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Abstract

Exposure to new ideas and opinions, and their diffusion within social networks, are im-
portant questions in education, business, and government. However until recently there
has been no method to automatically capture fine-grained face-to-face interactions between
people, to better model the diffusion process. In this thesis, we describe the use of co-
location and communication sensors in 'socially aware' mobile phones to model the spread
of opinions and behaviors of 78 residents of an undergraduate residence hall for an entire
academic year, based on over 320,000 hours of behavior data.

Political scientists (Huckfeldt and Sprague, APSR, 1983) have noted the problem of mu-
tual causation between face-to-face networks and political opinions. During the last three
months of the 2008 US presidential campaigns of Barack Obama and John McCain, we
find that political discussants have characteristic interaction patterns that can be used to
recover the self-reported 'political discussant' ties within the community. Automatically
measured mobile phone features allow us to estimate exposure to different types of opinions
in this community. We propose a measure of 'dynamic homophily' which reveals surpris-
ing short-term, population-wide behavior changes around external political events such as
election debates and Election Day. To our knowledge, this is the first time such dynamic
homophily effects have been measured. We find that social exposure to peers in the network
predicts individual future opinions (R 2 ~ 0.8, p < 0.001). The use of mobile phone based
dynamic exposure increases the explained variance for future political opinions by up to 30%.

It is well known that face-to-face networks are the main vehicle for airborne contagious dis-
eases (Elliott, Spatial Epidemiology, 2000). However, epidemiologists have not had access to
tools to quantitatively measure the likelihood of contagion, as a function of contact/exposure
with infected individuals, in realistic scenarios (Musher, NEJM, 2003), since it requires data
about both symptoms and social interactions between individuals. We use of co-location
and communication sensors to understand the role of face-to-face interactions in the con-
tagion process. We find that there are characteristic changes in behavior when individuals
become sick, reflected in features like total communication, temporal structure in communi-
cation (e.g., late nights and weekends), interaction diversity, and movement entropy (both



within and outside the university). These behavior variations can be used to infer the
likelihood of an individual being symptomatic, based on their network interactions alone,
without the use of health-reports. We use a recently-developed signal processing approach
(Nolte, Nature, 2008) to better understand the temporal information flux between physical
symptoms (i.e., common colds, influenza), measured behavior variations and mental health
symptoms (i.e., stress and early depression).

Longitudinal studies indicate that health-related behaviors from obesity (Christakis and
Fowler, 2007) to happiness (Fowler and Christakis, 2008) may spread through social ties.
The effects of social networks and social support on physical health are well-documented
(Berkman, 1994; Marmot and Wilkinson, 2006). However, these studies do not quantify
actual face-to-face interactions that lead to the adoption of health-related behaviors. We
study the variations in BMI, weight (in lbs), unhealthy eating habits, diet and exercise, and
find that social exposure measured using mobile phones is a better predictor of BMI change
over a semester, than self-report data, in stark contrast to previous work.

From a smaller pilot study of social exposure in face-to-face networks and the propagation
of viral music, we find that phone communication and location features predict the sharing
of music between people, and also identify social ties that are 'close friends' or 'casual
acquaintances'. These interaction and music sharing features can be used to model latent
influences between participants in the music sharing process.
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Title: Professor of Media Arts and Sciences, Program in Media Arts and Sciences
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Chapter 1

Introduction

As citizens of the information age, we leave pervasive digital traces of our idiosyncratic be-

havior in emails, social networking sites, mobile phone call records, automatic teller machine

(ATM) transactions, and metropolitan train systems. As researchers in the emerging field

of Computational Social Science (CSS), our interests lie in building quantitative models of

large-scale human social systems from these digital traces, and answering key supporting

questions related to privacy, data-ownership, user-feedback and behavior manipulation.

The diffusion of information, ideas, opinions and media in a social network and the influence

of individual nodes on the diffusion process are important questions in the social sciences.

In this thesis, we use mobile phone sensors to model the spread of opinions and behaviors

in face-to-face networks, in the social contexts of political opinions, health and weight

management, and epidemiology.

The contributions towards this goal, discussed in detail in the following chapters, are as

follows:

* Devise an experimental methodology, and engineer a mobile platform to capture face-

to-face interactions and the adoption of various behaviors for a tight-knit social com-

munity



" In the context of political opinions, this approach captures underlying micro-variations

in homophily, and can be used to identify political discussants and explain future

opinion changes for individuals

" In the context of spatial epidemiology, this approach captures behavior variations that

allows us to identify symptomatic individuals, and provides insight into the mechanism

that links physical symptoms, behavior change and mental health symptoms

" In the context of social health, this approach shows how exposure to different aspects

of unhealty diet and lifestyle can predict future BMI and weight changes for individuals

embedded in the network

" In the context of social media, our approach helps understand the evolution of friend-

ship ties and viral music propagation

1.1 The Role of Face-to-Face Networks in Social Diffusion

Why is it important to study the propagation of ideas and behaviors in social networks?

Models of the diffusion of ideas, innovations, recommendations and media have been ex-

tensively studied in different fields of social science literature, including but not limited to

management science (i.e., diffusion of innovations and viral marketing), political science

(i.e., political influence on voting behavior), public health policy (i.e., social influence and

support mechanisms for health and wellness) and spatial epidemiolgy (i.e., modeling the

spread of contagious diseases and epidemics). In this section, we discuss selected prominent

works across these different social sciences, that are relevant for this thesis.

In management science, the idea of diffusion of innovations gained popularity with the work

of Rogers [105], who identified distinct classes of innovators, early adopters, mainstream

majority, and laggards in the adoption of ideas. The network interactions between these

classes were used to explain the adoption 'S-curves' of new products and opinions.

More recently, in the workplace context, Aral and Van Alystne [4] compared corporate

email communication with objective performance, experience and demographic data about



the employees of a hiring firm. They found that complex discussion topics have a very

different underlying diffusion mechanism than simple declarative event news and factual

information. Strong ties, equivalence of tenure and path length were significant predictors

of the diffusion of discussion topics, while these factors had little effect on the propagation

of factual news and information though the organization. This access to novel information

was a better predictor of productivity than traditional human capital variables and was

significantly related to additional revenue generated by the person, by approximately $70

per 'additional word seen', in their dataset.

In follow-up work, Aral and Van Alstyne [5] studied the role of network diversity and

channel bandwidth, in access to novel information. They found that structural diversity

was correlated with better performance- in economic terms, one standard deviation increase

in non-redundant information was associated with $4600 of additional revenue, a ten percent

improvement on projects completed, and a project duration reduction of fifteen days per

person per month. In thier dataset, a diverse network had more channels, but most of these

channels were low-bandwidth, weak ties.

In political science, studies have proposed two competing models of social influence and

contagion [22]. The social cohesion model suggests that influence is proportional to tie

strength, while the structural equivalence model [48] proposes that influences exist across

individuals with similar roles and positions in networks. In both cases, social scientists agree

that measuring flows of political influence within a social network is complex because (a)

flows of information and influence are bi-directionally causal, and it is hard to isolate one-

directional effects, i.e., from ego to alter (b) it is hard to accurately discriminate between

change in political opinion due to social influence, and change due to common external social

attributes and events and (c) it is hard to distinguish between short-term and long-term

influence effects.

Huckfeldt and Sprague [55] studied the interdependence of an individual's political opinions,

their political discussant network and geo-political context and demographics during the

1984 presidential elections. They found a social dissonance effect in the propagation of

political opinions, i.e. voters showed a remarkably high accuracy in their perception of



discussant's opinons where the discussants held similar opinions (approximately 90 percent

accuracy), but for the discussants that held different political preferences than the main

respondent, this perceptive ability was only about 55 percent aaccurate.

With regard to network structure and influence, Huckfeldt and Sprague found an 'inverse

U' relationship with tie-strength, i.e. discussant effects are stronger for less intimate rela-

tionships like acquaintances and frequent contacts than they are for close friends. In thier

words, this result is explained as, "individuals choose a close friend or spouse based on

other important social factors (common interests, employment etc.) but find people outside

strong ties that they resonate with in terms of political dialogue and opinions".

In public health literature, the hypothesis that social support is a key factor of individual

health and wellness is broadly accepted [75, 60]. Recent work suggests that face-to-face

networks are also an important vehicle for the propagation of healthy behaviors and com-

bating unhealthy behaviors in public health and preventive social healthcare. Christakis

and Fowler [27] studied the spread of obesity over 32 years of the Framingham heart study

dataset. They found that an individual's likelihood of becoming obese increased substan-

tially if a friend, sibling or spouse became obese. Using time-lagged variables and lon-

gitudinal analysis they determine that the observed weight changes represent induction,

although the statistical validity of this finding has been recently questioned [33]. Christakis

and Fowler have reported similar effects for the cessation of smoking, where it was found

that the likelihood of cessation increased substantially for an individual if a spouse, sibling

or friend gave up smoking, and clusters of participants gave up smoking [28], and also for

the spread of happiness. In all these cases, the propagation of behaviors was attributed to

social contagion on the basis of longitudinal analysis.

