that

m |= Contr(f)→ m |= ∀x, x′ : X. fn(x) = fn(x′)

The element f is a family (fi : X(i) → X(i))i≤m and the condition m |= Contr(f) implies
that f ii (x) = f ii (y) for all i ≤ m and all x, y ∈ X(i). In particular fmi is constant. Therefore
choosing n = m makes m |= ∀x, x′ : X. fn(x) = fn(x′) true.

2.5. Recursive relations. As an example application of Theorem 2.9, we consider the
definition of recursive predicates. Let ϕ(r) : ΩX be a predicate on X in the internal logic of
S as presented above (over non-dependent types, but possibly using ✄) with free variable
r, also of type ΩX . Note that ΩX is inhabited by a global element. If r only occurs
under a ✄ in ϕ, then ϕ defines an internally contractive map ϕ : ΩX → ΩX (proved by
external induction on ϕ). Therefore, by Theorem 2.9, ∃! r : ΩX .ϕ(r) = r holds in S. By
description (aka axiom of unique choice), which holds in any topos [26], there is then a
morphism R : 1 → ΩX such that ϕ(R) = R in S, and since internal and external equality
coincides, also ϕ(R) = R externally as morphisms 1→ ΩX . In summa, we have shown the
well-definedness of recursive predicates r = ϕ(r) where r only occurs guarded by ✄ in ϕ.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 9

Note that we have proved the existence of recursive guarded relations (and thus do
not have to add them to the language with special syntax) since we are working with a
higher-order logic.

Example 2.11. Suppose R ⊆ X ×X is some relation on a set X. We can include it into
S by using the functor ∆: Set → S, obtaining ∆R ⊆ ∆X ×∆X. Consider the recursive
relation

Rω(x, y)
def
⇐⇒ (x = y) ∨ ∃z.(∆R(x, z) ∧✄Rω(z, y)) .

Now, n + 1 |= Rω(x, y) iff (x, y) ∈ ∪0≤i≤nR
i or there exists z such that Rn+1(x, z). If R is

a rewrite relation then n + 1 |= Rω(x, y) states the extent to which we can determine if x
rewrites to y by inspecting all rewrite sequences of length at most n.

A variant of Example 2.11 is used in Section 3.

2.6. Recursive domain equations. In this section we present a simplified version of our
results on solutions to recursive domain equations in S sufficient for the example of Section 3.
The full results on recursive domain equations can be found in Section 4.

Denote by pfq : 1 → Y X the curried version of f : X → Y . Following Kock [25] we
say that an endofunctor F : S → S is strong if, for all X,Y , there exists a morphism
FX,Y : Y X → FY FX such that FX,Y ◦ pfq = pFfq for all f .

Definition 2.12. A strong endofunctor on S is locally contractive if each FX,Y is contrac-
tive, i.e., there exists a family GX,Y such that GX,Y ◦ nextXY = FX,Y and moreover G
respects identity and composition, that is the following diagrams commute

◮(Y X)×◮(ZY)
∼=✲ ◮(Y X × ZY)

◮(comp)✲ ◮(ZX) 1
◮pidq✲ ◮(XX)

FY FX × FZFY

GX,Y ×GY,Z
❄

comp ✲ FZFX

GX,Z
❄

XX

GX,X
❄

pidq ✲

This notion readily generalizes to mixed-variance endofunctors on S.

Remark 2.13. Definition 2.12 is slightly less general than the one given in the conference
version of this paper [4] where local contractiveness simply required FX,Y to be contractive.
The definition given here greatly simplifies the proof of existence of solutions to recursive
domain equations, especially in the general case as presented in Section 8, and at the
same time, the extra requirements used here do not rule out any examples we know of. In
particular, the syntactic conditions for well-definedness of recursive types remain unchanged.

The requirement of G commuting with composition and identity can be rephrased as G
defining an enriched functor. In Section 6 we use this observation to generalise the notion
of locally contractive functor.

For example, ◮ is locally contractive (as witnessed by J (2.1)), and one can show that
the composition of a strong functor and a locally contractive functor (in either order) is
locally contractive (see Lemma 7.3 for a generalized statement). As a result, one can show
that any type expression A(X,Y) constructed from type variables X,Y using ◮ and simple
type constructors in which X occurs only negatively and Y only positively and both only
under ◮ gives rise to a locally contractive functor. Indeed, in Section 4 we present such
syntactic conditions ensuring that a type expression in dependent type theory induces a
locally contractive functor.

10 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

Theorem 2.14. Let F : Sop × S → S be a locally contractive functor. Then there exists a
unique X (up to isomorphism) such that F (X,X) ∼= X.

Section 8 gives a detailed proof of a generalised version of this theorem. Here we just
sketch a proof. We consider first the covariant case.

Lemma 2.15. Let F : S → S be locally contractive and say that f : X → Y is an n-
isomorphism if fi is an isomorphism for all i ≤ n. Then F maps n-isomorphisms to
n+ 1-isomorphisms for all n.

Since any morphism f : X → Y is a 0-isomorphism Fn(f) : FnX → FnY is an n-
isomorphism. Consider the sequence

F1 ✛F ! F 21 ✛F
2(!)

F 31 ✛F
3(!)

F 41 . . . (2.2)

The sequence above is a sequence of morphisms and objects in S and so represents a diagram
of sets and functions as in

F (1)(1) ✛F (!)1 F 2(1)(1) ✛F
2(!)1

F 3(1)(1) ✛F
3(!)1

F 4(1)(1) ✛ . . .

F (1)(2)

✻

✛F (!)2 F 2(1)(2)

✻

✛F
2(!)2

F 3(1)(2)

✻

✛F
3(!)2

F 4(1)(2)

✻

✛ . . .

F (1)(3)

✻

✛F (!)3 F 2(1)(3)

✻

✛F
2(!)3

F 3(1)(3)

✻

✛F
3(!)3

F 4(1)(3)

✻

✛ . . .

...
...

...
...

(2.3)

By the above observation, Fn(!)k is an isomorphism for k ≤ n, in other words, after k
iterations of F the first k components are fixed by further iterations of F . Intuitively, we
can therefore form a fixed point for F by taking the diagonal of (2.3), i.e, the object whose
k’th component is F k(1)(k). Indeed, in Section 8 we construct this object as the limit of
(2.2).

Any fixed point for such an F must be at the same time an initial algebra and a
final coalgebra: given any fixed point f : FX ∼= X and algebra g : FY → Y a morphism
h : X → Y is a homomorphism iff phq is a fixed point of ξ = λk :X → Y. g ◦Fk ◦ f−1. Since
F is locally contractive, ξ is contractive and so must have a unique fixed point. The case
of final coalgebras is similar.

Thus, S is algebraically compact in the sense of Freyd [15–17] with respect to locally
contractive functors. The solutions to general recursive domain equations can then be
established using Freyd’s constructions.

Example 2.16. Recall the type Str of streams defined concretely in the model in Exam-
ple 2.1. It can be defined in the internal language using Theorem 2.14, namely as the type
satisfying the recursive domain equation

Str ∼= N ×◮ Str .

Write i : N×◮Str → Str for the isomorphism. (Observe that im is nothing but the identity
function.)

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 11

Now, we can define the successor function in the internal language as the fixed point of
the following contractive function F : (Str → Str)→ (Str → Str):

F (f) = λs.let (n, t)⇐ i−1(s)

in i(n + 1, J(nextf)(t))

Note that F is clearly contractive (in the external sense) since the argument f is only used
under next in F (f). Hence F has a fixed point, which is indeed the successor function from
Example 2.1, i.e., succ = fixStr→StrF .

3. Application to Step-Indexing

As an example, we now construct a model of a programming language with higher-order
store and recursive types entirely inside the internal logic of S. There are two points we
wish to make here. First, although the programming language is quite expressive, the
internal model looks—almost—like a naive, set-theoretic model. The exception is that
guarded recursion is used in a few, select places, such as defining the meaning of recursive
types, where the naive approach would fail. Second, when viewed externally, we recover
a standard, step-indexed model. This example therefore illustrates that the topos of trees
gives rise to simple, synthetic accounts of step-indexed models.

All definitions and results in Sections 3.1 to 3.4 are in the internal logic of S. In
Section 3.5 we investigate what these results mean externally.

3.1. Language. The types and terms of Fµ,ref are as follows:

τ ::= 1 | τ1× τ2 | µα.τ | ∀α.τ | α | τ1→ τ2 | ref τ

t ::= x | l | () | (t1, t2) | fst t | snd t | fold t | unfold t |

Λα.t | t [τ] | λx.t | t1 t2 | ref t | !t | t1 := t2

(The full term language also includes sum types, and can be found in Appendix A.) Here l
ranges over location constants, which are encoded as natural numbers.

More explicitly, the sets OType and OTerm of possibly open types and terms are defined
by induction according to the grammars above (using that toposes model W -types [28]),
and then by quotienting with respect to α-equivalence.

The set OValue of syntactic values is an inductively defined subset of OTerm:

v ::= x | l | () | (v1, v2) | fold v | Λα.t | λx.t

Let Term and Value be the subsets of closed terms and closed values, respectively. Let
Store be the set of finite maps from natural numbers to closed values; this is encoded as
the set of those finite lists of pairs of natural numbers and closed values that contain no
number twice. Finally, let Config = Term× Store.

The typing judgements have the form Ξ | Γ ⊢ t : τ where Ξ is a context of type variables
and Γ is a context of term variables. The typing rules are standard and can be found in
Appendix A. Notice, however, that there is no context of location variables and no typing
judgement for stores: we only need to type-check terms that can occur in programs.

12 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

3.2. Operational semantics. We assume a standard one-step relation step : P(Config ×
Config) on configurations by induction, following the usual presentation of such relations
by means of inference rules (see, e.g., the online appendix to [13]). For simplicity, allocation
is deterministic: when allocating a new reference cell, we choose the smallest location not
already in the store. Notice that the step relation is defined on untyped configurations.
Erroneous configurations are “stuck.”

So far, we have defined the language and operational semantics exactly as we would in
standard set theory. Next comes the crucial difference. We use Theorem 2.9 to define the
predicate eval : P(Term × Store× P(Value × Store)),

eval(t, s,Q)
def
⇐⇒ (t ∈ Value ∧ Q(t, s)) ∨

(∃t1 : Term, s1 : Store.
step((t, s), (t1, s1)) ∧ ✄ eval(t1, s1, Q))

Intuitively, the predicate Q is a post-condition, and eval(t, s,Q) is a partial correctness
specification, in the sense of Hoare logic, meaning the following: (1) The configuration (t, s)
is safe, i.e., it does not lead to an error. (2) If the configuration (t, s) evaluates to some
pair (v, s′), then at that point in time (v, s′) satisfies Q. We shall justify this intuition in
Section 3.5 below. The use of ✄ ensures that the predicate is well-defined; in effect, we
postulate that one evaluation step in the programming language actually takes one unit of
time in the sense of the internal logic. As we shall see below, this “temporal” semantics is
essential in the proof of the fundamental theorem of logical relations.

Notice how guarded recursion is used to give a simple, coinduction-style definition of
partial correctness. The Löb rule can then be conveniently used for reasoning about this
definition. For example, the rule gives a very easy proof that if (t, s) is a configuration that
reduces to itself in the sense that step((t, s), (t, s)) holds, then eval(t, s,Q) holds for any
Q. The Löb rule also proves the following results, which are used to show the fundamental
theorem below.

Proposition 3.1. Let Q,Q′ ∈ P(Value× Store) such that Q ⊆ Q′. Then for all t and s we
have that eval(t, s,Q) implies eval(t, s,Q′).

Proposition 3.2. For all stores s, all terms t, all evaluation contexts E such that E[t]
is closed, and all predicates Q ∈ P(Value × Store), we have that eval(E[t], s,Q) holds iff
eval(t, s, λ(v1, s1). eval(E[v1], s1, Q)) holds.

3.3. Definition of Kripke worlds. The main idea behind our interpretation of types is
as in [5, 8]: Since Fµ,ref includes reference types, we use a Kripke model of types, where a
semantic type is defined to be a world-indexed family of sets of syntactic values. A world is a
map from locations to semantic types. This introduces a circularity between semantic types
T and worlds W, which can be expressed as a pair of domain equations: W = N →fin T
and T =W →mon P(Value).

Rather than solving the above stated domain equations exactly, we solve a guarded
variant. More precisely, we define the set

T̂ = µX. ◮((N →fin X)→mon P(Value)) .

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 13

Here N →fin X is the set
∑

A :Pfin(N)X
A where Pfin(N) = {A ⊂ N | ∃m∀n ∈ A.n < m}.

The set
∑

A :Pfin(N)X
A is ordered by graph inclusion and →mon is the set of monotonic

functions realized as a subset type on the function space.

The type T̂ can be seen to be well-defined as a consequence of the theory of Section 4,
in particular Proposition 4.10. Alternatively, observe that the corresponding functor is of
the form F = ◮ ◦G. Here G is strong because its action on morphisms can be defined as a
term Y X → GY GX in the internal logic. Now, since ◮ is locally contractive so is F . Hence

by Theorem 2.14, F has a unique fixed point T̂ , with an isomorphism i : T̂ → F (T̂). We
define

W = N →fin T̂ , T =W →mon P(Value) ,

and T c =W → P(Term). Notice that T̂ is isomorphic to ◮ T . We now define app: T̂ → T

and lam: T → T̂ as follows. First, app is the isomorphism i composed with the operator
d : ◮ T → T given by

d(f) = λw.λv.succ(J(J(f)(nextw))(next v)),

where J is the map in (2.1) and succ: ◮Ω→ Ω is as defined on page 6. (This is a general
way of lifting algebras for ◮ to function spaces.) Here one needs to check that d is well-

defined, i.e., preserves monotonicity. Second, lam: T → T̂ is defined by lam = i−1 ◦ nextT .
Define ✄ : T → T as the pointwise extension of ✄ : Ω→ Ω, i.e., for ν ∈ T , w ∈ W and

v ∈ Value, we have that (✄ ν)(w)(v) holds iff ✄(ν(w)(v)) holds.

