33,732 research outputs found

    The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and lubrication-type equations

    Full text link
    The cutoff method, which cuts off the values of a function less than a given number, is studied for the numerical computation of nonnegative solutions of parabolic partial differential equations. A convergence analysis is given for a broad class of finite difference methods combined with cutoff for linear parabolic equations. Two applications are investigated, linear anisotropic diffusion problems satisfying the setting of the convergence analysis and nonlinear lubrication-type equations for which it is unclear if the convergence analysis applies. The numerical results are shown to be consistent with the theory and in good agreement with existing results in the literature. The convergence analysis and applications demonstrate that the cutoff method is an effective tool for use in the computation of nonnegative solutions. Cutoff can also be used with other discretization methods such as collocation, finite volume, finite element, and spectral methods and for the computation of positive solutions.Comment: 19 pages, 41 figure

    Stabilized hp-Finite Element Approximation of Partial Differential Equations with Nonnegative Characteristic Form

    Get PDF
    This paper is devoted to the a priori error analysis of the hp-version of a streamline-diffusion finite element method for partial differential equations with nonnegative characteristic form. This class of equations includes second-order elliptic and parabolic problems, first-order hyperbolic problems and second-order problems of mixed elliptic-parabolic-hyperbolic type. We derive error bounds which are simultaneously optimal in both the mesh size h and the spectral order p. Numerical examples are presented to confirm the theoretical results

    Gaussian pulse dynamics in gain media with Kerr nonlinearity

    Full text link
    Using the Kantorovitch method in combination with a Gaussian ansatz, we derive the equations of motion for spatial, temporal and spatiotemporal optical propagation in a dispersive Kerr medium with a general transverse and spectral gain profile. By rewriting the variational equations as differential equations for the temporal and spatial Gaussian q parameters, optical ABCD matrices for the Kerr effect, a general transverse gain profile and nonparabolic spectral gain filtering are obtained. Further effects can easily be taken into account by adding the corresponding ABCD matrices. Applications include the temporal pulse dynamics in gain fibers and the beam propagation or spatiotemporal pulse evolution in bulk gain media. As an example, the steady-state spatiotemporal Gaussian pulse dynamics in a Kerr-lens mode-locked laser resonator is studied
    corecore