Apart from tie nature and strength, the structural properties of the underlying network

have been shown to be important in accelerating or limiting the diffusion process, measured

using agent-based simulations and emperical behavioral experiments in sociology. Mason

and Goldstone [76] found that different network topologies affect system-wide performance

for complex tasks (e.g., adoption of a new innovation with a community), as well as the

balance between exploration and exploitation. For a complex problem-solving task with



many local maxima but one global maximum, a small-world network structure leads to

fastest solution, as participants are forced to invest in exploring the entire problem space

due to the interaction limitations imposed by the small world network. Lazar and Friedman

[65] reported similar results in an agent-based simulation of complex problem solving task

within a contrained network environment. Hence, constraining information access and

diffusion within a network may improve group performance for complex tasks.

The cascading effects of social diffusion also play a role in herding behavior in economics

[8] and speculative bubbles in financial markets [108] .

1.1.1 The Problem of Informant Inaccuracy

So while the underlying social questions are important, why has it been hard to answer them

in the past? The limitations stem from the tools used to collect data, and the associated

problem of informant inaccuracy. Social scientists have traditionally relied on surveys and

self-report measurements to model diffusion and influence phenomena, but the accuracy of

self-reported face-to-face interaction data is relatively poor.

In a broad review of self-report literature, Bernard et. al. [16] found that about half

of what informants report is inaccurate in some dimension. For example, in health care

studies, around 25 percent to 50 percent of health related issues were unreported if they

were over 9-12 months old. In social interaction studies, recall of interactions with specific

individuals (close friends, people most time spent with, etc.) had approximately 50 percent

accuracy. Brewer and Webster [19] measured the recall of friends amongst college students,

who lived in a common university residence hall. During interviews with students, subjects

were first asked to recall friends (unassisted) with the residence hall, and then asked to

recognize friends from the complete list of residents. On average, subjects forgot about 20

percent of their friends.

This limited ability to recall is due to time omission (i.e., memory of events and actions

decays with time) and telescoping effects (i.e., individuals tend to under-estimate the time



dimension). In some contexts, poor recall is a function of how individuals like to be per-

ceived, e.g., under reporting sick leave, unemployment levels, drug-use or missed voting

opportunities. In other social situations, poor recall is due to our selective memories, as

when efficiently building memories, humans rarely remember precise details of interactions.

Instead, interactions and information about external events are encoded in relevant cogni-

tive interpretations, e.g., a water-cooler conversation. Sociologists have used 'conceptual

variables' [16] to capture beliefs and attitutes as supported by our memory structures, but

such variables have not demonstrated predictive power. Demographic variables have been

found to be uncorrelated with the ability to recall [19].

1.1.2 The Causality Problem

To manipulate future outcomes, it is important to understand the underlying causal mech-

anism, especially if the phenomenon involves complex interdependencies in social variables

and manipulations are in the form of interventions or public policy decisions. However, con-

clusive causal explanation of behavioral change due to social induction in social networks

is a remarkably hard problem. An important area of work has been around trying to con-

clusively disambiguate social induction from homophily and common confounding factors

in networks. Associative mixing [87], temporal clustering and longitudinal analysis [27] are

a few of the approaches that have been used to explain social induction as the underlying

causal mechanism of adoption in networks.

An early example of misleading conclusion of social induction was Coleman's study [34]

where the rapid adoption of Tetracycline was originally attributed to the social influence

of early-adopter practitioners, considered thought leaders in the field. However, follow-on

analysis almost forty years later [38] found that the adoption was entirely explained by

the product characteristics and aggressive marketing techniques used by the drug company

salesmen. Cohen-Cole and Fletcher [33] have questioned the statistical validity of the lon-

gitudinal regression analysis used by Christakis and Fowler [27] on the Framingham Heart

studies. Applying similar longitudinal analysis to the National Add Health dataset indicates



that acne, height and headaches are contagious (known to be impossible), which implies

confounding in the original result.

On the other hand, several promising statistical and experimental works have resulted in

more conclusive causal results. For voter behavior, Nickerson [88] used a placebo-treatment

experiment design to isolate the influence of a spouse from the effects of common social

attributes on voting behavior. Similar voting behavior between married couples is often

attributed to homophily- shared values, neighborhood, education, children, exposure to

mass media and local events. These contextual variables can be easily confused with ac-

tual influence that a person exerts on their spouse to vote for a candidate. In Nickerson's

experiment, one-person in a two-person household was targeted by a controlled exogenous

shock and the indirect boost in turnout on their spouse was compared to a placebo group

that recieved a non-political shock, and a control group that received no shock. The treat-

ment group transmitted roughly 60 percent of their increased propensity to vote to their

untreated spouse. Salganik and Watts [107] used a replicated worlds experiment design

to measure peer influence in the popularity of music tracks with internet users, and found

unpredictable rankings of music tracks in each world, unrelated to the actual quality of

music, but determined by the cascading effect of social influence.

In support of statistical methods used to disambiguate between causal mechanisms of adop-

tion, Aral et. al [6] used a dynamic matched sample estimation framework to compare the

relative role of homophily and social influence in the adoption of an online product across

a global instant messaging network, and found that homophily explains more than 50%

of perviously-assumed behavior contagion amongst network ties. The Phase Slope Index

(PSI) is a recently proposed statistical method based on the use of cross-spectra of time

series data as a noise-resistent measure of information flux between signals. This method

is used to better understand the temporal relationship between physical symptoms, mental

symptoms and measured behavior variations in Chapter 4.



1.2 Sensor-based Computational Social Science

Social interactions in the real world present a great avenue for understanding user behavior.

Long term monitoring has been implemented using a variety of technologies including video

[106], smartphones [41, 42, 73, 82, 1], wearable sensing devices [100, 63, 92, 91, 26], and

web-based social media and electronic data [18, 110, 118, 69, 70, 3, 85].

The movement to model face-to-face interactions in social networks using sensing technolo-

gies, began with the work of Choudhury and Pentland [23], who devised the 'Sociometer'

to understand the network structure, and detect when people were in conversation. Choud-

hury and Basu [25] modeled turn-taking behavior in face-to-face conversations, and found

that the 'influence' of each participant in joint turn-taking, was correlated with betweenness

centrality of the person, estimated from the social network.

There are four billion mobile phones worldwide, which can be used as ubiquitous sensors

of location, proximity and communication. Eagle, Dong and Pentland [41, 39] coined the

term Reality Mining, and used mobile phone sensors to learn network structure in the

MIT community. Gonzalez et. al. [51] have shown that call detail records can be used to

characterize temporal and spatial regularity in human mobility patterns better than random

walk or Levy flight simulations. Other examples of the use of mobile phones to map human

interaction networks include the CENS participatory sensing project at UCLA [1], and the

mHealth and Darwin projects at Dartmouth [7, 82].

The use of sensors and electronic badges to understand social network evolution and face-to-

face interactions has also evolved, since electronic badges often incorporate infrared(IR) sen-

sors that capture the direction of face-to-face proximity. Olguin, Waber and Kim [92, 93, 91]

have shown the importance of measurement and feedback using sociometric badges in several

contexts, viz., understanding the link between communication patterns and task completion

at a data-center, improving the productivity of call center employees by modifying their

break structure, and improving the performance of groups in co-located and distributed

meetings, by providing individuals feedback on thier personal communication style. Using

similar sensor hardware, Wyatt et. al. [116] found a link between speaking style and social



tie strength, suggesting that people change their conversation patterns depending on the

type/strength of the relationship with the other person. Similar to [25], they also found

a correlation between individual speaking style, and network (closeness) centrality. These

result suggest that micro-interaction style may be a function of the role or influence of the

participating individuals.

Communication patterns can be gathered through phone calls, text messages, e-mail, in-

stant messaging and web-based social networks. Vocal analysis has been used to capture

nonlinguistic communication and social signaling in different contexts [24, 72, 92, 100, 93].

1.3 Stochastic Models of Social Networks

A social network [112] is a mapping of social ties on a network graph, with actors (or nodes)

connected by relations (or ties). Clustering methods have been proposed to identify different

sets of nodes in the network structure, usually based on a distance metric computed from

network structure [54, 83] Clustering is related to community structure in networks, and

various methods have been devised to identify boundaries of these existant communities in

network data [50, 10, 98, 62].

For modeling networks, Exponential Random Graph Models (ERGMs) are a popular choice

because they can be used to answer simple as well as complex network questions, by defining

the probability of an observed network as a function of different structural characteristics

such as density, reciprocity, or cliquing [104]. Various extensions have been proposed to

overcome limitations of basic ERMSs, e.g., hidden and latent ERGMs [53] to overcome thier

inability to represent temporally-varying networks, and curved-exponential families [56] to

reduce degeneracy at the cost of more complicated features. Classic ERGMs assume that

ties/edges are binary (i.e., equal weights) and time homogenous, but this is not true of real-

world sensor data or the underlying social ties. Wyatt et. al. [115] have extended ERGMs

to incorporates multi-dimensional social ties, and a curved exponential family model to

model the temporal inhomogeniety. When this representation was applied to sensor-based



face-to-face behavioral data, they found that samples drawn from the fitted model explained

emperical link density and path length distributions better than time-homogeneous ERGMs.