Lemma 3.3. app ◦ lam = ✄ : T → T .

3.4. Interpretation of types. Let TVar be the set of type variables, and for τ ∈ OType,
let TEnv(τ) = {ϕ ∈ TVar→fin T | FV(τ) ⊆ dom(ϕ) }. The interpretation of programming-
language types is defined by induction, as a function

[[·]] :
∏

τ∈OType

TEnv(τ)→ T .

We show some cases of the definition here; the complete definition can be found in Appen-
dix A.2.

[[α]]ϕ = ϕ(α)

[[τ1 × τ2]]ϕ = λw. {(v1, v2) | v1 ∈ [[τ1]]ϕ(w) ∧ v2 ∈ [[τ2]]ϕ(w)}

[[ref τ]]ϕ = λw. { l | l ∈ dom(w) ∧ ∀w1 ≥ w. app(w(l))(w1) = ✄([[τ]]ϕ)(w1) }

[[∀α.τ]]ϕ = λw. {Λα.t | ∀ν ∈ T .∀w1 ≥ w. t ∈ comp([[τ]]ϕ[α 7→ ν])(w1) }

[[µα.τ]]ϕ = fix (λν. λw. { fold v | ✄(v ∈ [[τ]]ϕ[α 7→ ν] (w))})

[[τ1→ τ2]]ϕ = λw. {λx.t | ∀w1 ≥ w.∀v ∈ [[τ1]]ϕ(w1). t[v/x] ∈ comp([[τ2]]ϕ)(w1) }

Here the operations comp : T → T c and states :W → P(Store) are given by

comp(ν)(w) = { t | ∀s ∈ states(w). eval (t, s, λ(v1, s1).∃w1 ≥ w.
v1 ∈ ν(w1) ∧ s1 ∈ states(w1)) }

states(w) = { s | dom(s) = dom(w) ∧
∀l ∈ dom(w). s(l) ∈ app(w(l))(w) }.

14 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

Notice that this definition is almost as simple as an attempt at a naive, set-theoretic
definition, except for the two explicit uses of ✄. In the definition of [[µα.τ]], the use of ✄
ensures that the fixed point is well-defined according to Theorem 2.9. As for the definition
of [[ref τ]], the ✄ is needed because we have ✄ instead of the identity in Lemma 3.3. In both
cases, the intuition is the usual one from step-indexing: since an evaluation step takes a
unit of time, it suffices that a certain formula only holds later.

Proposition 3.4 (Fundamental theorem). If ⊢ t : τ , then for all w ∈ W we have t ∈
comp([[τ]]∅)(w).

Proof. To show this, one first generalizes to open types and open terms in the standard
way, and then one shows semantic counterparts of all the typing rules of the language. See
Appendix A.3. To illustrate the use of ✄, we outline the case of reference lookup: ⊢ !t : τ .
Here the essential proof obligation is that v ∈ [[ref τ]]∅(w) implies !v ∈ comp([[τ]]∅)(w). To
show this, we unfold the definition of comp. Let s ∈ states(w) be given; we must show

eval(!v, s, λ(v1, s1).∃w1 ≥ w. v1 ∈ [[τ]]∅(w1) ∧ s1 ∈ states(w1)) . (3.1)

By the assumption that v ∈ [[ref τ]]∅(w), we know that v = l for some location l such that l ∈
dom(w) and app(w(l))(w1) = ✄([[τ]]∅)(w1) for all w1 ≥ w. Since s ∈ states(w), we know that
l ∈ dom(s) = dom(w) and s(l) ∈ app(w(l))(w). We therefore have step((!v, s), (s(l), s)).
Hence, by unfolding the definition of eval in (3.1) and using the rules from Proposition 2.7,
it remains to show that ∃w1 ≥ w. ✄(s(l) ∈ [[τ]]∅(w1)) ∧ ✄(s ∈ states(w1)). We choose
w1 = w. First, s ∈ states(w) and hence ✄(s ∈ states(w)). Second, s(l) ∈ app(w(l))(w) =
✄([[τ]]∅)(w), which means exactly that ✄(s(l) ∈ [[τ]]∅(w)).

3.5. The view from the outside. We now return to the standard universe of sets and
give external interpretations of the internal results above. One basic ingredient is the fact
that the constant-presheaf functor ∆ : Set → S commutes with formation of W -types.
This fact can be shown by inspection of the concrete construction of W -types for presheaf
categories given in [28].

Let OType′ and OTerm′ be the sets of possibly open types and terms, respectively,
as defined by the grammars above. Similarly, let Value′, Store′, Config′, and step′ be the
external counterparts of the definitions from the previous sections.

Proposition 3.5. OType ∼= ∆(OType′), and similarly for OTerm, Value, Store, and
Config. Moreover, under these isomorphisms step corresponds to ∆step′ as a subobject
of Config× Config.

This result essentially says that the external interpretation of the step relation is world-
independent, and has the expected meaning: for all n we have that n |= step((t′, s′), (t′, s′))
holds iff (t, s) actually steps to (t′, s′) in the standard operational semantics. We next
consider the eval predicate:

Proposition 3.6. n |= eval(t, s,Q) iff the following property holds: for all m < n, if (t, s)
reduces to (v, s′) in m steps, then (n−m) |= Q(v, s′).

Using this property and the forcing semantics from Section 2.4, one obtains that the
external meaning of the interpretation of types is a step-indexed model in the standard sense.
In particular, note that an element of P(Value)(n) can be viewed as a set of pairs (m, v) of
natural numbers m ≤ n and values which is downwards closed in the first component.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 15

3.6. Discussion. For simplicity, we have just considered a unary model in this extended
example; we believe the approach scales well both to relational models and to more sophisti-
cated models for reasoning about local state [2, 7, 12]. In particular, we have experimented
with an internal-logic formulation of parts of [7], which involve recursively defined relations
on recursively defined types.

As mentioned above, the operational semantics of this example was for simplicity chosen
to be deterministic. We expect that one can easily adapt the approach presented here to
non-deterministic languages. For that, the evaluation predicate must be changed to quantify
universally (rather than existentially) over computation steps, and errors must explicitly be
ruled out, as in:

eval′(t, s,Q)
def
⇔ (t ∈ Value→ Q(t, s)) ∧ ¬error(t, s) ∧

(∀t1 : Term, s1 : Store.
step((t, s), (t1, s1))→ ✄ eval′(t1, s1, Q)).

As mentioned in the Introduction, in [5] the recursive equation for T was solved in the
category CBUlt of ultrametric spaces. Using the space T the model was then defined in the
usual universe of sets in the standard, explicit step-indexed style. Here instead we observe
that the relevant part of CBUlt is a full subcategory of S (Section 5), solve the recursive
equation in S, and then stay within S to give a simpler model that does not refer to step
indices. In particular, the proof of the fundamental theorem is much simpler when done in
S.

4. Dependent Types

Since S is a topos it models not only higher-order logic over simple type theory, but also
over dependent type theory. The aim of this section is to provide the semantic foundation
for extending the dependent type theory with type constructors corresponding to ◮ and
guarded recursive types, although we postpone a detailed syntactic formulation of such a
type theory to a later paper.

Recall that dependent types in context are interpreted in slice categories,5 in particular a
type Γ ⊢ A is interpreted as an object of S/[[Γ]]. To extend the interpretation of dependent
type theory with a type constructor corresponding to ◮, we must therefore extend the
definition of ◮ to slice categories.

4.1. Slice categories concretely. Before defining ◮I : S/I → S/I we give a concrete
description of the slice categories S/I.

We first recall the construction of the category of elements for presheaves over partial

orders. For B a partial order, we write B̂ for the category of presheaves over B, i.e., category
of functors and natural transformations from Bop to Set.

Definition 4.1. Let B be a partially ordered set and let X be a presheaf over B. Define
the partially ordered set of elements of X as

∫
X = {(b, x) | b ∈ B ∧ x ∈ X(b)} with order

defined as (b, x) ≤ (c, y) iff b ≤ c and y|b = x.

5For now we follow the practise of ignoring coherence issues related to the interpretation of substitution
in codomain fibrations since there are various ways to avoid these issues, e.g. [19]. See the end of the section
for more on this issue.

16 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

Note that if one applies this construction to an object X of S one gets a forest
∫
X:

the roots are the elements of X(1) the children of the roots are the elements of X(2) and
so on. Indeed any forest is of the form

∫
X for some X in S.

Proposition 4.2. Let B be a partially ordered set and let I be a presheaf over B. Then

B̂/I ≃
∫̂
I.

Proof. This is a standard theorem of sheaf theory [27, Ex. III.8], and we just recall one

direction of the equivalence. An object pX : X → I of the slice category B̂/I corresponds

to the presheaf that maps (b, i) ∈
∫
I to (pX)b

−1(i).

Thus we conclude that the slices of S are of the form presheaves over a forest.

4.2. Generalising ◮ to slices. There is a simple generalisation of the ◮ functor from S
to presheaves over any forest

∫
I: if X is a presheaf over

∫
I then

◮I X(n, i) =

{
1 if n = 1
X(n − 1, i|n−1) if n > 1

In Section 8 we shall see how to generalise this even further.
The map nextX : X → ◮I X is represented by the following natural transformation in∫̂

I:

next(1,i)(x) = ∗

next(n+1,i)(x) = x|(n,i|n)

The fixed point combinator also generalizes to slices. Indeed, if f : X → X in
∫̂
I is

contractive, in the sense that there exists a g : ◮I X → X such that f = g ◦ next, then we
can construct a fixed point of f (i.e., a natural transformation 1→ X) by:

x(1,i) = g(1,i)(∗)
x(n+1,i) = g(n+1,i)(x(n,i|n)).

This construction generalises to a fixed point combinator fixX : (◮I X → X)→ X satisfying
the properties of the global fixed point operator described in Theorem 2.4.

Proposition 4.3. Let pY : Y → I be an object of S/I. There is a map ◮I Y → ◮Y making
the diagram below a pullback.

◮I Y ✲ ◮Y

I

p◮I Y
❄ next✲ ◮ I

◮ pY
❄

One could have also taken the pullback diagram of Proposition 4.3 as a definition of ◮I ,
and indeed we do so in our axiomatic treatment of models of guarded recursion in Section 6.

The definition above allows us to consider ◮ as a type constructor on dependent types,
interpreting [[Γ ⊢ ◮A]] = ◮[[Γ]]([[Γ ⊢ A]]). The following proposition expresses that this in-
terpretation of ◮ behaves well wrt. substitution.

Proposition 4.4. For every u : J → I in S there is a natural isomorphism u∗◦◮I
∼= ◮J ◦u

∗.
As a consequence, the collection of functors (◮I)I∈S define a fibred endofunctor on the
codomain fibration. Moreover, next defines a fibred natural transformation from the fibred
identity on the codomain fibration to ◮.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 17

We remark that each ◮I has a left adjoint, but in Section 6.1 we prove that this family
of left adjoints does not commute with reindexing. As a consequence, it does not define a
well-behaved dependent type constructor.

4.3. Recursive dependent types. Since the slices of S are cartesian closed, the notions
of strong functors and locally contractive functors from Definition 2.12 also make sense in
slices. Thus we can formulate a version of Theorem 2.14 generalised to all slices of S. The
next theorem does that, and further generalises to parametrized domain equations, a step
necessary for modelling nested recursive types.

For the statement of the theorem recall the symmetrization F̃ : (Cop ×C)n → Cop ×C

of a functor F : (Cop × C)n → C defined as F̃ (~X, ~Y) = 〈F (~Y , ~X), F (~X, ~Y)〉.

Theorem 4.5. Let F : ((S/I)op × S/I)n+1 → S/I be strong and locally contractive in the
(n+ 1)th variable pair. Then there exists a unique (up to isomorphism)

FixF : ((S/I)op × S/I)n → S/I

such that F ◦ 〈id, ˜FixF 〉 ∼= FixF . Moreover, if F is locally contractive in all variables, so
is FixF .

We postpone the proof of this theorem to Section 8, where we prove the existence of
solutions to recursive domain equations for a wider class of categories and functors.

One can prove that the fixed points obtained by Theorem 4.5 are initial dialgebras in
the sense of Freyd [15–17]. This universal property generalises initial algebras and final coal-
gebras to mixed-variance functors, and can be used to prove mixed induction / coinduction
principles [31].

The formation of recursive types is well-behaved wrt. substitution:

Proposition 4.6. If

((S/I)op × S/I)n+1 F✲ S/I

((S/J)op × S/J)n+1

u∗
❄

G✲ S/J

u∗

❄

commutes up to isomorphism, so does

((S/I)op × S/I)n
FixF✲ S/I

((S/J)op × S/J)n

u∗

❄ FixG✲ S/J

u∗

❄

For the moment, our proof of Proposition 4.6 is conditional on the existence of unique
fixed points, i.e., we prove that if FixF and FixG exist, then they make the required
diagram commute up to isomorphism.

Proof. Note that FixG ◦ u∗ is the unique H up to isomorphism such that

G(u∗(~X, ~Y), H̃(~X, ~Y))) ∼= H(~X, ~Y).

