209 research outputs found

    A first-order stochastic primal-dual algorithm with correction step

    Get PDF
    We investigate the convergence properties of a stochastic primal-dual splitting algorithm for solving structured monotone inclusions involving the sum of a cocoercive operator and a composite monotone operator. The proposed method is the stochastic extension to monotone inclusions of a proximal method studied in {\em Y. Drori, S. Sabach, and M. Teboulle, A simple algorithm for a class of nonsmooth convex-concave saddle-point problems, 2015} and {\em I. Loris and C. Verhoeven, On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty, 2011} for saddle point problems. It consists in a forward step determined by the stochastic evaluation of the cocoercive operator, a backward step in the dual variables involving the resolvent of the monotone operator, and an additional forward step using the stochastic evaluation of the cocoercive introduced in the first step. We prove weak almost sure convergence of the iterates by showing that the primal-dual sequence generated by the method is stochastic quasi Fej\'er-monotone with respect to the set of zeros of the considered primal and dual inclusions. Additional results on ergodic convergence in expectation are considered for the special case of saddle point models

    Variable Metric Forward-Backward Splitting with Applications to Monotone Inclusions in Duality

    Full text link
    We propose a variable metric forward-backward splitting algorithm and prove its convergence in real Hilbert spaces. We then use this framework to derive primal-dual splitting algorithms for solving various classes of monotone inclusions in duality. Some of these algorithms are new even when specialized to the fixed metric case. Various applications are discussed

    Solving monotone inclusions involving parallel sums of linearly composed maximally monotone operators

    Full text link
    The aim of this article is to present two different primal-dual methods for solving structured monotone inclusions involving parallel sums of compositions of maximally monotone operators with linear bounded operators. By employing some elaborated splitting techniques, all of the operators occurring in the problem formulation are processed individually via forward or backward steps. The treatment of parallel sums of linearly composed maximally monotone operators is motivated by applications in imaging which involve first- and second-order total variation functionals, to which a special attention is given.Comment: 25 page

    A forward-backward view of some primal-dual optimization methods in image recovery

    Get PDF
    A wide array of image recovery problems can be abstracted into the problem of minimizing a sum of composite convex functions in a Hilbert space. To solve such problems, primal-dual proximal approaches have been developed which provide efficient solutions to large-scale optimization problems. The objective of this paper is to show that a number of existing algorithms can be derived from a general form of the forward-backward algorithm applied in a suitable product space. Our approach also allows us to develop useful extensions of existing algorithms by introducing a variable metric. An illustration to image restoration is provided
    • …
    corecore