Markov Logic Networks [103] combine probabilistic modeling with first-order logic, and

exponential formula weights represent the likelihood of the logic fomula being true in the

observed dataset. Bayesian models like Latent Dirchlet Allocation [17], Author-Topic [109,

77] and Group-Topic [111] models have been applied to social network analysis when content

or contextual data, that can be deconstructed into topics, is present.

Compartment models like the Susceptible, Infectious, Recovered (SIR) model and its vari-

ants are used to model population dynamics and epidemic curves using differential equations

in epidemiology. Recent compartmental approaches have taken into account mobility vari-

ations, but only in a heuristic way and not at the individual level [20, 35, 43].

1.4 Discussion

In this chapter, we outlined the need for the subsequent contributions of this thesis, and

provided background for various aspects of our work. Modeling how people adopt ideas and

behaviors in face-to-face networks is an important question in social sciences. Progress has

been limited, however, by problems of informant inaccuracy and challenges of disambiguat-

ing causality. A movement has been forming around the use of sensors and smartphones as

media to capture face-to-face interactions. Meanwhile, a variety of statistical and Bayesian

modeling tools are available to model social network interactions.



Chapter 2

Methodology

How can we generate fine-grained interaction data required to model face-to-face interac-

tions in social contexts? Other researchers have used large-scale consumer data provided

by mobile network operators to understand human behavior [51]. The approach used in

this thesis was to devise a 'community microscope' to help understand how people interact

continiously, over a long period.

This approach has several advantages: (a) it is the only way to probe participants for differ-

ent self-reported opinions and behaviors, data which are unavailable from mobile operators

(b) it make it possible to capture proximity, co-location and other interaction modalities

beyond Call Data records (CDRs) provided by mobile operators (c) it allows participation

of a complete tight-knit set of participants from a single community, across four different

mobile-operators in the study.

On the other hand, deploying an experimental platform within a community is limited by

scale, cost and effort.



2.1 Experiment Design: A Community Microscope

The experiment was designed as a long-term longitudinal study with seventy residents of an

undergraduate residence hall (referred to as an undergraduate dormitory in North America),

that serves as the primary residential, cooking, social activity and sleeping quarters for the

residents. This residence hall was the smallest undergraduate dormitory at the university.

The participants in the study represent eighty-percent of the total population of this hall,

and most of the remaining twenty-percent are spatially isolated. The dormitory is known

within the university for its pro-technology orientation and the decision of students to

reside within the dorm is determined via self-selection, by both incoming students and

incumbent residents. The students were distributed roughly equally across all four academic

years (freshmen, sophomores, juniors, seniors), about 54% of the students were male, and

predominantly engineering, mathematics and science majors. The study participants also

included four graduate resident tutors that supervised each floor. The participants used

data collection Windows Mobile devices as their primary phones, with their existing voice

plans. Students had data access on these phones due to pervasive wireless (wifi) on the

university campus and in the surrounding metropolitan area.

The overarching experiment was designed to study the adoption of political opinions, diet,

exercise, obesity, eating habits, epidemiological contagion, depression and stress, dorm po-

litical issues, interpersonal relationships and privacy. A total of 320,000 hours of human

behavior data was collected in this experiment. In addition to mobile phone sensors, partic-

ipants completed daily, weekly, and monthly respondent surveys related to these dependent

variables. The experiment deployment timeline is described in Table 2.1. Additional

information about the weekly and monthly surveys is available here [73].

2.1.1 User Privacy Considerations

A key concern with such long-term user data collection approaches is securing personal pri-

vacy for participants. This study was approved by the Institutional Review Board (IRB). As

financial compensation for completing monthly surveys and using data-collection devices as



Table 2.1: Experiment Deployment Timeline
iPhone pilot deployment with two other dormitories Spring 2008
Engineering the Windows Mobile data collection plat- Summer 2008
form
First-half of the experiment, which included the US Fall 2008
presidential elections
Second-half of the experiment, which included the Spring 2009
daily physical symptoms sub-experiment
Post-processing and data-cleanup Summer and Fall 2009

their primary phones, participants were allowed to keep the devices at the end of the study.

The sensing scripts used in the platform capture only hashed identifiers, and collected data

is secured and anonymized before being used for aggregate analysis. To minimize miss-

ing data from daily symptom reports for the influenza-related analysis, participants were

compensated $1 per day that they completed the on-device symptom survey. Additional

privacy-related discussion and participant quotes are available in Chapter 7.

2.2 Mobile Sensing Platform

With the above goals in consideration, the mobile phone based platform for data-collection

was designed with the following long-term continuous sensing capabilities, based on Win-

dows Mobile 6.x smartphones. Daily captured mobile sensing data was stored on-device on

read/write SD Card memory. On the server side, these logs files were merged, parsed and

synced by an extensive Python post-processing infrastructure, and stored in MySQL for

analysis. This sensing software platform for Windows Mobile 6.x has been released under

the LGPLv3 open source license for public use [84].

The mobile phone based platform for data-collection had the following sensing capabilities,

and the platform architecture is shown in Figure 2-1.



2.2.1 Device Selection

The platform was based on Windows Mobile 6.x devices, since they could be deployed with

all four major American operators. Software was written using a combination of native-C

and managed-C#. The software-sensing package was supported for six different handset

models in the Windows Mobile product range. All supported devices featured WLAN,

EDGE and SD Card storage, and most featured touch screens and flip-out keyboards. The

HTC Tilt, a popular GSM phone in our experiment is shown in Figure 2-1.

2.2.2 Proximity Detection (Bluetooth)

The software scanned for Bluetooth wireless devices in proximity every 6 minutes (a com-

promise between sensing short-term social interactions and battery life, refer [42]). The

Windows Mobile phones used in our experiment were equipped with class 2 Bluetooth ra-

dio transceivers, with practical indoor sensing range of approximately 10 feet. Scan results

for two devices in proximity have a high likelihood of being asymmetric, which is accounted

for in analysis. Due to API limitations of Windows Mobile 6.x, signal strength was not

available during scans. The format for captured Bluetooth logs is shown in in Table 2.2.

2.2.3 Approximate Location (802.11 WLAN)

The software scanned for wireless WLAN 802.11 Access Point identifiers (hereafter referred

to as WLAN APs) every 6 minutes. WLAN APs have an indoor range of approximately

125 feet and the university campus had almost complete wireless coverage. Across various

rooms and common areas within the undergraduate residence, over 55 different WLAN APs

with varying signal strengths can be detected. The format for logged WLAN APs is shown

in Table 2.2.
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Figure 2-1: Data Collection Platform

2.2.4 Communication (Call and SMS Records)

The software logged Call and SMS details on the device every 20 minutes, based on recent

events. These logs included information about missed calls and calls not completed. The

format for logged call records and SMS messages is shown in Table 2.2.

.. ........... . ................ .. ........ ...... ........



Table 2.2: Logged Data Formats
Bluetooth UTC timestamp

remote device MAC hash
WLAN UTC timestamp

AP MAC hash
AP ESSID
Signal Strength 0-100

Calls UTC start timestamp
UTC end timestamp
remote phone number hash
incoming vs. outgoing flag -

missed call flag
roaming flag

SMS remote phone number hash
incoming/outgoing

2.2.5 Battery Impact

The battery impact of long-term mobile sensing has been previously discussed [42]. In our

case, periodic scanning of Bluetooth and WLAN APs reduced operational battery life by

about 10-15 percent. Depending on the device models and individual usage patterns, the

average usable battery life was between 14-24 hours. Windows Mobile 6.x phones have

relatively poorer battery performance to begin with, and WLAN usage for web browsing by

the user had significantly more impact on battery life than our sensing scripts. (e.g., using

802.11 WLAN for web browsing for 4-5 hours continuously on some phone models drained

batteries completely). If available, users were provided with extended batteries for their

phones. Over-the-air data uploads to the server were disabled for most of the experimental

deployment due to WLAN battery considerations.

2.2.6 Post-Processing and Database

Daily captured mobile sensing data was stored on-device on read/write SD Card memory.

On the server side, these logs files were merged, parsed and synced by an extensive Python

post-processing infrastructure, and stored in a MySQL database for analysis.



This sensing software platform for Windows Mobile 6.x has been released under the LGPLv3

open source license for public use, and is available for download here [84].

2.3 The Dataset

Between September 2008 and June 2010, the dataset consists of 3.15 million scanned blue-

tooth devices, 3.63 million scanned WLAN access-points, 61,100 logged call data records,

and 47,700 logged SMS messages. Of these, 2.08 million scanned bluetooth devices belong

to other experiment participants, and 11,289 calls and 9533 SMS messages are exchanged

with other experiment participants.