18 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

Now,

G(u∗(~X, ~Y), (˜(u∗ ◦ FixF)(~X, ~Y))) ∼= G(u∗(~X, ~Y), u∗(F̃ixF (~X, ~Y)))

∼= u∗(F (~X, ~Y , F̃ixF (~X, ~Y)))

∼= u∗F̃ixF (~X, ~Y))

and so we conclude u∗FixF (~X, ~Y) ∼= FixG(u∗(~X, ~Y))

4.4. A higher order dependent type theory with guarded recursion. In this section
we sketch a type theory for guarded recursive types in combination with dependent types
and explain how it can be interpreted soundly in S. Since the type theory is an extension
of standard higher-order dependent type theory, which can be interpreted in any topos, we
focus on the extension to guarded recursion, and refer to [23] for details on dependent higher-
order type theory and its interpretation in a topos. This section is meant to illustrate how
the semantic results above can be understood type theoretically; we leave a full investigation
of the syntactic aspects of the type theory to future work.

Recursive types are naturally formulated using type variables, and thus we allow types
to contain type variables. Hence our type judgements live in contexts Γ that can be formed
using the rules below

() : Ctx

Γ ⊢ τ : Type

(Γ, x : τ) : Ctx

Γ : Ctx

(Γ,X : Type) : Ctx

Type variables can be introduced as types using the rule

Γ : Ctx
X : Type ∈ Γ

Γ ⊢ X : Type

The exchange rule of dependent type theory should be extended to allow a type variable X
to be exchanged with a term variable x : σ if X does not appear in σ.

Dependent products and sums and subset types are added to the type theory in the
usual way [23], but we also add a special type constructor called ◮ which acts as a functor.
The rules are

Γ ⊢ τ : Type

Γ ⊢ ◮ τ : Type

Γ ⊢M : σ → τ

Γ ⊢ ◮(M) : ◮σ → ◮ τ
and the external equality rules include equations expressing the functoriality of ◮. More-
over, we add, for each pair of types σ, τ in the same context, a term of type ◮σ × ◮ τ →
◮(σ×τ) plus equations stating that this is inverse to 〈◮(π1),◮(π2)〉 : ◮(σ×τ)→ ◮σ×◮ τ .

The natural transformation next is introduced as follows:
Γ ⊢ τ : Type

Γ ⊢ nextτ : τ → ◮ τ

plus equality rules stating that nextτ is natural in τ (i.e., nextσ ◦ u = ◮(u) ◦ nextτ). We
omit term formation rules for fixed point terms.

We now introduce the notion of functorial contractiveness which will be used as a condi-
tion ensuring well-formedness of recursive types. The definition is a syntactic reformulation
of the semantic notion of local contractiveness.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 19

A type τ is functorial in ~X if there is some way to split up the occurences of the variables
~X in τ into positive and negative ones, in such a way that τ becomes a functor expressible

in the type theory. Above, and in the exact definition below we use vectors ~X to denote
vectors of type variables and use ~x : ~σ to denote vectors of typing assumptions of the form

x1 : σ1 . . . xn : σn. An assumption of the form ~f : ~X → ~Y means f1 : X1 → Y1, . . . fn : Xn →
Yn.

Definition 4.7. Let Γ, ~X : Type ⊢ τ : Type be a valid typing judgement. We say that τ is

functorial in ~X if there exists some other type judgement Γ, ~X : Type, ~Y : Type ⊢ τ ′ : Type
and a term

Γ, ~X−, ~Y−, ~X+, ~Y+, ~f : ~X+ → ~X−, ~g : ~Y− → ~Y+ ⊢ st(~f ,~g) : τ ′(~X−, ~Y−)→ τ ′(~X+, ~Y+)

(writing τ ′(~X−, ~Y−) for τ ′[~X−, ~Y−/ ~X, ~Y]) such that τ ′(~X, ~X) = τ , and such that st is

functorial in the sense that st(~id, ~id) = id, st(~f ◦ ~f ′, ~g′ ◦ ~g) = st(~f ′, ~g′) ◦ st(~f,~g).

The definition of τ being contractively functorial in ~X is similar, except that the

strength st(~f,~g) must be defined for ~f : ◮(~X+ → ~X−), ~g : ◮(~Y− → ~Y+). To make sense of
functoriality write f ′ ◦ f for the composite

◮(X → Y)×◮(Y → Z)
∼=✲ ◮((X → Y)× (Y → Z))

◮(comp)✲ ◮(X → Z)

applied to f ′ and f .

Definition 4.8. Let Γ, ~X : Type ⊢ τ : Type be a valid typing judgement. We say that τ is

contractively functorial in ~X if there exists some other type judgement Γ, ~X : Type, ~Y : Type ⊢
τ ′ : Type and a term

Γ, ~X−, ~Y−, ~X+, ~Y+, ~f : ◮(~X+ → ~X−), ~g : ◮(~Y− → ~Y+) ⊢ st(~f ,~g) : τ ′(~X−, ~Y−)→ τ ′(~X+, ~Y+)

such that τ ′(~X, ~X) = τ , and such that st is functorial in the sense that st(~id, ~id) = id,

st(~f ◦ ~f ′, ~g′ ◦ ~g) = st(~f ′, ~g′) ◦ st(~f,~g).

Lemma 4.9. If τ is contractively functorial in ~X then it is also functorial in ~X.

We now give the introduction rule for recursive types

Γ,X : Type ⊢ τ : Type
τ contractively functorial in X

Γ ⊢ µX.τ : Type

As usual, there are associated term constructors foldM and unfoldM that mediate between
the recursive type and its unfolding together with equations expressing that fold and unfold

are each others inverses.
There is a rich supply of types contractively functorial in ~X as can be seen from the

following proposition. Proposition 4.10 is stated compactly, and some of the items in fact
cover two statements. For example, item (4) states that if σ is functorial, so are

∏
i : I σ and∑

i : I σ and if σ is contractively functorial so are
∏

i : I σ and
∑

i : I σ.

Proposition 4.10. Let ~X be type variables and let σ, τ be types

(1) any type variable X is functorial in ~X

(2) if ~X do not appear in σ then σ is contractively functorial in ~X

(3) if σ and τ are both (contractively) functorial in ~X so are σ → τ and σ × τ

20 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

(4) if σ is (contractively) functorial in ~X and ~X do not appear in I then
∏

i : I σ and
∑

i : I σ

are both (contractively) functorial in ~X

(5) If σ is (contractively) functorial in ~X (witnessed by σ′ and stσ) and φ is a predicate on
σ′ such that

φ ~X−,~Y−
(x)→ φ ~X+,~Y+

(st(~f ,~g)(x))

then {x : σ | φ[~X/~Y](x)} is (contractively) functorial in ~X.

(6) If σ is functorial in ~X, then ◮σ is contractively functorial in ~X.

Item (5) uses the notation φ ~X−,~Y−
for φ[~X−, ~Y−/ ~X, ~Y].

Proof. The proof is a standard construction of functors from type expressions, and we just
show a few examples. For (3) if σ′ and τ ′ along with stσ and stτ witness that σ and τ are

functorial, then σ′(~Y , ~X)→ τ ′ along with stσ→τ (~f ,~g) defined as

λh : σ′(~Y−, ~X−)→ τ ′(~X−, ~Y−).stτ (~f ,~g) ◦ h ◦ stσ(~g, ~f)

witness that σ → τ is functorial.
For (4) the assumption gives us a type σ′ plus a term

Γ, i : I, ~X−, ~Y−, ~X+, ~Y+, ~f : ~X+ → ~X−, ~g : ~Y− → ~Y+ ⊢ stσ(~f ,~g) : σ
′(~X−, ~Y−)→ σ′(~X+, ~Y+)

and we can define st∏
i : I σ

(~f,~g) as

λx :
∏

i : I σ
′(~X−, ~Y−).λi : I.stσ(~f ,~g)(x(i))

(This uses the exchange rule mentioned earlier.)

For item 5 the assumption is exactly the condition needed to show that stσ(~f ,~g) restricts
to a term of the type

{x : σ′(~X−, ~Y−) | φ ~X−,~Y−
(x)} → {x : σ′(~X+, ~Y+) | φ ~X+,~Y+

(x)}

To allow for nested recursive types, one needs to prove that if σ is functorial in ~X and

contractively functorial in Y , then µY.σ is functorial in ~X. In the type theory sketched

above this is not provable because in general stµY.σ(~f,~g) is not definable, but as we shall see
when we sketch the interpretation of the type theory, it is safe to add stµY.σ as a constant,
together with appropriate equations, such that nested recursive types can in fact be defined.

Remark 4.11. The rules for well-definedness of recursive types are complicated because of
the subset types, which require explicit mention of the syntactic strength st. Alternatively,
one could give a simple grammar for well-defined recursive types not including subset types,
but including nested recursive types not mentioning st, and then show how to interpret
these by inductively constructing the contractive strength in the model. We chose the
above approach because it is more expressive and because the subset types are needed in
applications as illustrated in Section 3.3.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 21

4.5. Interpreting the type theory. The interpretation of an open type Γ ⊢ σ : Type
is defined modulo an environment mapping the type variables in Γ to semantic types, i.e.,
objects in slice categories. Precisely, if Γ is of the form Γ′,X : Type,Γ′′ then ρ should map
X to an object of S/[[Γ′]]ρ′ where ρ

′ is the restriction of ρ to the type variables of Γ′. The in-
terpretation of open types is defined by induction and most of the cases are exactly as in the
usual interpretation of dependent type theory [23], and we just mention the new cases. The
interpretation of a type variable introduction is defined as [[Γ′,X : Type,Γ′′ ⊢ X : Type]] =
p∗Γ,Γ′(ρ(X)), where pΓ,Γ′ denotes the projection [[Γ]]ρ → [[Γ′]]ρ. The interpretation of ◮ is

defined as [[Γ ⊢ ◮σ : Type]] = ◮[[Γ]]ρ([[Γ ⊢ ◮σ : Type]]).

For the interpretation of recursive types, note that for every type Γ, ~X ⊢ σ : Type

functorial in ~X and every environment ρ mapping the free type variables in Γ to semantic
types, one can define a strong functor of the type

[[σ]]ρ : (S/[[Γ]]ρ
op × S/[[Γ]]ρ)

| ~X | → S/[[Γ]]ρ

as follows. Assuming that the functoriality of σ is witnessed by σ′ and st as in Defini-
tion 4.7, the action of [[σ]]ρ on objects is defined by the interpretation of σ′. Given objects
~A−, ~A+, ~B−, ~B+ of S/[[Γ]]ρ the interpretation of st is a morphism in S/[[Γ]]ρ of the type

A
A+,1

−,1 × · · · ×A
A+,n

−,n ×B
B−,1

+,1 × · · · ×B
B−,n

+,n → [[σ]]ρ(~A+, ~B+)
[[σ]]ρ(~A−, ~B−)

where the products and exponentials are those of the slice S/[[Γ]]ρ. The interpretation of st
defines the strength of [[σ]]ρ, from which the action of [[σ]]ρ on morphisms can be derived in
the usual way.

Similarly, if σ is functorial in the n first type variables and contractively functorial in
the last one then the interpretation of the witness st defines a strong functor which is locally
contractive in the last variable and so we can define [[µX.τ]]ρ = Fix ([[τ]]ρ) using the fixed
point given by Theorem 4.5.

There is a question of well-definedness here, since the fixed point of [[σ]]ρ a priori could
depend on the choice of σ′ and st. The uniqueness of the fixed point of Theorem 4.5,
however, ensures that even for different such choices, the resulting [[σ]]ρ will be isomorphic.
Usually, σ comes with a canonical choice of σ′ and st as given by Proposition 4.10.

As mentioned earlier, for allowing nested recursive types in the type theory we need

to add constants of the form stµY.σ(~f ,~g). Having sketched the interpretation of the type

theory we can now see that it is safe to do so: stµY.σ(~f ,~g) can be interpreted using the
strength of Fix [[σ]]ρ which exists by Theorem 4.5.

4.6. On Coherence. Above, we have worked in the codomain fibration and ignored co-
herence issues, i.e., the fact that the codomain fibration and the associated fibred functors
needed for the interpretation of the type theory are not split. One further advantage of the
concrete representation of slices S/I as presheaves over

∫
I is that the latter gives rise to a

split model. The idea is to form a split indexed category P : S → Catop, with fibre over I

given by P (I) =
∫̂
I, and reindexing P (u : I → J) given by P (u)(X)(n, i) = X(un(i)). By

forming the Grothendieck construction [23] on P one obtains a split fibration Fam(S)→ S
which is equivalent to the codomain fibration. Then one uses this fibration to interpret the
types and terms without free type variables, and uses split fibred functors

(Fam(S)[[Γ]]
op × Fam(S)[[Γ]])

|Θ| → Fam(S)[[Γ]]

22 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

to interpret open types Γ ⊢ τ : Type. Finally, one checks that the fibred constructs (e.g.,
right adjoints to reindexing) used to interpret the dependent type theory are split, and that
◮ and the construction of recursive types is also split. The latter essentially boils down to
observing that the actual construction of initial algebras in Section 8 is done fibrewise and
thus preserved on-the-nose by reindexing. We omit further details.

5. Relation to metric spaces

Let CBUlt be the category of complete bounded ultrametric spaces and non-expansive maps.
In [5–8, 34] only those spaces that were also bisected were used: a metric space is bisected
if all non-zero distances are of the form 2−n for some natural number n ≥ 0. Let BiCBUlt
be the full subcategory of CBUlt of bisected spaces, and let BiUlt be the category of all
bisected ultrametric spaces (necessarily bounded).

Let tS be the full subcategory of S on the total objects.

