830 research outputs found

    A blockchain-based trust management system for 5G network slicing enabled C-RAN

    Get PDF
    The mobility nature of the wireless networks and the time-sensitive tasks make it necessary for the system to transfer the messages with a minimum delay. Cloud Radio Access Network (C-RAN) reduces the latency problem. However, due to the trustlessness of 5G networks resulting from the heterogeneity nature of devices. In this article, for the edge devices, there is a need to maintain a trust level in the C-RAN node by checking the rates of devices that are allowed to share data among other devices. The SDN controller is built into a macro-cell that plays the role of a cluster head. The blockchain-based automatically authenticates the edge devices by assigning a unique identification that is shared by the cluster head with all C-RAN nodes connected to it. Simulation results demonstrate that, compared with the benchmark, the proposed approach significantly improves the processing time of blocks, the detection accuracy of malicious nodes, and transaction transmission delay

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Feature Space Augmentation: Improving Prediction Accuracy of Classical Problems in Cognitive Science and Computer Vison

    Get PDF
    The prediction accuracy in many classical problems across multiple domains has seen a rise since computational tools such as multi-layer neural nets and complex machine learning algorithms have become widely accessible to the research community. In this research, we take a step back and examine the feature space in two problems from very different domains. We show that novel augmentation to the feature space yields higher performance. Emotion Recognition in Adults from a Control Group: The objective is to quantify the emotional state of an individual at any time using data collected by wearable sensors. We define emotional state as a mixture of amusement, anger, disgust, fear, sadness, anxiety and neutral and their respective levels at any time. The generated model predicts an individual’s dominant state and generates an emotional spectrum, 1x7 vector indicating levels of each emotional state and anxiety. We present an iterative learning framework that alters the feature space uniquely to an individual’s emotion perception, and predicts the emotional state using the individual specific feature space. Hybrid Feature Space for Image Classification: The objective is to improve the accuracy of existing image recognition by leveraging text features from the images. As humans, we perceive objects using colors, dimensions, geometry and any textual information we can gather. Current image recognition algorithms rely exclusively on the first 3 and do not use the textual information. This study develops and tests an approach that trains a classifier on a hybrid text based feature space that has comparable accuracy to the state of the art CNN’s while being significantly inexpensive computationally. Moreover, when combined with CNN’S the approach yields a statistically significant boost in accuracy. Both models are validated using cross validation and holdout validation, and are evaluated against the state of the art

    Smart Urban Water Networks

    Get PDF
    This book presents the paper form of the Special Issue (SI) on Smart Urban Water Networks. The number and topics of the papers in the SI confirm the growing interest of operators and researchers for the new paradigm of smart networks, as part of the more general smart city. The SI showed that digital information and communication technology (ICT), with the implementation of smart meters and other digital devices, can significantly improve the modelling and the management of urban water networks, contributing to a radical transformation of the traditional paradigm of water utilities. The paper collection in this SI includes different crucial topics such as the reliability, resilience, and performance of water networks, innovative demand management, and the novel challenge of real-time control and operation, along with their implications for cyber-security. The SI collected fourteen papers that provide a wide perspective of solutions, trends, and challenges in the contest of smart urban water networks. Some solutions have already been implemented in pilot sites (i.e., for water network partitioning, cyber-security, and water demand disaggregation and forecasting), while further investigations are required for other methods, e.g., the data-driven approaches for real time control. In all cases, a new deal between academia, industry, and governments must be embraced to start the new era of smart urban water systems

    Social evolution : opinions and behaviors in face-to-face networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 133-143).Exposure to new ideas and opinions, and their diffusion within social networks, are important questions in education, business, and government. However until recently there has been no method to automatically capture fine-grained face-to-face interactions between people, to better model the diffusion process. In this thesis, we describe the use of colocation and communication sensors in 'socially aware' mobile phones to model the spread of opinions and behaviors of 78 residents of an undergraduate residence hall for an entire academic year, based on over 320,000 hours of behavior data. Political scientists (Huckfeldt and Sprague, APSR, 1983) have noted the problem of mutual causation between face-to-face networks and political opinions. During the last three months of the 2008 US presidential campaigns of Barack Obama and John McCain, we find that political discussants have characteristic interaction patterns that can be used to recover the self-reported 'political discussant' ties within the community. Automatically measured mobile phone features allow us to estimate exposure to different types of opinions in this community. We propose a measure of 'dynamic homophily' which reveals surprising short-term, population-wide behavior changes around external political events such as election debates and Election Day. To our knowledge, this is the first time such dynamic homophily effects have been measured. We find that social exposure to peers in the network predicts individual future opinions (R 2 ~ 0.8, p < 0.001). The use of mobile phone based dynamic exposure increases the explained variance for future political opinions by up to 30%. It is well known that face-to-face networks are the main vehicle for airborne contagious diseases (Elliott, Spatial Epidemiology, 2000). However, epidemiologists have not had access to tools to quantitatively measure the likelihood of contagion, as a function of contact/exposure with infected individuals, in realistic scenarios (Musher, NEJM, 2003), since it requires data about both symptoms and social interactions between individuals. We use of co-location and communication sensors to understand the role of face-to-face interactions in the contagion process. We find that there are characteristic changes in behavior when individuals become sick, reflected in features like total communication, temporal structure in communication (e.g., late nights and weekends), interaction diversity, and movement entropy (both within and outside the university). These behavior variations can be used to infer the likelihood of an individual being symptomatic, based on their network interactions alone, without the use of health-reports. We use a recently-developed signal processing approach (Nolte, Nature, 2008) to better understand the temporal information flux between physical symptoms (i.e., common colds, influenza), measured behavior variations and mental health symptoms (i.e., stress and early depression). Longitudinal studies indicate that health-related behaviors from obesity (Christakis and Fowler, 2007) to happiness (Fowler and Christakis, 2008) may spread through social ties. The effects of social networks and social support on physical health are well-documented (Berkman, 1994; Marmot and Wilkinson, 2006). However, these studies do not quantify actual face-to-face interactions that lead to the adoption of health-related behaviors. We study the variations in BMI, weight (in lbs), unhealthy eating habits, diet and exercise, and find that social exposure measured using mobile phones is a better predictor of BMI change over a semester, than self-report data, in stark contrast to previous work. From a smaller pilot study of social exposure in face-to-face networks and the propagation of viral music, we find that phone communication and location features predict the sharing of music between people, and also identify social ties that are 'close friends' or 'casual acquaintances'. These interaction and music sharing features can be used to model latent influences between participants in the music sharing process.by Anmol Madan.Ph.D

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets

    Geoinformatics in Citizen Science

    Get PDF
    The book features contributions that report original research in the theoretical, technological, and social aspects of geoinformation methods, as applied to supporting citizen science. Specifically, the book focuses on the technological aspects of the field and their application toward the recruitment of volunteers and the collection, management, and analysis of geotagged information to support volunteer involvement in scientific projects. Internationally renowned research groups share research in three areas: First, the key methods of geoinformatics within citizen science initiatives to support scientists in discovering new knowledge in specific application domains or in performing relevant activities, such as reliable geodata filtering, management, analysis, synthesis, sharing, and visualization; second, the critical aspects of citizen science initiatives that call for emerging or novel approaches of geoinformatics to acquire and handle geoinformation; and third, novel geoinformatics research that could serve in support of citizen science
    • …
    corecore