Various interesting aspects of the dataset are illustrated in the remaining figures in this

chapter. Figure 2-2 and Figure 2-4 show the number of sample counts for Bluetooth, Calls

and SMSs for each day of the Fall and Spring semester respectively. A slight reduction in

total daily counts is seen in early December 2008, which was also end-of-semester. Simi-

larly, Jan 2009 is the independent activities period, when many participants were away on

interships and travel.

For both semesters, there is weekly temporal structure in the dataset, evident in Figure

2-3 and Figure 2-6. In the Fall 2008 months, there is a peak in SMS communication for

the few hours on Friday evenings, and a corresponding dip in Bluetooth proximity during

the same period. A similar but weaker structure with SMS messaging is seen in the Spring

semester.

The daily temporal structure for the academic year reflects the peak activity times for the

residents, shown in Figure 2-7. Participants tend to sleep very early in the mornings, rather

late by the standards of working adults.

While network graphs are often used to study social networks, sensor data is multi-dimensions

and dynamic, and these complex relationships between nodes cannot be easily summarized

in a single plot. Figure 2-7 illustrates this property, with four different networks plotted for

all participants. Two of these networks are based on weekly bluetooth physical proximity,



a third is based on phone calling patterns, and the fourth is from self-reported close friend

ties. It is seen that each network captures a different 'slice' of community interaction, and

ties are not maintained across different modalities. This is further evident in the individual

centrality measures for participant nodes, shown in Figure 2-8. Participant centality varies

dramatically across different interaction modalities. For example, while some participants

appear central in the self-report network, their social importance is not reflected in the

bluetooth proximity or calling networks.

Figures 2-9 - 2-13 provide more information about the self-report networks for the same

period. The 'close friends' network from six monthly sociometric surveys is compared to

the 'willing to share Facebook photos and Tweets' network during the same period. The

average number of close friends per individual ranges from 7-11 during the study period

(increasing with time), and the average number of 'willing to share share Facebook photos

and tweets' ties is about 3-4 times the number of close friends, during the same period.

More information about the network measures plotted in Figure 2-10 and 2-11 is available

here [112].
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Figure 2-2: Total sample counts for Bluetooth (top), Calls (middle) and SMS (bottom) for

the Fall 2008 semester. End-of-semester exams were in the first half of December 2008.
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Figure 2-3: Weekly distribution of Bluetooth (top), Calls (middle) and SMS (bottom) for

the Fall 2008 semester. Note the peak on Friday evenings for SMS and the corresponding

drop in Bluetooth counts, lasting for a few hours
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Figure 2-4: Total sample counts for Bluetooth (top), Calls (middle) and SMS (bottom)
for the Spring 2009 semester. January 2009 was an independent activities period, and the
semester started in February.
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Figure 2-5: Weekly distribution of Bluetooth (top), Calls (middle) and SMS (bottom) for
the Spring 2009 semester.
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Figure 2-6: Hourly distribution of counts for Bluetooth (left), Call (middle) and SMS (right)
for the entire academic year. The number of calls drops sharply in the early morning hours,
which reflects the late bedtimes for the undergraduate students.
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Figure 2-7: Four different interaction networks plotted for all participants. Node locations
are invariant. Top left: Bluetooth physical proximity network, week of 23rd-31st October
2008. Top right: Bluetooth physical proximity network for the week of 1st-8th November
2008. Bottom left: Self-report close friends network, based on the survey completed in the
first week of November. Bottom right: Phone calling network from 1st-30th November.
Each modality captures a different 'slice' of social interactions.

....... .. .......... ....................... . .. ......



Nowl Phylsi" Pninimfty Nio*
2nd Odbto31is 4t

Noist Phly iu ProIdmity Ndokm
Id No b Na Nov

UsUmpod Close Pdeds N.eimt

ILUL

Id Nob O01 Nov

lai~l li N .o.

(a) Degree centrality

Nais PhySi PMldnt Nir.k
2nd Otb 1sOst

NaIsy Phyinm Proity NIn ork
lit NOW b i Now

SOP-pad Class Pdeds Netwo
lstNov to30b Nov

- _n .I - R.- n .. - -. - - .= .

i Nov 1 Lo NoA

:1 . . ahIL .. I _ k, . ... i
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Figure 2-8: Network centrality measures for individual nodes for the four different networks
shown in Figure 2-7. The relative importance of a node in the community varies with the
interaction modality. For example, nodes that seem central in the self-report network don't
have the similar positions in bluetooth proximity and phone calling networks.
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(a) 'Close friend' ties
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(b) 'willing to share Facebook
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Figure 2-9: The number of close friend ties, compared to the number of 'willing to share
Facebook photos and Tweets' ties for each of the six monthly sociometric surveys. The
number of ties increase from Sept 2008 to June 2009. Overall, there are about 3-4 times as
many ties for sharing Facebook/Twitter access, than for close friends.
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Figure 2-10: Network properties for the self-report close-friends network, for six monthly
sociometric surveys between Sept 2008 and June 2009. The average number of (undirected)
ties per node increases from approximately 7 (Sept 2008) to about 11 (June 2009) during
the course of the experiment. The average (minimum) path length, correspondingly reduces
from 2.6 hops to 1.9 hops in the same period.
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Figure 2-11: Network properties for self-reported 'willing to share Facebook photos and
Tweets' networks, for six monthly sociometric srveys from Sept 2008 to June 2009. The
average number of (undirected) ties per node increases from approximately 24 (Sept 2008)
to about 27 (June 2009) during the course of the experimentThe average (minimum) path
length, is around 1.6 hops.
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Figure 2-12: Degree Distribution for self-report close friend networks from Sept 2008 to
June 2009
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2.4 Discussion

The data collection platform used for the study is described in detail in this chapter. We

hope that this 'social sensing' approach will be used in other research studies, and also in

applications that provide the user feedback, with the intention of inducing positive behav-

ior changes. Any future mobile sensing platform should be designed along the following

guidelines:

9 It should be designed for comfortable, longterm, continuous use, ranging from several

weeks to months.

e It should be meant to be used as the users always-on, primary mobile device, so that

day-to-day use is intuitive, and not cumbersome. User's are more likely to remember

to carry and charge a primary device.

* Inbuilt security, encryption and removal of personal identifiers are essential, as these

devices collect sensitive personal information that should be secured.

e Support for user feedback, and the ability to visualize his/her own data, and poten-

tially induce positive behaviors are important. Experience sampling could be used for

active/reinforcement learning.

Our ability to understand social interactions will also improve with advancements in sensing

hardware. For example, global positioning systems (GPS) and assisted cellular triangula-

tion are better localization technologies than 802.11 WLAN APs used in our study. The

resolution of face-to-face proximity measurements will improve if Bluetooth signal strength

or Infra-Red (IR) sensors become common on smartphones.



Chapter 3

The Evolution of Political Opinions

We study the evolution of political opinions during the last three months of the 2008 US

presidential campaign, and the role of face-to-face interactions, in this chapter.

We start with political opinions, since literature suggests that strong ties and social con-

text play an important role in determining them [55]. (Online purchasing behavior is a

counter-example, where both online recommendations and face-to-face interactions play an

important role [67]). It has been shown that strong, cohesive ties between people lead to high

interpersonal influence and faster diffusion. These strong ties are reflected in co-location

and communication patterns of users in our dataset [48] . Weak or 'bridging' ties, that

allow for short path-lengths while maintaining high clustering, are harder to discriminate

using our mobile sensing approach [113].

We find that self-reported political discussants have characteristic interaction patterns and

political discussant network ties can be recovered from sensor data. Mobile features can

be used to estimate unique individual exposure to different opinions, and help discover sur-

prising patterns of dynamic homophily related to external political events, such as election

debates and election day in 2008. To our knowledge, this is the first time such dynamic ho-

mophily effects have been measured. Using sensor features and estimated exposure and past

opinions, it is possible to predict future opinions for individuals (R 2 ~ 0.8, p ~ 0.001), and



measured exposure increases explained variance by up to 30% over that of survey responses

of past opinions alone.

3.1 The Political Opinions Dataset

The dataset used in this analysis is from two sources, for a period of approximately three

months, from September 2008 to November 2008.

3.1.1 Mobile Phone Data

The mobile phone interaction dataset consisting of approximately 450,000 bluetooth prox-

imity scans, 1.2 million WLAN access-point scans, 16,900 phone call records and 17,800

SMS text message events. The average duration of phone calls is approx 138 seconds, and

58 percent of measured interactions were during weekdays.

3.1.2 Political Opinions Survey Instrument (Dependent Variables)

The dependent political opinions were captured using three monthly web-based surveys,

once each in September, October, and November 2008 (immediately following the presi-

dential election). The monthly survey instrument was based on establised political science

literature, and consisted of the questions in Table 3.1. This survey instrument was identical

to that used by Lazer and Rubineau [66], who measured the monthly political opinions of

students across different universities (during the same 2008 election period) and studied the

co-evolution of political opinions and self-report friendship networks.