Proposition 5.1. There is an adjunction between BiUlt and S, which restricts to an
equivalence between tS and BiCBUlt, as in the diagram:

tS
✛
⊤ ✲ S

BiCBUlt

✻

∼=

❄ ✛
⊥✲ BiUlt

F

✻

⊣

❄

Proof sketch. The functor F : BiUlt → S is defined as follows. A space (X, d) ∈ BiUlt gives
rise to an indexed family of equivalence relations by x =n x

′ ⇔ d(x, x′) ≤ 2−n, which can
then be viewed as a presheaf: at index n, it is the quotient X/(=n), see, e.g. [10]. One can
check that F in fact maps into tS and that F has a right adjoint that maps into BiCBUlt .
The right adjoint maps a variable set into a metric space on the limit of the family of
variable sets; the metric expresses up to what level elements in the limit agree. The left
adjoint from BiUlt to BiCBUlt is given by the Cauchy-completion.

Proposition 5.2. A morphism in BiCBUlt is contractive in the metric sense iff it is
contractive in the internal sense of S.

The later operator on S corresponds to multiplying by 1
2 in ultra-metric spaces, except

on the empty space. Specifically, F (12X) is isomorphic to ◮(FX), for all non-empty X. For
ultra-metric spaces, the formulation of existence of solutions to guarded recursive domain
equations has to consider the empty space as a special case. Here, in S, we do not have to
do so, since ◮ behaves better than 1

2 on the empty set.

6. General models of guarded recursive terms

Having presented the specific model S we now turn to general models of guarded recursion.
We give an axiomatic definition of what models of guarded recursion are, and in Section 8
we show that S is just one in a large class of models.

We start by defining a notion of model of guarded recursive terms, and showing that
the class of such models is closed under taking slices. This result is not only of interest

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 23

in its own right, but also needed for showing that the general models of Section 8 model
guarded recursive dependent types.

Definition 6.1. A model of guarded recursive terms is a category E with finite products
together with an endofunctor ◮ : E → E and a natural transformation next: id → ◮ such
that

• for every morphism f : ◮X → X there exists a unique morphism h : 1 → X such that
f ◦ next ◦ h = h.
• ◮ preserves finite limits

Lemma 6.2. If E models guarded recursive terms then ◮ is strong.

Proof. Using next one can define a strength for ◮ as the composite

∼= ◦next× id : X ×◮Y → ◮X ×◮Y → ◮(X × Y) .

The notion of contractive morphism as well as Lemma 2.3 and Theorem 2.4 generalises
directly to the current setting.

Theorem 6.3. If E is a locally cartesian closed model of guarded recursive terms, then so
is every slice of E.

To prove Theorem 6.3 we must first show how to generalise ◮ to slices. We do this by
taking the pullback diagram of Proposition 4.3 as a definition of ◮I X. In other words we
define ◮I as the composite

E/I
◮✲ E/◮ I

next∗✲ E/I (6.1)

where the first functor maps pX : X → I to ◮(pX) : ◮X → ◮ I and the second is given
by pullback along next. Recall that next∗ has a left adjoint

∐
next mapping pY : Y → I

to next ◦ pY and so preserves limits. It is easy to see that also the first functor of (6.1)
preserves finite limits because ◮ does, and thus we have the following:

Lemma 6.4. The functor ◮I : E/I → E/I preserves finite limits.

We define nextI : pY → p◮I Y in the slice over I as indicated in the diagram below

Y

◮I Y ✲

✲

◮Y

next

✲

I

p◮I Y
❄ next✲

p
Y

✲

◮ I

◮ pY
❄

It is easy to show that nextI is a natural transformation.
The following proposition states that ◮ defines a fibred functor and hence can serve as

a type constructor in the dependent type theory of E .

24 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

Proposition 6.5. For every u : J → I in E the following diagram commutes up to isomor-
phism

E/I
◮I✲ E/I

E/J

u∗

❄
◮J✲ E/J .

u∗

❄

As a consequence, the collection of functors (◮I)I∈E define a fibred endofunctor on the
codomain fibration.

Proof. We can write the diagram as a composite as below.

E/I
◮✲ E/◮ I

next∗✲ E/I

E/J

u∗

❄
◮✲ E/◮ J

(◮ u)∗

❄ next∗✲ E/J .

u∗

❄

The square on the left commutes because ◮ preserves pullbacks, the one on the right follows
from the naturality square for next.

Proposition 6.6. The collection of next morphisms defines a fibred natural transformation
from the fibred identity on the codomain fibration to ◮:

E→
id ✲

⇓ next

◮

✲ E
→

E
✛ co

dcod ✲

Proof. A fibred natural transformation between fibred functors is a natural transformation
with vertical components. The components of next are clearly vertical, but we must show
that next defines a natural transformation between the two functors on the total category
E→. So consider a morphism in E→ from Y → I to X → J , and write it as a composition

Y
g✲ f∗X

f̄✲ X

I
❄ f✲

✲

J
❄

of a vertical morphism g and a cartesian morphism f̄ . We must verify naturality diagrams
for next with respect to f̄ and g. Naturality wrt. g is just naturality of next as a functor
E/I → E/I, and naturality wrt. f̄ can be verified by a diagram chase that we omit.

It remains to prove the existence (and uniqueness) of fixed points in slices. We do
that by reducing those to global fixed points. In the next lemma we use internal language
notation, writing

∏
i : I Xi for the functor

E/I

∏
! : I→1✲ E/1

∼=✲ E

applied to an object pX : X → I, where
∏

! : I→1 is the right adjoint to !∗, and using similar
notation for the result of applying the same functor to morphisms.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 25

Lemma 6.7. Suppose that f : pX → pY is a contractive morphism in slice E/I. Then∏
i : I fi :

∏
i : I Xi →

∏
i : I Yi is a contractive morphism in E. As a consequence any con-

tractive endomorphism in E/I has a unique fixed point.

Proof. The assumption gives us a g such that f = g ◦ next and from that we can derive a
factorisation of

∏
i : I fi as

∏
i : I Xi

∏
i : I next✲ ∏

i : I ◮Xi

∏
i : I gi✲ ∏

i : I Yi

To show
∏

i : I fi contractive, it suffices to show commutativity of the triangle

∏
i : I Xi

∏
i : I next✲ ∏

i : I ◮Xi

◮
∏

i : I Xi

✲
next ✲ (6.2)

Writing πi for the term i : I ⊢ λx :
∏

i : I Xi.xi : Xi the adjoint correspondent of (6.2) can
be expressed in the internal language of E as

i : I, x :
∏

i : I Xi ⊢ ◮(πi) ◦ next(x) = next ◦ πi(x) : ◮(Xi)

which is simply naturality of next. This sketch in the internal language can be turned into
a formal diagrammatic argument.

Now, it is easy to see that if f is an endomorphism then there is a bijective correspon-
dence between fixed points of

∏
i : I fi in the global sense, and fixed points of f in the slice.

Proof of Theorem 6.3. We have seen how every slice of E has an endofunctor ◮I and
a natural transformation next: id → ◮I , and we have seen that ◮I preserves finite limits
(Lemma 6.4). Lemma 6.7 gives existence of the needed fixed points.

6.1. A left adjoint to ◮. In our model S, the functor ◮ has a left adjoint ◭ mapping the
presheaf

X(1)← X(2)← X(3)← . . .

to the presheaf
X(2)← X(3)← X(4)←

Moreover, ◭ preserves limits and so ◭ ⊣ ◮ defines a geometric morphism from S to itself,
in fact it is an embedding. Hence ◮I , as defined in (6.1), has a left adjoint ◭I because next

∗

has a left adjoint
∑

next and also ◮ : E/I → E/◮ I has a left adjoint defined by mapping
pX : X → ◮ I to its adjoint correspondent ◭X → I.

Even though ◭ preserves limits, ◭I does not. The simplest counter example is that of
the terminal object idI of E/I which is mapped to the adjoint correpondent prev : ◭ I → I
of next: I → ◮ I. So, in particular, ◭I ⊣ ◮I does not define a geometric morphism.

We choose not to take ◭ as part of the basic structure of a model of guarded recursion
because ◭ in S does not define a fibred functor, and so it cannot be used in an internal
language based on dependent type theory. To see why, observe that if f : J → I then
◭J f

∗(idI) ∼= ◭J(idJ) = prevJ and f∗◭I(idI) = f∗prevI , and these two are in general not
isomorphic.

26 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

Observe also that ◮ does not preserve dependent products, i.e., the diagram

E/J
◮J✲ E/J

E/I

∏
u
❄

◮I✲ E/I .

∏
u

❄

does not in general commute. The reason is that the diagram obtained by taking left
adjoints to all functors above is the diagram stating that ◭ is a fibred functor, which we
have just established does not commute.

6.2. An operation on predicates. We now assume that E is a topos modelling guarded
recursion and we shall see how to obtain the principle of Löb induction in E .

As we have seen, ◮X preserves limits, hence monos, and thus defines a map✄ : Sub(X)→
Sub(X) for all X, which is easily seen to be order preserving. The term nextX verifies that
m ≤ ✄m. As a consequence of Proposition 6.5 this family is natural in X and thus, by
the usual Yoneda argument, it corresponds to an operation on propositions ✄ : Ω→ Ω. We
now embark on proving the following theorem.

Theorem 6.8 (Löb induction). The reasoning principle ∀p : Prop.(✄ p → p) → p is valid
in E.

To prove the theorem, we need a few lemmas. The first describes the action of
✄ : Sub(X)→ Sub(X) as an action on characteristic maps.

Lemma 6.9. Let m : M → X be a mono and let χm : X → Ω be its characteristic map.
Then succ ◦ ◮χm ◦ next is the characteristic map of ✄(m), where succ: ◮Ω → Ω is the
characteristic map of the mono ◮⊤ : ◮ 1→ ◮Ω.

Proof. Consider the diagram

✄m ✲ ◮M ✲ ◮ 1 ✲ 1

X
❄ next✲ ◮X

◮m
❄ ◮χm✲ ◮Ω

◮⊤
❄ succ✲ Ω .

⊤
❄

All the squares are pullbacks, and so also the outer square is a pullback, which proves the
lemma.

Subobjects of X correspond to morphisms X → Ω which in turn correspond to global
elements of ΩX . As a consequence of Lemma 6.9, the operation ✄ on subobjects corresponds
to composing the global elements with the morphism ΩX → ΩX mapping χm to succ◦◮χm◦
next. Since this morphism is contractive, it has a unique fixed point.

Corollary 6.10. Let m be a subobject of X. If ✄(m) ≤ m then m is the maximal subobject.

Proof of Theorem 6.8. The principle is proved using Joyal-Kripke semantics, see [26,
Thm 8.4]. Using items (7) and (6) of the referenced theorem, it suffices to show that for
any X and any f : X → Ω, if the map λx :X. ✄ f(x) → f(x) factors through ⊤ : 1 → Ω,
then so does f . Expressing this using subobjects rather than representable maps, we must
show that, for any subobject m of X, if ✄m→ m is the maximal subobject, then so is m.
But ✄m→ m is maximal iff ✄m ≤ m, and so the principle follows from Corollary 6.10.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 27

7. General models of guarded recursive types

In this section we formulate the most general existence theorem for recursive types in models
of guarded recursion. Moreover, we reduce the problem of solving general recursive domain
equations to that of solving covariant domain equations using the uniqueness of fixed points
in combination with Freyd’s theory of algebraic compactness [15–17].

Note first that Definition 2.12 of locally contractive functor on our concrete model S,
carries over verbatim to general cartesian closed models E of guarded recursive terms.

Definition 7.1. A model of guarded recursive types is a cartesian closed model of guarded
recursive terms (in the sense of Definition 6.1) E such that every locally contractive functor
F : E → E has a fixed point (up to isomorphism). A model of guarded recursive dependent
types is a locally cartesian closed category whose slices all are models of guarded recursive
types.

As a justification of the above definition we shall prove that fixed points for locally con-
tractive covariant functors give fixed points of general (locally contractive) mixed variance
functors. In fact, we state and prove this not only for functors on E , but, more generally,
for functors on E-enriched categories. This is in line with classical work on recursive types
in O-categories [35] (categories enriched in complete partial orders) and more recent work
on recursive types inM -categories [9] (categories enriched in complete bounded ultrametric
spaces).

Recall that an E-enriched category C is a collection of objects together with for each
pair of objects X,Y of C an E-object HomC(X,Y) together with composition morphisms
HomC(X,Y)× HomC(Y,Z) → HomC(X,Z) and morphisms pidXq : 1 → HomC(X,X) sat-
isfying commutative diagrams corresponding to the rules for morphism composition in cat-
egory theory [24]. To each enriched category C we can associate a category in the usual
sense with the same objects as C and set of morphisms from X to Y all E-morphisms from 1
to HomC(X,Y). This category is called the externalisation of C. Given a category C in the
usual sense, we say that it is E-enriched if there exists an E-enriched category whose exter-
nalisation is C. Any cartesian closed category C is self-enriched: one can take HomC(X,Y)
to be the exponent Y X .

The notion of locally contractive functor readily generalises to E-enriched categories:
if C is E-enriched consider the E-enriched category ◮C with the same objects as C, hom-
objects Hom

◮C(X,Y) = ◮HomC(X,Y), composition given as the composite

◮HomC(X,Y)×◮HomC(Y,Z) ∼= ◮(HomC(X,Y)×HomC(Y,Z))
◮(comp)✲ ◮HomC(X,Z)

and identity as next ◦ pidq : 1 → ◮HomC(X,X). Note that ◮(C× D) ∼= ◮C × ◮D and

◮(C
op) ∼= (◮C)

op. The natural transformation next defines an enriched functor [24] C →

◮C whose action on objects is the identity and whose action on morphisms is given by
next: HomC(X,Y)→ ◮HomC(X,Y).

Definition 7.2. An enriched functor F : D → C is locally contractive if it factors as a
composition of enriched functors

D
next✲

◮D ✲ C

Specialising Definition 7.2 to the case of S as self-enriched gives Definition 2.12.

Lemma 7.3.

28 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

(1) If F : B→ C and G : C→ D are enriched functors and either F or G is locally contrac-
tive also GF is locally contractive.

(2) If F : C→ D and G : C′ → D′ are locally contractive, so is F ×G : C×C′ → D× D′.
(3) Let H : B × C → D be enriched and suppose the enriched functor category DC exists.

Then H is locally contractive in the first variable iff Ĥ : B→ DC is locally contractive.

Definition 7.4. An E-enriched category C is contractively complete if any locally contrac-
tive functor F : C→ C has a fixed point, i.e., an object X such that FX ∼= X.

The isomorphism FX ∼= X is an isomorphism in the externalisation of C. Similarly,
the notation f : X → Y always refers to morphisms in the external version of C.

We can now state the main theorem. It uses the symmetrization of G̃ of a mixed
variance functor G defined in Section 4.3. The proof follows after a brief series of lemmas.

Theorem 7.5. Let E be a model of guarded recursive terms, C be E-enriched and contrac-
tively complete, and let F : (Cop×C)n+1 → C be locally contractive in the (n+1)th variable
pair. Then there exists a unique (up to isomorphism) FixF : (Cop × C)n → C such that

F ◦〈id, F̃ixF 〉 ∼= FixF . Moreover, if F is locally contractive in all variables, so is FixF . In
particular, the above statement holds for C= E if E is a model of guarded recursive types.

Lemma 7.6. Let C be E-enriched and let F : C → C be a locally contractive functor. If
X ∼= F (X), then the two directions of the isomorphism give an initial algebra structure and
a final coalgebra structure for F on X. In particular, if F (X) ∼= X and F (Y) ∼= Y , then
X ∼= Y .

Proof. Given an isomorphism f : FX → X and some other algebra g : FZ → Z, h : X → Z
is an algebra homomorphism iff the diagram

FX
Fh✲ FZ

X

f−1
✻

h✲ Z

g
❄

commutes, i.e., iff h is a fixed point of the map h 7→ g ◦ F (h) ◦ f−1, which is a contractive
endomorphism on HomC(X,Z) (as F is locally contractive). Since this map has exactly
one fixed point, we conclude that there is exactly one algebra homomorphism from f to g.
The argument for final coalgebras is similar.

There is also a morphism in E computing the unique mediating homomorphism from
the initial algebra.

Lemma 7.7. Let C and F be as in Lemma 7.6, and let f : FX → X be an isomor-
phism. For any Z there exists a morphism k : HomC(FZ,Z) → HomC(X,Z) such that
∀g : HomC(FZ,Z).k(g) ◦ f = g ◦ F (k(g)) holds in the internal language of E.

Proof. Define k to be the fixed point of the map HomC(FZ,Z)×HomC(X,Z)→ HomC(X,Z)
mapping g, h to g ◦ Fh ◦ f−1.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 29

Lemma 7.8. Let C,D be E-enriched categories and let F : D × C → C be enriched and
locally contractive in the second variable. If the functor F (X,−) : C → C has an initial
algebra for all X in D, then there is an E-enriched functor µF : D → C mapping X to the
carrier of the initial algebra. If, moreover, F is locally contractive in the first variable, then
µF is locally contractive.

Proof. The functor µF is defined (as is standard) to map f : X → Y to the unique µF (f)
making the diagram

F (X,µF (X)) ✲ µF (X)

F (X,µF (Y))

F (X,µF (f))
❄ F (f, id)✲ F (Y, µF (Y)) ✲ µF (Y)

µF (f)
❄

(7.1)

commute. Now, the enrichment of µF is obtained by composing the morphism HomD(X,Y)→
HomC(F (X,µF (Y)), µF (Y)) mapping f to the composite in the bottom line of (7.1) with
the morphism of Lemma 7.7. In the case of F being locally contractive in both variables,
the first stage of this composite morphism is contractive and so µF becomes locally con-
tractive.

Recall that an initial dialgebra for G : Cop × C→ C is an initial algebra of G̃ [15–17].

Lemma 7.9. Let C be E-enriched and G : Cop × C → C be a locally contractive functor.
If G(X,Y) ∼= Y and G(Y,X) ∼= X then the pair (X,Y) together with the isomorphisms
constitute an initial dialgebra for G. In particular (X,Y) is unique up to isomorphism with
this property. Moreover X ∼= Y .

Proof. If G is locally contractive, so is G̃. Thence Lemma 7.6 proves that (X,Y) is an
initial dialgebra. To show X ∼= Y note that the hypothesis of the lemma is symmetric in
X and Y , so we may apply what we have just proved to conclude that (Y,X) is an initial
dialgebra. By uniqueness of initial dialgebras (X,Y) ∼= (Y,X).

We can now give the promised proofs of the main theorem and proposition in this
section.

Proof of Theorem 7.5. Consider first the case of n = 0. Recall the functor µF : Cop → C

from Lemma 7.8 mappingX to the unique fixed point of F (X,−). Define Z to be the unique
fixed point of the functor X 7→ F (µF (X),X) and define W = µF (Z). Then F (W,Z) =
F (µF (Z), Z) ∼= Z and F (Z,W) = F (Z, µF (Z)) ∼= µF (Z) = W , and so Lemma 7.9 applies
giving the unique solution to F and proving that W ∼= Z.

In the general case of n 6= 0, Lemma 7.8 applies to give the functor FixF .

The statement and proof of Proposition 4.6 carries over verbatim from the case of S to
the general case of E a model of guarded recursive dependent types.

8. A class of models of guarded recursion

The aim of this section is to establish a large class of models of guarded recursive dependent
types including our main example, the topos S. This involves showing existence of fixed
points for locally contractive functors. The special case of S, together with the results of
Section 7, prove Theorem 4.5.

30 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

The class of models we consider are sheaves over a complete Heyting algebra with a
well-founded basis. In this section we assume some familiarity with the basics of complete
Heyting algebras and sheaves over such [27].

Definition 8.1. A partial order A is well-founded if there are no infinite descending se-
quences a0 > a1 > a2 > . . .

Here a > a′ means a ≥ a′ and a 6= a′ as usual. Note that any forest is well-founded.

Definition 8.2. Let A be a partial order and let K ⊆ A. Then K is a basis for A if each
a ∈ A is a least upper bound of all the base elements below it, i.e. a =

∨
{k ∈ K | k ≤ a}.

Example 8.3. If K is a well-founded partial order then the ideal completion Idl(K) con-
sisting of down-closed subsets of K is a complete Heyting algebra and the set {↓ k | k ∈ K},
where ↓ k = {k′ ∈ K | k′ ≤ k} is a well-founded basis.

In the following we reserve a’s and b’s for elements of A and k’s for elements in K. A
sieve B on a in A is just a downward closed subset of {b ∈ A | b ≤ a} and it is covering
if
∨
B = a. If A is a complete Heyting algebra then this defines a Grothendieck topology,

and the corresponding category Sh(A) of sheaves is the full subcategory of presheaves X
such that (X(

∨
B) → X(b))b∈B is a limiting cone for all B ⊆ A. We recall the following

well-known fact.

Proposition 8.4. If A is a partial order then Sh(Idl(A)) ≃ Â.

Proof. The equivalence maps X in Â to λB. limb∈B X(b) (we shall write X̄ for this sheaf)
and Y in Sh(Idl(A)) to λa.Y (↓ a).

Collectively Proposition 8.4 and Example 8.3 state that the general class of models we

consider include all toposes of the form Â for A a well-founded partial order, in particular
all slices of S.

Theorem 8.5. Let A be a complete Heyting algebra with a well-founded base. Then Sh(A)
is a model of guarded recursive dependent types. In particular S and indeed any topos of the

form Â for A a well-founded partial order is a model of guarded recursive dependent types.

Di Gianantonio and Miculan [10] essentially prove that Sh(A) is a model of guarded
recursive terms if A is the set of opens of a topological space with a well-founded basis; here
we extend their results to guarded recursive types and, moreover, consider more general
models (not necessarily arising from topological spaces).

Theorem 8.6. Let A be a complete Heyting algebra with a well-founded basis and let C be
a Sh(A)-enriched category. If C is complete (precisely, the externalisation of C is complete
in the usual sense) then it is contractively complete.

Note that the notion of completeness assumed for C above is the usual one (rather than
the enriched notion of completeness).

In the remainder of this section we prove Theorems 8.6 and 8.5. We start by showing
that Sh(A) models guarded recursive terms.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 31

8.1. Modelling recursive terms. Following [10] we give the following definition.

Definition 8.7. Define the predecessor map p : A→ A by

p(a) =
∨
{k ∈ K | k < a} .

The predecessor map induces an endofuntor on the category of presheaves on A; follow-

ing standard notation, we write p∗ : Â→ Â for this functor, defined by p∗(X) = X ◦ p. We
define ◮ : Sh(A)→ Sh(A) by ◮X = a(p∗X), where a is the associated sheaf functor. Define
nextpre : X → p∗X by nextprea (x ∈ X(a)) = x|p(a) and define next = a(nextpre) : X → ◮X
for all sheaves X.

Note that
next = η ◦ nextpre (8.1)

where η is the unit of the adjunction a ⊣ I, with I : Sh(A) → Â the inclusion of sheaves
into presheaves. This can be seen by applying a to both sides of the equation since a fixes
maps between sheaves and because a(η) is the identity.

Remark 8.8. The use of the associated sheaf functor a in the definition of ◮ is necessary,
because p∗X needs not be a sheaf. Consider, for example, the situation where A is the
powerset of a 2-element set {a, b}. Then a sheaf is a presheaf X such that X(∅) = 1 and
X({a, b}) = X({a}) ×X({b}). The map p is

p(∅) = ∅ p({a}) = ∅

p({b}) = ∅ p({a, b}) = {a, b}

So p∗X({a, b}) = X({a, b}), but p∗X({a}) = p∗X({b}) = 1, in particular p∗X is in general
not a sheaf. On the other hand ◮X = 1.

Lemma 8.9. The functor ◮ preserves finite limits.

We will now show that the above definition of ◮ generalises the definition of ◮ from
Section 4.2 on slices of S, see Proposition 8.11 below. For that we first need a lemma:

Lemma 8.10. Let A be a partial order. The composite

Îdl(A)
a✲ Sh(Idl(A))

≃✲ Â

maps P to λb.P (↓ b). In other words aP (↓ b) = P (↓ b).

Proof. Since a is left adjoint to the inclusion, the composite sought for is left adjoint to
the functor P 7→ P̄ , and it is easy to check that the functor of the lemma satisfies this
condition.

Proposition 8.11. Let I be an object of S. The composite

∫̂
I ≃ Sh(Idl(

∫
I))

◮✲ Sh(Idl(
∫
I)) ≃

∫̂
I

which we shall also call ◮ agrees with ◮I as defined in Section 4.2

Proof. We compute

◮P (n, i) = ◮ P̄ (↓ (n, i))

= (a p∗P̄)(↓ (n, i))

= (p∗P̄)(↓ (n, i))

= P̄ (p(↓ (n, i)))

32 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

Now, it is easy to see that if n = 1 then p(↓ (n, i)) = ∅ so that ◮P (1, i) = P̄ (∅) = 1 and
and otherwise

P̄ (p(↓ (n, i))) = P̄ (↓ (n− 1, i|n−1))

= P (n− 1, i|n−1)

which implies the result.

Using the well-founded basis we can reason by well-founded induction over A as the
following easy lemma shows.

Lemma 8.12. Let φ(a) be a predicate on A. If

∀a ∈ A.(∀k : K.k < a→ φ(k))→ φ(a)

then φ(a) holds for all a in A.

Proof. First use well-founded induction to conclude that φ(k) holds for all k ∈ K, then use
the condition again to conclude that φ(a) holds for all a.

We now aim to show that any morphism f : ◮X → X has a unique fixed point.
Since the associated sheaf functor is left adjoint to the inclusion of sheaves into presheaves
such morphisms correspond bijectively to morphisms of presheaves f̂ : p∗X → X (where

f̂ = f ◦ η), and we shall start by constructing fixed points of morphisms of the latter form.

Lemma 8.13. Let X be a sheaf and let f : p∗X → X and a ∈ A. Then there exists a
unique family (xb)b≤a such that

(1) xa|b = xb for all b ≤ a
(2) fb(xpb) = xb for all b ≤ a

Proof. The proof is by well-founded induction on a using Lemma 8.12. Thus suppose the
lemma holds for all k < a, i.e., for any k < a there exists a unique family (xk,b)b≤k satisfying
the requirements. Note that by uniqueness, if b ≤ k′ ≤ k then xk,b = xk′,b, so for any b < a
we can define xb to be the unique amalgamation of the family (xk,k)k≤b. This gives us a
compatible family (xb)b<a, i.e., xb′ = xb|b′ if b

′ < b. To see that this family also satisfies (2),
for all b < a, note that it suffices to show that fb(xpb)|k = xk, for all k ≤ b. But

fb(xpb)|k = fk(xpk)

= xk

since the family (xk,b)b≤k satisfied (2).
It only remains to extend this family with a component xa. By the sheaf condition

there is a unique y in X(p(a)) such that y|b = xb. Define xa = fa(y). We must check that
the extended family (xb)b≤a satisfies the conditions, and all that remains to prove is the
case of b = a.