It is well known that shifts in political opinions are gradual [55]. Approximately 30% of

the participants changed their opinions for each of the dependent questions during the 3

month observation period. All opinion changes were limited to 1-point or 2-points on the

respective 4/7-point scales. The correlation coefficient for dependent variables representing

political opinions is shown in Appendix A.



Table 3.1: Political Survey Instrument used to capture different political opinions. All
responses were constructed as Likert scales.

Survey Question Possible Responses
Are you liberal or conservative? 7-point Likert scale

Extremely conservative to ex-
tremely liberal

How interested are you in politics 4-point Likert scale
Not interested to very interested

What is your political party preference? 7-point Likert scale
Strong Democrat to strong Repub-
lican

Which candidate are you likely to vote for? (Sept Choice between leading Republican
and Oct) and Democrat nominees

Which candidate did you vote for? (Nov) Choice between Barack Obama and
John McCain

Are you going to vote in the upcoming election? 4-point Likert scale
(Sept and Oct)

Did you vote in the election? (Nov) Yes or No



Due to the demographics, most participants in the study lean towards democrats on the

preferred party question and towards liberals on the liberal-conservative question. For

some of the following analysis, to minimize the effects of these imbalanced classes, political

party preferences responses were redistibuted into three classes, and liberal-conservative

classes are redistributed into 4 classes. The resulting distribution of responses across these

different classes of political opinions is summarized in Table 3.2. For the political party

preferences case, Independents and Republicans are grouped together due to the small

number of samples in each. More information about such binning of Likert scales is available

here [59].

For each monthly survey, participants also identified other residents that were political dis-

cussants, close friends or social acquaintances at that time. Baseline information including

race, ethniciy, political opinions of the person's parents and religious affiliations was also

collected before the start of the experiment. These additional surveys were identical to

those used by Lazer and Rubineau [66].

3.2 Analysis

3.2.1 Individual Exposure to Diverse Opinions

Can we measure our social exposure to diverse ideas and opinions? Threshold and cascade

models of social diffusion [52, 61] assume that all individuals in a population have a uniform

exposure, or that the underlying distribution of exposure to different opinions is known.

While exposure to different opinions is dynamic and characteristic for every individual, it

has previously not been incorporated into threshold and cascade models.

Dynamic exposure to different opinions can be estimated for each participant, on a daily or

hourly basis. Contact between two individuals is a function of different extracted features,

e.g., physical proximity counts (bluetooth), phone call and SMS counts, and total duration of

proximity or phone conversation, or other measures of tie-strength. These features represent



Table 3.2: Redistribution of Responses into Classes (due to majority of Democrats and
Liberals

Combined Combined
Response Type Samples in Samples in

Sept. Nov.

Are you Democrat or Republican?
Strong Democrat 24 25
Moderate Democrat 33 31
Slight Democrat
Independent 15 12
Slight Republican
Not very strong Republican
Strong Republican

Are you Liberal or Conservative?
Extremely Liberal 11 6
Liberal 32 33
Slightly Liberal 12 14
Moderate middle of road 18 15
Slightly Conservative
Conservative
Extremely Conservative

the time spent with others having different opinions in classes, at home, and in phone

communication.

We propose two measures of social exposure. Normalized exposure, Ni represents the av-

erage of all opinions a person is exposed to on a daily basis, weighted by the amount of

exposure to different individuals and their self-reported opinions, where opij represents the

opinion reponse for person j for a particular question, contactij is the bluetooth proxim-

ity counts between i and j (tie-strength), and Nbr(i) is the set of neighbors for i in the

interaction network.

Ni(t) = ( contactij - opi 9|( contactij
jENbr(i)



(a) Cumulative exposure to Democrats. Y-Axis is
Bluetooth proximity counts.

(b) Cumulative exposure to Rpublicans Y-Axis is
Bluetooth proximity counts.

(c) Normalized exposure for the Preferred party re-
sponse. Y Axis

Figure 3-1: Characteristic daily normalized and cumulative exposure for one resident during
the election period, from first week of Oct to mid November 2008. Contact is Bluetooth
physical proximity. X-Axis is days for all graphs. As seen, this individual had much more
exposure to democratic opinions than republican opinions during this period. Incidentally,
this person did not show an opinion shift for the preferred-party response during the study
(not shown).

Cumulative exposure, C to a particular political opinion 0, represents the magnitude of

a particular opinion that a person is exposed to on a daily basis, and is a function of the

amount of contact with different individuals and their self-reported opinion, where contactij

is is the bluetooth proximity counts between i and j (a proxy for tie-strength), and Nbr(i)

is the set of neighbors for i in the interaction network. contactij is can also be estimated

from other mobile interaction features, like counts for calling, SMS, and 802.11 WLAN

co-location.

................... ... ................ .... ......... .... .... ....... ............ ...... ............



Czo(t) = 6,j. ( contactij
jeNbr(i)

where 6 = 1 only if person j holds opinion 0, and 0 otherwise.

Figure 3-1 shows cumulative and normalized exposure for one participant during the elec-

tion campaign period. A limitation of measuring such social exposure from face-to-face

interactions, is that it is not possible to model exposure to external sources, e.g., television

news, press, or political weblogs. However, it is seen in the following sections, that using

sensor-based measures of social exposure alone, we find dynamic patterns of homophily and

can identify political discussants. Since self-reported political interest is postively correlated

with seeking political information in mass media [55], it could be used as a control in the

future.

3.2.2 The Emergence of Dynamic Homophily

Homophily, or the idea of "birds of a feather flock together", [64] is a fundamental and

pervasive phenomenon in social networks, and refers to the tendency of individuals to form

relationships with others that have similar attributes, behaviors or opinions. Homophily

commonly occours in emperical network data, and has been extensively studied as a soci-

ological phenomenon. McPherson and Smith [79] provide an indepth review of homophily

literature. The emergence of homophily during network formation has be explained us-

ing agent based models, and in economics [36] by incorporating chance, choice, and tie

formation costs.

In the context of political opinions, the emergence of homophily amongst randomly assigned

individuals would be expected over several months or years [66, 79]. In emperical studies,

homophily within a community has been shown to remain stable once network structure

is no longer evolving. However, these emperical observations of homophliy in political

networks have been limited to survey-based reports of social ties. In this section, we show



that our social sensing approach uncovers short-term dynamic homophily artefacts, to our

knowledge, not previously known in the social sciences.

As a starting point, static measures of homophily can be estimated using self-report social

ties in September 2008 (start of study) and November 2008 (election day). Let wi be the

relative fraction of individuals within the community with opinion i. Hi is the homophily

index, defined as the averaged ratio of same-type ties to total ties for individuals with

opinion type i. IHj is Coleman's inbreeding-homophily index, which measures the amount

of bias with respect to baseline homophily as it relates to the maximum possible bias (i.e.,

the term 1 - wi). More information about these homophily indices is available here [36, 79].

wi = Ni/N

Hi= si/(si + di)

IHj = (Hjwj)/(1 - wi)

When the network structure is invariant, the relationship between homophily index Hi and

relative fraction wi reflects the type of homophily in the self-report friendship networks of

September and November 2008. If wi > wj implies Hi > Hj, then the parameters satisfy

relative homophily. If Hi = wi for all i, then the parameters satisfy baseline homophily..

If Hi > wi for type i, then the parameters satisfy inbreeding-homophily, i.e. the tendency

of friendships to be biased towards own types beyond the effect of relative population size.

Finally, in some cases, the opposite may be true, such that Hi < wi for type i, wherein the

paramters satisfy heterophily and people of type i are biased towards having different-type

friendships.

In terms of the Coleman index, inbreeding homophily for type i exists if and only if IHi > 0,

and inbreeding heterophily for type i if and only if IHi < 0. The inbreeding homophily index

is 0 if there is pure baseline homophily, and 1 if a group completely inbreeds.

The relationship between homophily index Hi, inbreeding homophily IHi and relative frac-

tion wi is shown in Figures 3-2 - 3-9 for the political interest responses and the preferred



party dependent variables, in September and November 2008, for self-reported close-friend

networks and self-reported political discussant networks.

For political interest with respect to close friend networks, relative homophily is observed in

both Sept. and Nov. 2008, and tends closer to towards baseline homophily in Nov 2008. In

Nov 2008, the 'somewhat interested' class (Figure 3-3, in blue) shows fairly high inbreeding

hetrophily, i.e., a tendency for forming different-type relationships. This effect is not seen

for the other classes.

For political interest with respect to political discussant networks, we see some relative

homophily in both Sept. and Nov. 2008, although the 'very interested' class shows a

tendency for inbreeding-homophily and the 'somewhat interested' class shows a tendency

for inbreeding-hetrophily (Figure 3-5, red and blue respectively). In simpler terms, the

'very interested' participants have more ties with other people with high-interest in politics,

and the 'somewhat interested' participants have more diverse ties with other classes of

participants than should be expected.

For party preferences with respect to close friend networks, relative homophily is observed

as well. Here, the 'strong democrats' show a slight tendency towards inbreeding-homophily,

while the 'moderate democrats' show a tendency for inbreeding-hetrophily (Figure 3-7, red

and blue respectively).

Finally for party preferences with respect to political discussants, relative homophily is

stronger in Nov 2008 than Sept 2008. The 'strong democrats' show a tendency towards

inbreeding-homophily while the 'moderate democrats' show a tendency towards inbreeding-

hetrophily.
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Figure 3-2: Homophily Index Hi (left) and Coleman's inbreeding Homophily index IHi
(right) for the Political Interest response for self-reported close friend ties in September
2008 (start). Red = "Very Interested", Blue = "Somewhat Interested", Green = "Slightly
Interested" and Black = "Not at all Interested". X-Axis is wi in both graphs.
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Figure 3-3: Homophily Index Hi (left) and Coleman's inbreeding Homophily index IH
(right) for the Political Interest response for self-reported close friend ties in November
2008 (post-elections). Red = "Very Interested", Blue = "Somewhat Interested", Green =
"Slightly Interested" and Black = "Not at all Interested". X-Axis is wi in both graphs.
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Figure 3-4: Homophily Index Hi (left) and Coleman's inbreeding Homophily index IH
(right) for the Political Interest response for self-reported political discussant ties in Septem-
ber 2008 (start). Red = "Very Interested", Blue = "Somewhat Interested", Green =
"Slightly Interested" and Black = "Not at all Interested". X-Axis is wi in both graphs.
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Figure 3-5: Homophily Index Hi (left) and Coleman's inbreeding Homophily index IHj
(right) for the Political Interest response for self-reported political discussant ties in Novem-
ber 2008 (post-elections). Red = "Very Interested", Blue = "Somewhat Interested", Green
- "Slightly Interested" and Black = "Not at all Interested". X-Axis is wi in both graphs.
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Figure 3-6: Homophily Index Hi (left) and Coleman's inbreeding Homophily index IHj
(right) for the Preferred Party response for self-reported close friend ties in September
2008 (start). Red = "Strong Democrat", Blue = "Not Strong Democrat, Leaning towards
Democrats", and Green = "Independent, Leaning Towards Republican Party, Not Strong
Republican, Strong Republican", X-Axis is wi in both graphs.
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Figure 3-7: Homophily Index Hi (left) and Coleman's inbreeding Homophily index IHj
(right) for the Preferred Party response for self-reported close friend ties in November
2008 (post-elections). Red = "Strong Democrat", Blue = "Not Strong Democrat, Leaning
towards Democrats", and Green = "Independent, Leaning Towards Republican Party, Not
Strong Republican, Strong Republican". X-Axis is wi in both graphs.
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Figure 3-8: Homophily Index Hi (left) and Coleman's inbreeding Homophily index IHi
(right) for the Preferred Party response for self-reported political discussant ties in Septem-
ber 2008 (start). Red = "Strong Democrat", Blue = "Not Strong Democrat, Leaning
towards Democrats", and Green = "Independent, Leaning Towards Republican Party, Not
Strong Republican, Strong Republican", X-Axis is wi in both graphs.
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Figure 3-9: Homophily Index Hi (left) and Coleman's inbreeding Homophily index IH
(right) for the Preferred Party response for self-reported political discussant ties in Novem-
ber 2008 (post-elections). Red = "Strong Democrat", Blue = "Not Strong Democrat,
Leaning towards Democrats", and Green = "Independent, Leaning Towards Republican
Party, Not Strong Republican, Strong Republican". X-Axis is wi in both graphs.
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While these standard measures of static homophily provide an approximate sense of the

segregation and clustering amongst different classes of opinions, they provide very little

knowledge about the dynamic nature of the underlying phenomena. We propose a better

measure of homophily based on social exposure.

Unlike self-reported ties, social exposure can be used to estimate dynamic homophily pat-

terns on the daily timescale. Dynamic homophily estimated from normalized exposure is

given as,

Ai(t) = O- ( contacti/j > contactij
jENbr(i)

H(t) = Ai(t)/n

where Ai(t) is the difference between the individual's opinions and the opinions he/she is

exposed to, H(t) is a daily measure of dynamic homophily for the entire community, and

Oi are an individuals political opinion responses, on the full-range of the 4 or 7-point scale,

i.e., for the political interest response, Oi ranges from 1 ("Very Interested") to 4("Not at

all interested") and for the preferred party response, Oi ranges from 1("Strong Democrat")

to 7("Strong Republican"). Unlike the static homophily measures above, Oi is not based

on the redistributed classes.

Daily variations in H(t) are due to changes in mobile phone interaction features, that cap-

ture how participants interact with others. A negative slope in H(t) implies that residents

have more social exposure to individuals sharing similar opinions, in comparison to the

previous day or week. Similarly, an upward slope implies that residents have decreasing

social exposure with others having similar opinions.

This daily metric reveals surprising behavior during the final election debate and around

election day. For a few days around the election day and final debates, participants show a

higher tendency overall to interact with like-minded individuals. Statistical tests to support

this are summarized in Table 3.3, and this effect is shown in Figures 3-10 - 3-13.



Statistical validation of these dynamic homophily variations is done using repeated-measures

ANOVA, by which dynamic homophily values for different aspects of political opinions are

compared during three relevant periods (conditions). For each period, the average dyamic

homophily for the 5-day period per participant was estimated. This analysis was first

done for all participants, and then repeated for freshmen-only, who had only been in the

community for a month before start of the study, and where stronger effects are observed.

Full ANOVA tables, condition means, standard deviations, sample counts and supporting

information to validate normality assumptions are available in Appendix A 1.

The three experimental conditions (periods) chosen for validating the main effect were:

* Baseline Period (1st condition): 4th October to 10th October 2008

" Final election debate Period (2nd condition): 12th October to 18th October 2008

" Election period (3rd condition): 1st November to 7th November 2008

'in additional to the normality of residuals assumptions validated in Appendix I, repeated measures
ANOVA may also be susceptible to carry-over effects (i.e., results from the previous phase carry-over into
the next phase) and order effects (i.e., the sequence of conditions or treatments affects results)



Table 3.3: Statistically significant variations in Dynamic Homophily around the final elec-
tion debate period (15th Oct 2008) and election day (4th Nov 2008) period. Dynamic
homophily is calculated using bluetooth proximity (phone calling and SMS are not signifi-
cant for any self-reported political opinions)

Opinions Evaluated for main effects
over three periods (conditions)

Result Summary

Political Interest for all participants

Political Interest for freshmen only

Party preference for all participants

Liberal-conservative tendency for all
participants

Significant effect, higher tendency to interact
with like-minded individuals during debate and
final election period as compared to baseline pe-
riod, F - value = 8.49,p < 0.0004 (see Figure

3-10)

Significant effect, higher tendency to interact
with like-minded individuals during debate and
final election period as compared to baseline pe-
riod, F - value = 3.43,p = 0.04 (see Figure

3-13)

Not a significant effect, F - value = 0.87,p <
0.42 (see Figure 3-11)

Significant effect, higher tendency to interact
with like-minded individuals during debate and
final election period as compared to baseline pe-
riod, F - value = 6.26,p < 0.003 (see Figure

3-12)



These results are illustrated in more detail in the figures below. Figure 3-10 shows H(t)

for political interest for all participants, where daily network structure is estimated on the

basis of Bluetooth proximity counts. The first dip in this graph corresponds to the period

of the final election debate during the campaign, 14th Oct 2008. The difference between

the three conditions is statistically significant (F - value = 8.49, p < 0.0004).

07-Oct 14-00t 21-Oct 26-Ot 04-Nov 11-Nov I -Nov

07-ct 14- 21-Oct 2-0ct 04Nov 11-Nov 1-Nov

Figure 3-10: Dynamic homophily of political interest responses (using bluetooth prox-
imity) for all participants. Top: actual values and standard error bars. Bottom: Moving
average. Notice the decline, i.e. tendency to interact with others having similar opinions,
lasting for a few days, around Oct 15th 2008, which was the last presidential debate.

Figure 3-13 shows H(t) for political interest only for freshmen, based on daily bluetooth

proximity networks. The dynamic homophily effects for freshmen, who only had a month

to form ties in this community at this point, are visually pronounced, and a second dip is

seen around 4th November 2008 (Election day, F - value = 3.43, p = 0.04).