For (1) we must show that xa|b = xb for all b < a.

xa|b = fa(y)|b

= fb(y|pb)

= fb(xpb)

= xb

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 33

For (2) we branch on whether a = pa or not (using classical reasoning). If pa < a then
y = xpa, and we are done. If a = pa then, by the sheaf condition, it suffices to prove that
fa(xa)|b = xb for all b < a. But

fa(xa)|b = fb((fa(y))|p(b))

= fb(fp(b)(y|pp(b)))

= fb(fp(b)(xpp(b)))

= fb(xpb)

= xb

For the proof of uniqueness, we must show that xa as defined above gives the unique
extension of (xb)b<a satisfying the conditions. Again we branch on pa = a or pa < a. In
the first case, (1) together with the sheaf condition gives uniqueness and in the second it is
(2) that gives uniqueness.

Theorem 8.14. If A is a complete Heyting algebra with a well-founded basis then every
slice of Sh(A) is a model of guarded recursive terms.

Proof. By Theorem 6.3 it suffices to show that Sh(A) is a model of guarded recursive terms,
and for this it remains to show that if f : ◮X → X, then there exists a unique fix(f) : 1→ X
such that f ◦ next ◦ fix(f) = fix(f)

Consider first f ◦ η : p∗X → X. The family (xb)b≤
∨

A given by Lemma 8.13 defines a

map fix(f) : 1 → X: the naturality condition needed to have a map in Â is (1) and (2)
states

f ◦ η ◦ nextpre ◦ fix(f) = fix(f) (8.2)

which by (8.1) is equivalent to f ◦ next ◦ fix(f) = fix(f). In fact we see that to give a
map fix(f) : 1→ X satisfying the (8.2) is the same as giving a family (xb)b≤

∨
A and so the

uniqueness statement of Lemma 8.13 shows that fix(f) : 1→ X is the unique such map.

8.2. Recursive types in sheaf models. Having proved that Sh(A) models guarded re-
cursive terms, we now show that it models guarded recursive dependent types. We first
prove Theorem 8.6 and then show how Theorem 8.5 follows from it. So in the following, let
C be a complete Sh(A)-enriched category.

In the technical development it is simpler to work with presheaves and p∗ than it is
to work with sheaves and ◮, so we first reformulate the definition of local contractiveness
in terms of p∗. Note that we can define p∗C in the same way as we defined ◮C, using p

∗

rather than ◮. This gives us an Â-enriched category rather than a Sh(A)-enriched one. Any

Sh(A)-enriched category is also Â-enriched and so in particular, C and ◮C are Â-enriched.

There is a commutative diagram of Â-enriched functors

C
nextpre✲

p∗C

◮C

η
❄

next
✲

and the following lemma tells us that we can proceed to work with p∗ and presheaves rather
than ◮ and sheaves.

34 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

Lemma 8.15. An enriched functor F : C → C is locally contractive iff there exist a Â-
enriched functor H : p∗C→ C such that H ◦ nextpre = F .

Proof. If F is locally contractive and G is a witness of this, we can construct H by precom-
posing G with η. On the other hand, given H as above we can construct G by applying a

to each hom-action of H.

Now suppose F : C→ C is locally contractive. We will construct a fixed point for F by
a sufficiently large induction. To determine the height of the induction we start by assigning
to each element a of A an ordinal by well-founded induction on a. We use ordinals (rather
than just the elements of A) to get a linear diagram to take limits over when constructing
the fixed point for F .

Definition 8.16. Define for each a ∈ A the ordinal Ord(a) = sup{Ord(k) + 1 | k < a∧ k ∈
K}.

Lemma 8.17. Definition 8.16 defines an order preserving map Ord(−) : A → Ord(
∨
A).

If k < a and k ∈ K then Ord(k) < Ord(a).

We shall use p : Ord(
∨
A)→ Ord(

∨
A) defined as p(α) =

∨
{β | β < α}.

In the following we distinguish notationally between ordinals and elements of A by
using Greek letters for the former and latin letters for the latter.

Next we generalise the notion of n-isomorphism of Lemma 2.15. Recall that a morphism
f : X → Y in C is the same as a morphism 1 → HomC(X,Y) in Sh(A), which is the same
as a family (fa)a∈A with fa ∈ HomC(X,Y)a such that fa|b = fb for all a and b ≤ a. We say
that fa is an isomorphism if there exists ga ∈ HomC(X,Y)a such that compa(fa, ga) = ida
and compa(ga, fa) = ida. In the following we shall simply write fa ◦ ga for compa(ga, fa).

Definition 8.18. Let f : X → Y be a morphism in C, let a ∈ A and let α be an ordinal.
We say that f is an a-isomorphism if for all b ≤ a the component fb is an isomorphism.
We say that f is an α-isomorphism if it is a b-isomorphism, for all b such that Ord(b) ≤ α.

Lemma 8.19. Let F : C → C be locally contractive, and suppose f : X → Y is a b-
isomorphism for all b < a. Then Ff is an a-isomorphism. As a consequence, Ff is
an α-isomorphism if f is a β-isomorphism, for all β < α, or, equivalently, if f is a p(α)
isomorphism.

Proof. Formulating the assumption of local contractiveness using the equivalent condition
of Lemma 8.15 we get maps HX,Y : p∗HomC(X,Y)→ HomC(FX,FY) such that

(Ff)b = Hb(fp(b))

The functoriality conditions on H are commutative diagrams in Â. These amount to the
following equations required to hold for each b in A

Hb(fp(b) ◦ gp(b)) = Hb(fp(b)) ◦Hb(gp(b)) (8.3)

Hb(idp(b)) = idb (8.4)

Now, suppose f : X → Y is a b-isomorphism, for all b < a. Define f−1
p(a) to be the unique

amalgamation of (f−1
b)b<a. Then fp(a)

−1 is an inverse to fp(a): to show f−1
p(a) ◦ fp(a) = idp(a)

it suffices to show (f−1
p(a) ◦ fp(a))|b = idb for all b < a, which is clear since composition

commutes with restriction.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 35

So fb has an inverse f−1
b for all b ≤ p(a), in particular fp(b) has an inverse, for all b ≤ a.

Equations (8.3) and (8.4) then say that Hb(f
−1
p(b)) is an inverse of F (f)b, for all b ≤ a.

For the last statement, suppose f is a β-isomorphism for all β < α, and suppose
Ord(a) ≤ α. We must show that Ff is an a-isomorphism. By what we have just proved, it
suffices to show that f is a b-isomorphism, for all b < a, and for this, by the sheaf property,
it suffices to show that f is a k-isomorphism, for all k < a, k ∈ K. But this is true because
Ord(k) < Ord(a) ≤ α.

Remark 8.20. The strengthening of the definition of locally contractive functor compared
to the definition used in the conference version of this paper [4] was introduced in order to
make Lemma 8.19 true, also with the weaker notion of a-isomorphism used here. Without
the requirement of functoriality of H, equation (8.3) only holds for families (fb)b≤p(a),
(gb)b≤p(a) in the image of next, i.e., families that extend to families (fb)b≤a, (gb)b≤a

We construct, by well-founded induction, for every α ≤ Ord(
∨
A) a C-object Xα and

maps
φα : F (Xα)→ Xα and πα,β : Xα → Xβ , for β < α

by

Xα = lim
β<α

F (Xβ)

and

πα,β : lim
β′<α

F (Xβ′)
πβ ✲ F (Xβ)

φβ ✲ Xβ

φα : F (lim
β<α

F (Xβ))
F (limβ<α φβ)✲ F (lim

β<α
(Xβ)) ✲ lim

β<α
F (Xβ)

Precisely, each α is an ordered set and so can be considered a category. We define Xα as the
limit of a diagram indexed over α mapping an inequality β′ ≤ β < α to F (πβ,β′) : F (Xβ)→
F (Xβ′).

Theorem 8.21. Each πα,β is a β-isomorphism and each φα is an α-isomorphism. In
particular, φOrd(

∨
A) : F (XOrd(

∨
A))→ XOrd(

∨
A) is an isomorphism.

Before we give the proof we record the following simple lemma.

Lemma 8.22. Let α > β and let (Yβ′)β′<α be a diagram over α considered a category. The
morphism limβ′<α Yβ′ → limβ≤β′<α Yβ′ given by diagram inclusion is an isomorphism.

Lemma 8.23. α ≤
∨
{γ | pγ < α}

Proof. Recall that for ordinals β < γ is equivalent to β ∈ γ, and so p(γ) =
⋃

β∈γ β. For the

lemma we must show that if x ∈ α also x ∈
⋃

pγ∈α γ, i.e., there exists a γ such that x ∈ γ
and (

⋃
β∈γ β) ∈ α. Take γ = {β | β ≤ x}.

Proof of Theorem 8.21. The theorem is proved by induction on α, but the induction
hypothesis must be strengthened with the following two statements.

(1) For all β < α, the projection

πβ : lim
β′<α

Xβ′ → Xβ

is a β-isomorphism.

36 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

(2) For all β < α and all γ such that pγ ≤ β, the projection

πβ : lim
β′<α

F (Xβ′)→ F (Xβ)

is a γ-isomorphism. In particular, each πβ is a β-isomorphism.

We now give the induction steps of the inductive proof, proving each part of the induc-
tion hypothesis in turn.

For (1) note first that by Lemma 8.22 we may replace the limit limβ′<αXβ′ by limβ≤β′<αXβ′ .
By the induction hypothesis, all morphisms of the form πβ′,β′′ : Xβ′ → Xβ′′ for β ≤ β′′ <
β′ < α are β-isomorphisms. Therefore the limit limβ≤β′<αXβ′ is a limit of a diagram of
β-isomorphisms. Since limits are computed pointwise, the projections are β-isomorphisms.

For (2) we reason similarly and conclude by Lemma 8.19 that each F (πβ′,β′′) is a
γ-isomorphism. So in this case the limit limβ≤β′<α F (Xβ′) is a limit of a diagram of γ-
isomorphisms and each projection πβ is a γ-isomorphisms.

Now consider the case of πα,β = φβ ◦ πβ. By (2) above and the induction hypothesis,
this is a β-isomorphism.

We will now show that φα is an α-isomorphism. Consider the following commutative
diagram

lim
β′<α

F (Xβ′)
limβ′<α φβ′

✲ lim
β′<α

(Xβ′)

F (Xβ)

πβ
❄

φβ
✲ Xβ

πβ
❄

Since (1) and (2) state that both projections πβ are β-isomorphisms and by induction
hypothesis φβ is a β-isomorphism, also limβ′<α φβ′ must be a β-isomorphism. Since this
holds for all β < α, by Lemma 8.19 also F (limβ<α φβ) must be an α-isomorphism.

Now, consider the diagram

F (lim
β′<α

Xβ′) ✲ lim
β′<α

F (Xβ′)

F (Xβ)

πβ
❄

F (π
β)

✲

It only remains to show that the vertical map is an α-isomorphism. By induction hypothesis
(2) the maps F (πβ) and πβ are γ-isomorphisms for any γ such that pγ ≤ β. Since this holds
for all β, the vertical map is a

∨
{γ | pγ < α}-isomorphism, and we conclude by Lemma 8.23.

Proof of Theorem 8.6. We must show that any locally contractive endofunctor F : C→ C

has a fixed point, but Theorem 8.21 gives such a fixed point.

For Theorem 8.5 it remains to show that any slice of Sh(A) is a model of guarded
recursive types. We do that by reducing to Theorem 8.6, using the fact that slices of Sh(A)
are all Sh(A)-enriched. Indeed this holds for any locally cartesian closed category E , because
one can take as homobject from pX to pY the object

∏
i : I Yi

Xi (using internal language
notation as in Lemma 6.7). Since each slice E/I is also self-enriched, this gives us two

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 37

possible notions of local contractiveness. The next lemma states a relation between the
two.

Lemma 8.24. Let E be a locally cartesian closed model of guarded recursive terms, and let
F : E/I → E/I be a functor. If F is locally contractive in the E/I-enriched sense then it is
also locally contractive in the E-enriched sense.

Proof. The assumption gives an E/I-enrichment of F as a composite

pY
pX

next✲ ◮I(pY
pX)

GpX ,pY✲ pFY
pFX

Lemma 6.7 then tells us that each
∏

i : I FXi,Yi
is contractive in the E-enriched sense. To

show that F is locally contractive in the E-enriched sense one must check that the derived
witness of contractiveness commutes with composition and identity, but this follows from
naturality of the morphism ◮

∏
i : I Xi →

∏
i : I ◮Xi used in Lemma 6.7.

Proof of Theorem 8.5. We have already shown (Theorem 8.14) that every slice of Sh(A)
is a model of guarded recursive terms. It remains to show that any functor F : Sh(A)/I →
Sh(A)/I, which is locally contractive in the Sh(A)/I-enriched sense, has a fixed point.
Since Sh(A) is complete [27, Prop. III.4.4], its slices Sh(A)/I are also complete and thus
the required follows from Theorem 8.6 and Lemma 8.24.

9. Conclusion and Future Work

We have shown that the topos of sheaves over a complete Heyting algebra with a well-
founded basis, in particular S, the topos of trees, provides a model for an extension of higher-
order logic over dependent type theory with guarded recursive types and terms. Moreover,
we have argued that this logic provides the right setting for the synthetic construction
of step-indexed models of programming languages and program logics, by constructing a
model of the programming language Fµ,ref in the logic.

In this paper we have focused solely on guarded recursion. As future work, it would be
interesting to study further the connections between guarded and unguarded recursion in
S. For example, it might be possible to show the existence of recursive types in which only
negative occurrences of the recursion variable were guarded.