..................... . .............. ........ .............. .......................
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Figure 3-11: Dynamic homophily of preferred party responses (using bluetooth prox-
imity) for all participants. Top: actual values and standard error bars. Bottom: Moving
average. Participants show a higher tendency to interact with others having similar opin-
ions, lasting for a few days, around election events.
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Figure 3-12: Dynamic homophily of liberal-conservative responses (using bluetooth
proximity) for all participants. Top: actual values and standard error bars. Bottom: Moving
average. Participants show a higher tendency to interact with others having similar opinions,
lasting for a few days, around election events.
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Figure 3-13: Dynamic homophily of political interest responses (using bluetooth prox-
imity) only for Freshmen . There are two periods of decline, each lasting for a few days.
The first is around Oct 15th (last presidential debate) and the second is around 4th Nov,
Election Day.
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These behavior changes related to external events are seen in bluetooth proximity data, but

not in calling and SMS interactions, as shown in Figure 3-14 and Figure 3-15 (freshmen

only). This suggests that exposure to different opinions based on physical proximity plays

a more important role than exposure to opinions via phone communication. Similar results

are also observed for the preferred party responses and liberal-conservativ responses with

respect to phone communication.

07-OCt 14-Ot 21-Ot 0-Oct 04-Nov 11-Nov I$-Nov

07-Oct 14-Oct 21-Oct 20W-Oct 04-Nov II -NoV -Nov

Figure 3-14: Dynamic homophily based on the daily phone-calling network for political
interest responses estimated for all residents shows no variation related to election events.

Dynamic homophily graphs for the entire year are shown in Appendix A.

The clustering co-efficient [11] and average path length [112] are commonly used measures

to study the clustering and reach of nodes within networks. These measures calculated

for daily Bluetooth interaction networks during the same period do not show equivalent

significant variations around these periods of interest, which is quite surprising.

As seen in Figures 3-10 - 3-16, there is a tendency of individuals to interact with like-

minded individuals around important external events. The effect is significant for political

interest and liberal-conservative opinions, but not for particular party preference. It seems

............... .. .. .. . .. .. .. ................. ... ..... .. ..... . .......... - ..........
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Figure 3-15: Dynamic homophily based on the daily phone-calling network for political
interest responses for freshmen alone shows no variation related to election events.

to last only for a few days. This dynamic homophily effect is only observed in Bluetooth

co-location networks, and not in calling or SMS networks. This measure captures dynamic

patterns of homophily related to global political events from mobile phone sensor data. To

our knowledge, this is the first time such an effect has been quantitatively measured. Since

the effects last for a few days, they are not tied to a single meeting or discussion alone.

...... ...........



Figure 3-16: Weighted clustering coefficient (Y-axis) for daily Bluetooth interaction net-
works during the same period, and the X-axis represents days.
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3.2.3 Inferring Political Discussants

What are the behavioral patterns of political discussants? In monthly self-reported survey

responses, only 39.6 percent of political discussants are also close friends. Similarly, it

is found that having similar political opinions does not increase the likelihood that two

individuals will be political discussants in this dataset.

While these political discussants do not fit the mould of 'close friends' or individuals with

similar political opinions. we find that it is possible to identify political discussants from

thier interaction patterns. Classification results based on mobile phone interaction fea-

tures - total communication; weekend/late-night communication; total proximity; and late-

night/weekend proximity, that characterize a political discussant are shown in Table 3.4.

Two different approaches are used for comparison, an AdaboostM1 based classifier [47 and

a Bayesian network classifier[29], where each input sample represents a possible tie, and

both show similar results. As the classes are severely unbalanced, cost-sensitive approaches

are used in both case.

In this analysis, political discussants are treated as unidirectional ties. Precision and recall

of the discussant class are similar if self-reported the trainling labels are converted to bi-

directional ties.



Table 3.4: Classification Results: Identifying Political discussants based on exposure fea-

tures

Meta-cost AdaboostM1 (individual classifiers are decision stumps)
5-fold cross validation

Precision Recall F-Measure

Non-discussants 0.87 0.62 0.72
Political discussants 0.35 0.67 0.46

Cost-sensitive Bayesian Network classifier
5 fold cross-validation and K2 hill-climbing structure learning

Precision Recall F-Measure

Non-discussants 0.87 0.61 0.72
Political discussants 0.35 0.70 0.46



3.2.4 Exposure and Future Opinions

Exposure based features described in the previous section can be used as a feature to train

a linear predictor of future opinions. The coefficients used in a linear model of opinion

change include normalized exposure during the period, the persons opinion at the start

of the study (September 2008), and a constant term that represents a linearly increasing

amount of media influence as we get closer to the election date (Nov. 2008). For the various

political opinion questions, regression values are in the R 2 = 0.8, p < 0.01 region. Using

exposure based features explains an additional 15% - 30% variance across different political

opinion questions. The effects for freshmen are approximately twice as strong as compared

to the entire population, similar to the variations in dynamoc homophily related to external

events. In the context of social science literature, this is a fairly strong effect. Also, since the

evolution of political opinions is quite gradual, this approach may be expected to explain

more variance for opinions and habits which evolve faster, e.g. food eating habits.



Table 3.5: Least squares regression results for the opinion change model. The dependent
variable in all cases is the self-reported political opinion in November. The independent
regression variables are averaged opinion of self-reported close friends relationships and po-
litical discussants (I and II), normalized bluetooth exposure (III), and normalized exposure
combined with past opinion (IV). As seen, automatically captured mobile phone features
substantially outperform self-reported close friends or political discussants.

III II IV
Political Opinion Self-reported Self-reported Normalized Normalized

Discussants Close Friends Exp. Only Exp. & Sept
Opinion

Preferred Party not sig. not sig. 0.21** 0.78***

Liberal or Conserva- not sig. not sig. 0.16* 0.81***
tive

Interest in Politics not sig. 0.07* 0.24** 0.74***

Preferred Party not sig. not sig. 0.46* 0.83*
(freshmen only)

Interest in Politics not sig. not sig. 0.21** 0.78***
(freshmen only)

***: p < 0.001All values are R2, <*: p < 0.05 ** : p < 0.01



3.3 Discussion

In this chapter, we propose a novel application of face-to-face proximity and communication

sensing, for modeling the spread of political opinions. Using automatically captured sensor

data, we can estimate social exposure to different opinions for individuals on a daily basis.

Around notable political events in this dataset, individuals show a tendency to spend more

time with peers who share similar opinions. This effect only lasts only for a few days, and

is reflected in a measure of dynamic homophily we propose, but not captured by existing

measures of homophily. To our knowledge, this is the first time such a dynamic homophily

effect has been discovered in empirical data. For these external events, the community

shows more interactions with like-minded individuals for political interest, but less so for

party choices. In self-report networks, static homophily analysis shows that people with

high-interest and strong democratic party support tend to form in-breeding relationships,

while those with moderate political interest and moderate democratic party support tend

to have more diverse ties than would be expected.

Using automatically estimated exposure to different opinions, we predictive future political

opinions for individuals, and it is found that normalized proximity accounts for up to 30%

of the variance in their political opinions in November 2008. While only some political

discussants are close friends, and they are not peers with similar demographic background

or baseline political opinions, political discussants show a characteristic interaction style in

physical proximity and phone communication features, which can be used for classify them.

There are however, several limitations of this work. The simple linear model of opinion

change could be improved with dynamic/latent Bayesian models.The relationship between

between observed changes in opinions, and the diversity/frequency of contact with potential

change-inducers, needs to be explored further. The underpinnings of the observed dynamic

homophily effects, and why they are not reflected in other network measures, should also

be studied in more detail.



Chapter 4

Face-to-Face Interactions and

Epidemiological Behavior Change

Face-to-face interactions are the primary medium for propagation of airborne contagious

disease [97]. An important question in behavioral epidemiology and public health is to un-

derstand how individual behavior patterns are affected by, and intertwined with, physical

and mental health symptoms. Until recently, epidemiologists have not had access to sens-

ing and modeling capabilities to quantitatively measure behavioral changes experienced by

symptomatic individuals in real-world scenarios [37]. Such research requires simultaneously

capturing symptom reports, mobility patterns and social interactions amongst individuals

continuously over long-term duration. In this chapter, study the link between physical respi-

ratory symptoms, influenza, stress, mild depression and automatically captured behavioral

features. This is an important problem for several reasons.

Quantitatively understanding how people behave when they are infected would be a fun-

damental contribution to epidemiology and public health, and can inform treatment and

intervention strategies, as well as influence public policy decisions. On one hand, clinical

epidemiology has accurate information on the evolution of the health of individuals over

time but lacks realistic social interaction as well as spatio-temporal data [44]. On the other

hand, current research efforts in theoretical epidemiology model the rate of infection in a



population whose behavior is stationary over time and do not account for individual changes

[95]. For instance, if a person infected with influenza continues his habitual lifestyle instead

of isolating himself, he could pose a bigger risk to others in proximity. Based on our analysis

and results, policymakers can recommend social interventions that minimize such risk.