We plan to make a tool for formalized reasoning in the internal logic of S. We have
conducted some initial experiments by adding axioms to Coq and used it to formalize
some of the proofs from [7] involving recursively defined relations on recursively defined
types. These experiments suggest that it will be important to have special support for the
manipulation of the isomorphisms involved in recursive type equations, such as the coercions
and canonical structures of [18]. An alternative approach, inspired by the conference version
of the present paper, has recently been proposed by Jaber et. al. [22], who show how to
internalize the construction of the topos of trees in Coq and thus model guarded recursive
types. Future work includes investigating how easy or difficult it is in practice to develop
and work with step-indexed models using that approach.

Future work also includes studying further applications of guarded recursion in con-
nection with step-indexed models. In particular, we plan to give a synthetic account of
a recent step-indexed model by the first and third author for a language with countable

38 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

non-determinism [33]. That model uses step-indexing over ω1, the first uncountable ordi-
nal, so would naturally live in sheaves over ω1. Indeed, this was part of the motivation for
generalizing the study of models of guarded recursion from S to general sheaf categories
Sh(A).

It could also be interesting to study predicative models of guarded recursive dependent
type theory, thus extending the work of Moerdijk and Palmgren [28, 29] on “predicative
toposes”.

9.1. Acknowledgments. We thank Andy Pitts and Paul Blain Levy for encouraging dis-
cussions. This work was supported in part by grants from the Danish research council
(Birkedal and Møgelberg) and from the Carlsberg Foundation (Støvring).

References

[1] M. Abbott, T. Altenkirch, and N. Ghani. Representing nested inductive types using
W-types. In Proc. of ICALP, pages 59–71. Springer LNCS 3142, 2004.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation independence.
In Proc. of POPL, pages 340–353. ACM, 2009.

[3] A.W. Appel, P.-A. Melliès, C.D. Richards, and J. Vouillon. A very modal model of a
modern, major, general type system. In Proc. of POPL, pages 109-122. ACM 2007.

[4] L. Birkedal, R. Møgelberg, J. Schwinghammer, and K. Støvring. First steps in synthetic
guarded domain theory: Step-indexing in the topos of trees. In Proc. of LICS, pages
55-64. IEEE Computer Society, 2011.

[5] L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg, and H. Yang.
Step-indexed Kripke models over recursive worlds. In Proc. of POPL, pages 119-132.
ACM, 2011.

[6] L. Birkedal, J. Schwinghammer, and K. Støvring. A metric model of lambda calculus
with guarded recursion. Presented at FICS, 2010.

[7] L. Birkedal, J. Schwinghammer, and K. Støvring. A step-indexed Kripke model of
hidden state via recursive properties on recursively defined metric spaces. In Proc. of
FOSSACS, pages 305-319. Springer LNCS 6604, 2011.

[8] L. Birkedal, K. Støvring, and J. Thamsborg. Realisability semantics of parametric poly-
morphism, general references and recursive types. Math. Struct. Comp. Sci., 20(4):655–
703, 2010.

[9] Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. The category-theoretic solu-
tion of recursive metric-space quations. Theoretical Computer Science, 411(47):4102–
4122, 2010.

[10] P. Di Gianantonio and M. Miculan. Unifying recursive and co-recursive definitions in
sheaf categories. In Proc. of FOSSACS, pages 136-150. Springer LNCS 2987, 2004.

[11] D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical relations. In Proc.
of LICS, pages 71-80. IEEE Computer Society, 2009.

[12] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control
effects on local relational reasoning. In Proc. of ICFP, pages 143-156. ACM, 2010.

[13] D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. A relational modal logic for higher-
order stateful ADTs. In Proc. of POPL, pages 185-198. ACM, 2010.

[14] P. Dybjer. Representing inductively defined sets by wellorderings in Martin-Löf’s type
theory. Theor. Comput. Sci., 176(1-2):329–335, 1997.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 39

[15] P.J. Freyd. Recursive types reduced to inductive types. In Proc. of LICS, pages 498-507.
IEEE Computer Society Press, 1990.

[16] P.J. Freyd. Algebraically complete categories. In Proc. of the 1990 Como Category
Theory Conference, pages 95–104. Springer Verlag LNM 1488, 1991.

[17] P.J. Freyd. Remarks on algebraically compact categories. In Applications of Categories
in Computer Science, volume 177 of LMS Lecture Note Series, pages 95-106, 1991.

[18] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging mathematical struc-
tures. In Proc. of TPHOLs, pages 327-342. Springer LNCS 5674, 2009.

[19] M. Hofmann. On the interpretation of type theory in locally cartesian closed categories.
In Proc. of CSL, pages 427–441. Springer LNCS 933, 1994.

[20] J.M.E. Hyland. First steps in synthetic domain theory. In Proc. of the 1990 Como
Category Theory Conference, pages 131-156. Springer LNM 1488, 1991.

[21] J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos theory. Math. Proc. of the
Cambridge Philosophical Society, 88:205–232, 1980.

[22] G. Jaber, N. Tabareau, and M. Sozeau. Extending type theory with forcing. In Proc.
of LICS, 2012.

[23] B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and the
Foundations of Mathematics. Elsevier, 1999.

[24] G.M. Kelly. Basic Concepts of Enriched Categories. Number 4 in Lecture Notes in
Mathematics. Cambridge University Press, 1982. Available in TAC reprint series at
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf.

[25] A. Kock. Strong functors and monoidal monads. Arch. Math., 23:113–120, 1972.
[26] J. Lambek and P.J. Scott. Introduction to higher order categorical logic. Cambridge

University Press, 1986.
[27] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. A First Introduction to

Topos Theory. Springer, 1992.
[28] I. Moerdijk and E. Palmgren. Wellfounded trees in categories. Annals of Pure and

Appl. Logic, 104:189–218, 2000.
[29] I. Moerdijk and E. Palmgren. Type theories, toposes and constructive set theory:

Predicative aspects of ast. Annals of Pure and Applied Logic, 114:155–201, 2002.
[30] H. Nakano. A modality for recursion. In Proc. of LICS, pages 255–266. IEEE Computer

Society, 2000.
[31] A.M. Pitts. Relational properties of domains. Inf. Comput., 127(2):66–90, 1996.
[32] F. Pottier. A typed store-passing translation for general references. In Proc. of POPL,

pages 147-158. ACM, 2011.
[33] J. Schwinghammer and L. Birkedal. Step-indexed relational reasoning for countable

nondeterminism. In Proc. of CSL, pages 512-524. Schloss Dagstuhl, 2011.
[34] J. Schwinghammer, H. Yang, L. Birkedal, F. Pottier, and B. Reus. A semantic foun-

dation for hidden state. In Proc. of FOSSACS, pages 2-17. Springer LNCS 6014, 2010.
[35] M.B. Smyth and G.D. Plotkin. The category-theoretic solution of recursive domain

equations. SIAM Journal on Computing, 11(4):761–783, 1982.

40 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

Types: τ ::= 1 | τ1 × τ2 | 0 | τ1 + τ2 | µα.τ | ∀α.τ | α | τ1→ τ2 | ref τ

Terms: t ::= x | l | () | 〈t1, t2〉 | fst t | snd t | void t | inl t | inr t

| case t0 x1.t1 x2.t2 | fold t | unfold t

| Λα.t | t [τ] | λx : t. | t1 t2 | fix f.λx.t | ref t | !t | t1 := t2

Typing rules:

Ξ | Γ ⊢ x : τ (Ξ ⊢ Γ, Γ(x) = τ) Ξ | Γ ⊢ () : 1 (Ξ ⊢ Γ)

Ξ | Γ ⊢ t1 : τ1 Ξ | Γ ⊢ t2 : τ2
Ξ | Γ ⊢ 〈t1, t2〉 : τ1 × τ2

Ξ | Γ ⊢ t : 0

Ξ | Γ ⊢ void t : τ
(Ξ ⊢ τ)

Ξ | Γ ⊢ t : τ1 × τ2
Ξ | Γ ⊢ fst t : τ1

Ξ | Γ ⊢ t : τ1 × τ2
Ξ | Γ ⊢ snd t : τ2

Ξ | Γ ⊢ t : τ1
Ξ | Γ ⊢ inl t : τ1 + τ2

(Ξ ⊢ τ2)
Ξ | Γ ⊢ t : τ2

Ξ | Γ ⊢ inr t : τ1 + τ2
(Ξ ⊢ τ1)

Ξ | Γ ⊢ t0 : τ1 + τ2 Ξ | Γ, xi : τi ⊢ ti : τ (i = 1, 2)

Ξ | Γ ⊢ case t0 x1.t1 x2.t2 : τ

Ξ | Γ ⊢ t : τ [µα.τ/α]

Ξ | Γ ⊢ fold t : µα.τ

Ξ | Γ ⊢ t : µα.τ

Ξ | Γ ⊢ unfold t : τ [µα.τ/α]

Ξ, α | Γ ⊢ t : τ

Ξ | Γ ⊢ Λα.t : ∀α.τ
(Ξ ⊢ Γ)

Ξ | Γ ⊢ t : ∀α.τ0
Ξ | Γ ⊢ t [τ1] : τ0[τ1/α]

(Ξ ⊢ τ1)

Ξ | Γ, x : τ0 ⊢ t : τ1
Ξ | Γ ⊢ λx : t. : τ0→ τ1

Ξ | Γ ⊢ t1 : τ→ τ ′ Ξ | Γ ⊢ t2 : τ

Ξ | Γ ⊢ t1 t2 : τ
′

Ξ | Γ, f : τ0→ τ1, x : τ0 ⊢ t : τ1
Ξ | Γ ⊢ fix f.λx.t : τ0→ τ1

Ξ | Γ ⊢ t : τ

Ξ | Γ ⊢ ref t : ref τ

Ξ | Γ ⊢ t : ref τ

Ξ | Γ ⊢ !t : τ

Ξ | Γ ⊢ t1 : ref τ Ξ | Γ ⊢ t2 : τ

Ξ | Γ ⊢ t1 := t2 : 1

Figure 1: Programming language

Appendix A. More details on the application to step-indexing

Here are some more details on the application in Section 3. Everything is this appendix
should be understood within the logic of S.

A.1. Language. The full language considered in the application is shown in Figure 1.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 41

A.2. Interpretation of types. Recall that we have

W = N →fin T̂

T =W →mon P(Value)

T c =W → P(Term)

and
app : T̂ → T , lam : T → T̂

with app ◦ lam = ✄ : T → T .
Let TVar be the set of type variables, and for τ ∈ OType, let TEnv(τ) = {ϕ ∈

TVar →fin T | FV(τ) ⊆ dom(ϕ) }. The interpretation of programming-language types is
defined by induction, as a function

[[·]] :
∏

τ∈OType

TEnv(τ)→ T .

[[α]]ϕ = ϕ(α)

[[1]]ϕ = λw. {()}

[[0]]ϕ = λw. ∅

[[τ1 × τ2]]ϕ = λw. { (v1, v2) | v1 ∈ [[τ1]]ϕ(w) ∧ v2 ∈ [[τ2]]ϕ(w) }

[[τ1 + τ2]]ϕ = λw. { inl v1 | v1 ∈ [[τ1]]ϕ(w) } ∪ { inr v2 | v2 ∈ [[τ2]]ϕ(w) }

[[ref τ]]ϕ = λw. { l | l ∈ dom(w) ∧ ∀w1 ≥ w. app(w(l))(w1) = ✄([[τ]]ϕ)(w1) }

[[∀α.τ]]ϕ = λw. {Λα.t | ∀ν ∈ T .∀w1 ≥ w. t ∈ comp([[τ]]ϕ[α 7→ ν])(w1) }

[[µα.τ]]ϕ = fix (λν. λw. { fold v | ✄(v ∈ [[τ]]ϕ[α 7→ ν] (w)) })

[[τ1→ τ2]]ϕ = λw. {λx.t | ∀w1 ≥ w.∀v ∈ [[τ1]]ϕ(w1). t[v/x] ∈ comp([[τ2]]ϕ)(w1) }

Here the operations comp : T → T c and states :W → P(Store) are given by

comp(ν)(w) = { t | ∀s ∈ states(w). eval (t, s, λ(v1, s1).∃w1 ≥ w.
v1 ∈ ν(w1) ∧ s1 ∈ states(w1)) }

states(w) = { s | dom(s) = dom(w) ∧
∀l ∈ dom(w). s(l) ∈ app(w(l))(w) } .

A.3. Soundness and the fundamental theorem. Given Ξ and Γ such that Γ is well-
formed in Ξ, and given ϕ ∈ T Ξ, define

[[Γ]]ϕ(w) = {ρ : Valuedom(Γ)|∀(x, τ) ∈ Γ. ρ(x) ∈ [[τ]]ϕ(w)}.

Abbreviate [[τ]]cϕ = comp([[τ]]ϕ).
Now we define semantic validity. The notation

Ξ | Γ |= t : τ

means: For all w ∈ W , all ϕ ∈ T Ξ, and all ρ ∈ [[Γ]]ϕ(w), we have ρ(t) ∈ [[τ]]cϕ(w). (Here
ρ(t) is ρ acting by substitution on t.)

To show the fundamental theorem, we must show semantic counterparts of all the
typing rules. First we need some “monadic” properties of the comp operator. For ν ∈ T

42 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

and ξ ∈ T c and w ∈ W, let ν ⊸w ξ be the set of closed evaluation contexts E that satisfy
the following property: for all w1 ≥ w and v ∈ ν(w1) we have E[v] ∈ ξ(w1).

Lemma A.1.

(1) If v ∈ ν(w), then v ∈ comp(ν)(w).
(2) If t ∈ comp(ν1)(w) and E ∈ ν1 ⊸w comp(ν2), then E[t] ∈ comp(ν2)(w).

Proof. The first part follows immediately from the definitions of comp and eval. As for the
second part, let t ∈ comp(ν1)(w) and E ∈ ν1 ⊸w comp(ν2) be given; we must show that
E[t] ∈ comp(ν2)(w). We unfold the definition of comp. Let s ∈ states(w) be given; we must
show that eval(E[t], s,Q) where

Q(v2, s2) = ∃w2 ≥ w. v2 ∈ ν2(w2) ∧ s2 ∈ states(w2)).

By Proposition 3.2, it suffices to show

eval(t, s, λ(v1, s1). eval(E[v1], s1, Q)). (A.1)

Since t ∈ comp(ν1)(w) and s ∈ states(w) we know that

eval(t, s, λ(v1, s1).∃w1 ≥ w.
v1 ∈ ν1(w1) ∧ s1 ∈ states(w1)).

We can therefore use Proposition 3.1 to show (A.1): it suffices to show that ∃w1 ≥ w. v1 ∈
ν1(w1) ∧ s1 ∈ states(w1)) implies eval(E[v1], s1, Q). So let w1 ≥ w be given and assume
that v1 ∈ ν1(w1) and s1 ∈ states(w1). Then, since E ∈ ν1 ⊸w comp(ν2), we have E[v1] ∈
comp(ν2)(w1) and hence

eval(E[v1], s1, λ(v2, s2).∃w2 ≥ w1.
v2 ∈ ν2(w2) ∧ s2 ∈ states(w2)).

Since w1 ≥ w, another use of Proposition 3.1 gives eval(E[v1], s1, Q), which is what we had
to show.

Proof of Proposition 3.4 (fundamental theorem). We show four key cases.

A.4. Case “allocation”: If Ξ | Γ |= t : τ , then Ξ | Γ |= ref t : ref τ .
Let w ∈ W and ϕ ∈ T Ξ and ρ ∈ [[Γ]]ϕ be given; we must show that ρ(ref t) ∈

[[ref τ]]cϕ(w). Since Ξ | Γ |= t : τ holds we know that ρ(t) ∈ [[τ]]cϕ(w). Therefore, by
Lemma A.1, it suffices to show that ref - ∈ [[τ]]ϕ⊸w [[ref τ]]cϕ. To that end, let w1 ≥ w and
v ∈ [[τ]]ϕ(w1) be given. We must show that ref v ∈ [[ref τ]]cϕ(w1).

Let s ∈ states(w1) be given. By definition of comp we must show

eval(ref v, s, λ(v1, s1).∃w2 ≥ w1. v1 ∈ [[ref τ]]ϕ(w2) ∧ s1 ∈ states(w2)).

Let l be the smallest location not in s. Then we have step((ref v, s), (l, s1)) where s1 =
s[l 7→ v]. Therefore, by definition of eval and Proposition 2.7, it suffices to show

∃w2 ≥ w1. l ∈ [[ref τ]]ϕ(w2) ∧ s1 ∈ states(w2).

(In fact, we are only required to show ✄ applied to this formula, which is weaker by Propo-
sition 2.7(1).) To that end, we choose w2 = w1[l 7→ lam([[τ]]ϕ)]. It remains to show

l ∈ [[ref τ]]ϕ(w2) (A.2)

s1 ∈ states(w2). (A.3)

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 43

As for (A.2), we expand the definition of [[ref τ]]. Clearly we have l ∈ dom(w2) as
required. Now let w3 ≥ w2 be given; Lemma 3.3 gives

app(w2(l))(w3) = app(lam([[τ]]ϕ))(w3)

= ✄([[τ]]ϕ)(w3)

as required.
As for (A.3), we first have that dom(s1) = dom(w2) since s ∈ states(w1). Second,

we must show that s1(l
′) ∈ app(w2(l

′))(w2) for all l′ ∈ dom(s1). For l′ = l we have
app(w2(l))(w2) = ✄([[τ]]ϕ)(w2) as above. But s1(l) = v, and we know that v ∈ [[τ]]ϕ(w1)
where

[[τ]]ϕ(w1) ⊆ [[τ]]ϕ(w2) ⊆ ✄([[τ]]ϕ)(w2)

by monotonicity and Proposition 2.7(1). We conclude that s1(l) ∈ app(w2(l))(w2).
For l′ 6= l we have s1(l

′) = s(l′). Since s ∈ states(w1) we know that s(l′) ∈ app(w1(l
′))(w1).

But

app(w1(l
′))(w1) = app(w2(l

′))(w1)

⊆ app(w2(l
′))(w2)

by monotonicity. Therefore s1(l
′) ∈ app(w2(l

′))(w2), which completes the proof of (A.3).

A.5. Case “lookup”: If Ξ | Γ |= t : ref τ then Ξ | Γ |= !t : τ .
Let w ∈ W and ϕ ∈ T Ξ and ρ ∈ [[Γ]]ϕ be given; we must show that ρ(!t) ∈ [[τ]]cϕ(w).

Since Ξ | Γ |= t : ref τ holds we know that ρ(t) ∈ [[ref τ]]cϕ(w). Therefore, by Lemma A.1,
it suffices to show that !− ∈ [[τ]]ϕ ⊸w [[ref τ]]cϕ. This is essentially what was done in the
proof sketch in the main text, but for completeness we repeat the argument here.

Let w1 ≥ w and v ∈ [[ref τ]]ϕ(w1) be given. We must show that !v ∈ comp([[τ]]ϕ)(w1)
We unfold the definition of comp. Let s ∈ states(w1) be given; we must show

eval(!v, s, λ(v2, s2).∃w2 ≥ w1. v2 ∈ [[τ]]ϕ(w2) ∧ s2 ∈ states(w2)) . (A.4)

By the assumption that v ∈ [[ref τ]]ϕ(w1), we know that v = l for some location l such that
l ∈ dom(w1) and app(w1(l))(w2) = ✄([[τ]]ϕ)(w2) for all w2 ≥ w1. Since s ∈ states(w1),
we know that l ∈ dom(s) = dom(w1) and s(l) ∈ app(w1(l))(w1). We therefore have
step((!v, s), (s(l), s)). Hence, by unfolding the definition of eval in (A.4) and using the rules
from Proposition 2.7, it remains to show that

∃w2 ≥ w1. ✄(s(l) ∈ [[τ]]ϕ(w2)) ∧ ✄(s ∈ states(w2)).

To that end, choose w2 = w1. First, s ∈ states(w1) and hence ✄(s ∈ states(w1)). Second,

s(l) ∈ app(w1(l))(w1) = ✄([[τ]]ϕ)(w1),

which means exactly that ✄(s(l) ∈ [[τ]]ϕ(w1)).

44 L. BIRKEDAL, R.E. MØGELBERG, J. SCHWINGHAMMER, AND K. STØVRING

A.6. Case “assignment”: If Ξ | Γ |= t1 : ref τ and Ξ | Γ |= t2 : τ , then Ξ | Γ |= t1 := t2 : 1.
Here we must use Lemma A.1 twice. Let w ∈ W and ϕ ∈ T Ξ and ρ ∈ [[Γ]]ϕ be given;

we must show that
ρ(t1 := t2) ∈ [[1]]cϕ(w).

Since Ξ | Γ |= t1 : ref τ holds we know that ρ(t1) ∈ [[ref τ]]cϕ(w). Therefore, by Lemma A.1,
it suffices to show that

(− := ρ(t2)) ∈ [[ref τ]]ϕ⊸w [[1]]cϕ.

So let w1 ≥ w and v1 ∈ [[ref τ]]ϕ(w1) be given; we must show that (v1 := ρ(t2)) ∈ [[1]]cϕ(w1).
By assumption we have ρ(t2) ∈ [[τ]]cϕ(w1), so by Lemma A.1 again, it suffices to show that

(v1 :=−) ∈ [[τ]]ϕ ⊸w1
[[1]]cϕ.

Therefore, let w2 ≥ w1 and v2 ∈ [[τ]]ϕ(w2) be given. The final proof obligation is to show
that

(v1 := v2) ∈ [[1]]cϕ(w2).

We unfold the definition of comp. Assume that s ∈ states(w2) is given; we must show

eval((v1 := v2), s, λ(v3, s3).∃w3 ≥ w2. v3 ∈ [[1]]ϕ(w3) ∧ s3 ∈ states(w3)).

By monotonicity we have v1 ∈ [[ref τ]]ϕ(w2), and therefore v1 = l for some l ∈ dom(w2)
such that

app(w2(l))(w3) = ✄([[τ]]ϕ)(w3) for all w3 ≥ w2. (A.5)

Furthermore, since s ∈ states(w2) we know that dom(s) = dom(w2) and hence that l ∈
dom(s). Therefore step((v1 := v2, s), ((), s[l 7→ v2])) holds. By definition of eval and
Proposition 2.7, it then suffices to show

∃w3 ≥ w2. () ∈ [[1]]ϕ(w3) ∧ s[l 7→ v2] ∈ states(w3).

We choose w3 = w2. Now () ∈ [[1]]ϕ(w2) holds trivially, and it remains to show that
s[l 7→ v2] ∈ states(w2). For l

′ 6= l we have

(s[l 7→ v2])(l
′) = s(l′) ∈ app(w2(l

′))(w2)

since s ∈ states(w2). Furthermore,

(s[l 7→ v2])(l) = v2 ∈ [[τ]]ϕ(w2),

and therefore ✄(v2 ∈ [[τ]]ϕ(w2)) by Proposition 2.7(1). But this means exactly that v2 ∈
✄([[τ]]ϕ)(w2). We conclude from (A.5) that v2 ∈ app(w2(l))(w2) as required.

A.7. Case “unfold”: If Ξ | Γ |= t : µα.τ , then Ξ | Γ |= unfold t : τ [(µα.τ)/a].
Abbreviate τ1 = τ [(µα.τ)/a]. Let w ∈ W and ϕ ∈ T Ξ and ρ ∈ [[Γ]]ϕ be given; we

must show that ρ(unfold t) ∈ [[τ1]]
cϕ(w). Since Ξ | Γ |= t : µα.τ holds we know that ρ(t) ∈

[[µα.τ]]cϕ(w). Therefore, by Lemma A.1, it suffices to show that unfold− ∈ [[µα.τ]]ϕ ⊸w

[[τ1]]
cϕ. To that end, let w1 ≥ w and v ∈ [[µα.τ]]ϕ(w1) be given. We must show that

unfold v ∈ [[τ1]]
cϕ(w1).

Let s ∈ states(w1) be given. By definition of comp we must show

eval(unfold v, s, λ(v1, s1).∃w2 ≥ w1. v1 ∈ [[τ1]]ϕ(w2) ∧ s1 ∈ states(w2)). (A.6)

By definition of [[µα.τ]] we know that v = fold v0 for some v0 such that ✄(v0 ∈
[[τ]]ϕ[α 7→ [[µα.τ]]ϕ](w1)) holds. By Proposition 2.7 and a substitution lemma (shown by
an easy induction on types), this means that ✄(v0 ∈ [[τ1]]ϕ(w1)) holds.

FIRST STEPS IN SYNTHETIC GUARDED DOMAIN THEORY 45

Since v = fold v0 we have step((unfold v, s), (v0, s)). Therefore, by unfolding the defini-
tion of eval in (A.6) and using Proposition 2.7, it suffices to show

∃w2 ≥ w1. ✄(v0 ∈ [[τ1]]ϕ(w2)) ∧✄(s ∈ states(w2)).

We choose w2 = w1. We have already shown that ✄(v0 ∈ [[τ1]]ϕ(w1)) holds, and Proposi-
tion 2.7(1) gives that s ∈ states(w1) implies ✄(s ∈ states(w1)), as required.

As an immediate corollary of the fundamental theorem we get a type-safety result for
the “temporal” semantics given by the eval predicate. This is formulated by means of a
trivial post-condition.

Corollary A.2 (Type safety). Assume that ⊢ t : τ holds. Then eval(t, sinit,⊤) holds where
sinit is the empty store.

Proof. Follows directly from the fundamental theorem (using the empty world ∅ ∈ W) and
Proposition 3.1.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. Overview of technical development
	1.2. Related work
	1.3. Summary of contributions

	2. The S Topos
	2.1. The endofunctor
	2.2. An operator on predicates
	2.3. Recursive morphisms
	2.4. Internal logic
	2.5. Recursive relations
	2.6. Recursive domain equations

	3. Application to Step-Indexing
	3.1. Language
	3.2. Operational semantics
	3.3. Definition of Kripke worlds
	3.4. Interpretation of types
	3.5. The view from the outside
	3.6. Discussion

	4. Dependent Types
	4.1. Slice categories concretely
	4.2. Generalising to slices
	4.3. Recursive dependent types
	4.4. A higher order dependent type theory with guarded recursion
	4.5. Interpreting the type theory
	4.6. On Coherence

	5. Relation to metric spaces
	6. General models of guarded recursive terms
	6.1. A left adjoint to
	6.2. An operation on predicates

	7. General models of guarded recursive types
	8. A class of models of guarded recursion
	8.1. Modelling recursive terms
	8.2. Recursive types in sheaf models

	9. Conclusion and Future Work
	9.1. Acknowledgments

	References
	Appendix A. More details on the application to step-indexing
	A.1. Language
	A.2. Interpretation of types
	A.3. Soundness and the fundamental theorem
	A.4. Case ``allocation'':
	A.5. Case ``lookup'':
	A.6. Case ``assignment'':
	A.7. Case ``unfold'':