On the modeling front, compartmental epidemiological models (e.g., the Susceptible, Infec-

tious, Recovered or SIR model) commonly assume that movement and interaction patterns

for individuals are stationary during infection, i.e., that individuals will continue their typ-

ical behavioral patterns when sick. More recent epidemiological models accommodate re-

duced mobility variations to to fit epidemic curves, but in a heuristic way due to lack of data

at the individual level [20, 35, 43], which possibly limited their prediction accuracy during

the 2009 HINI influenza epidemic [78]. To our knowledge, we provide the first quantitative

results on this important measurement based on mobile sensing. Our results, described

below, can be plugged into the SIR model by specifying the number and frequency of con-

tacts that individuals will likely have when going from the S(usceptible) to the I(infected)

state, and therefore improving prediction accuracy. Furthermore, predicting likelihood of

symptoms from behavior could lead to a possible early-warning system and intervention by

medical experts, with the associated savings in economic and human resources [30].

The experimental context is two months of our experimental deployment, from February

to April 2009. Individuals were surveyed on a day-to-day basis for symptoms of airborne

contagious diseases like common colds, influenza and gastroenteritis. We find that there

are characteristic changes in behavior when individuals are sick, reflected in automatically

captured features like their total communication, communication patterns with respect to

time of day (e.g. late night, early morning), diversity of their network and entropy of

movement within and outside the university. Due the pervasiveness of the mobile phones,

this approach can be scaled to large-scale models of epidemiological contagion in the future.

We then use a recently developed signal processing approach [49] to shed light on the

information flux between physical symptoms, behavior changes and stress based on temporal

information flux gathered by our mobile sensors.



4.1 Link Between Physical Symptoms, Behavior Changes and

Stress

Sensor-based approaches may allow us to make a fundamental contribution to epidemiology,

in understanding the link between physical symptoms, mental health symptoms, and their

expression in social interactions and behavior. The intertwined relationships between these

is not well understood, due to limitations of existing clinical diagnosis and public health

tools, but plays an important role in clinical diagnosis, treatment and management of

chronic conditions.

In medical literature, substantial evidence has been found for an association between stress

and increased illness behavior, and less convincing but provocative evidence was found

for a similar association between stress and infectious pathology: Introverts, isolates, and

persons lacking social skills may also be at increased risk for both illness behaviors and

pathology [32]. Various medical conditions that involve activation of the immune system are

associated with psychological and neuroendocrine changes that resemble the characteristics

of depression. Recent studies have presented empirical evidence on the relationship between

the behavioral effects of immune activation and depressive symptomatology, characterized

by reduced locomotor, exploratory, and social behavior [117].

The association between psychosocial stress and susceptibility to upper respiratory tract

infection has also been investigated in people with a history of recurrent common colds and

flu. Several dimensions of psychosocial stress, including exposure to stressful experiences,

stress-prone personality traits, and signs of emotional disturbance have been investigated

in people with a history of recurrent common colds and flu. Experts conjecture that stress

depletes local immune protection, increasing susceptibility to colds and flu. Alternatively,

psychological disturbances could develop in response to frequent illness [40].



4.2 The Dataset

The analysis in this section combines data from two sources, daily survey instrument (com-

pleted on the mobile phone) and automatically captured interaction data as explained in

Chapter 2. The dataset described here corresponds to the period of 1st February to 15th

April 2009, the peak influenza months in New England.

4.2.1 Baseline and Daily Survey Instruments

A baseline survey, daily mobile phone survey instrument and post-experiment survey were

designed under the supervision of experienced epidemiologist 1 to generate training labels

for this section.

For meaningful analysis, it is important to isolate any confounding effects due to immuniza-

tion prior to the start of the experiment. The participants completed a baseline survey a few

days before start of the study. Approximately 20 participants reported received influenza

immunization via a flu-shot or flu-mist spray, and they are not considered in the analysis

in the next section.

The survey instrument was designed to capture daily symptom reports from the partic-

ipants. This survey instrument was designed to elucidate syptom self-reports related to

common contagious conditions- common colds, influenza, gastroenteritis, and fever possi-

bly due to these conditions or other factors. In addition, to understand the link between

physical symptoms and behavior change, the survey also included two questions related to

mental health, related to stress and early onset of depression. The question text, possible

responses and order is shown in Table 4.1.

This daily survey intrument was launched each day automatically on the mobile phone

platform. The launcher application launched a foreground survey dialog at 6am everyday

that asked the user to respond to the six survey questions. After three reminders, the device

UI was unusable until the user completed the survey. In the experiment deployment, users

'Dr. Devon Brewer



Table 4.1: Symptom Survey Questionnaire. All questions were Yes/No responses

Survey Question (as shown on mobile phone)
Do you have a sore throat or cough?
Do you have a runny nose, congestion or sneezing?
Do you have a fever?
Have you had any vomiting, nausea or diarrhea?
Have you been feeling sad, lonely or depressed lately?
Have you been feeling stressed out lately?

were paid $1 USD for every completed daily survey as participation incentive. The survey

launcher invoked the following daily questions:

The design of the survey questionnaire and subsequent labeling of self-report responses was

supervised by a trained epidemiologist. A total of 2994 survey responses were generated

using the smartphone-based survey launcher described in the previous section within the

relevant date range, of which 2099 responses were from individuals who had not been

immunized, with an approximate survey completion rate of 63% overall during the study.

These responses were converted into 48-hour windows, since individuals take up to one

day to report a symptom. This approach also reduces the impact of uncompleted survey

responses, since there is a higher likelihood that a participant will have completed at least

one survey during a 48-hour period. A few samples were dropped because of missing sensor

data during the period, e.g., due to lost or broken mobile phones. With these steps, a total

of 2283 sets of good quality mobile behavior sensor data and dependent variable reports

were obtained.

For analysis, mobile symptom reports have to be converted into syndrome conditions. It

is especially important to distinguish between symptoms that represent common colds and

allergies versus CDC-defined influenza [57] which has a characteristic signature reflected in

runny nose, sore throat and fever symptoms. Due to our limited expertise in this area,

selected combinations of self-reported symptoms were labeled as CDC-defined influenza by

a medically trained epidemiologist (see Acknowledgements). In our dataset, twelve such

cases of influenza, on average lasting 5-7 days and each affecting a distinct individual were



observed. The respiratory symptoms not identified as influenza cases by our expert, are

considered common colds or seasonal allergies.

4.2.2 Mobile Interacton Data

The phone sensor data during this period consists of 1,424,000 bluetooth samples, 201,000

WLAN AP samples, 15,700 call data records amd 11,269 SMS records.

4.3 Analysis

4.3.1 Mobile Behavioral Features

The following features were extracted from mobile phone sensor data over 48-hour window

sizes, with 50 percent overlapping windows. The window size was chosen for epidemiolog-

ical reasons, as individuals take up to one day to report a symptom. The features chosen

represent statistics of whom we talk to and where we are, i.e. the total number of inter-

actions, the diversity of interactions, and the entropy of our behaviors. Such observational

data has been shown to reflect important aspects of individual and collective behavior, like

friendships and individual job satisfaction [42, 90]. For days with reduced activity, the

entropy features capture the higher predictability of an individual's behavior, and was a

better feature than total number of bluetooth devices or WLAN APs observed.

Total Communication

This is the total number of phone calls and SMS exchanged, both with other participants

as well as third parties. This measure includes incoming and outgoing communication.



Late night and Early Morning Communication

Call and SMS communication between 10pm and 9am on weekdays, with both other par-

ticipants and non-participants.

Communication Diversity

The number of unique individuals reflected in phone and SMS communication within the

48-hour period.

Physical Proximity Entropy with Other Participants

This is the entropy of distribution of Bluetooth proximity with other participants.

n

Hp= - (p(xi) log2p(xi)
i=1

where p(xi) is the empirical probability of Bluetooth proximity with the remote device xi

belonging to another participant, within the particular time-window, i.e., p(xi) is the ratio

of the number of times the remote device xi was scanned divided by total count of scanned

devices in the 48-hour period.

Physical Proximity Entropy with Other Participants Late Night and Early

Morning

Similarly, this is the entropy of the distribution of Bluetooth proximity with other partici-

pants in the study, but only during late-night and early morning periods.



Physical Proximity Entropy for Bluetooth Devices Excluding Experimental Par-

ticipants

Similarly, this is the entropy of distribution of Bluetooth proximity. However, all Bluetooth

devices in discoverable mode scanned on the phone are considered in this case. This feature

reflects variations in interactions with 'familiar strangers', i.e., bluetooth beacons that the

user is often in proximity to, say at the bus-stop or in the classroom [81].

WLAN Entropy based on University WLAN APs

This is entropy for the distribution of WLAN access points scanned within the given period.

Only WLAN APs belonging to the university are considered.

n

Hw = ( xi)1og2p(xi)
i=z1

where p(xi) is the empirical probability of scanning a WLAN AP xi within the particular

time-window. Similar to Bluetooth physical proximity above, p(xi) is the ratio of the

number of times the WLAN AP xi was scanned divided by the total count of scanned

WLAN APs in the 48-hour period.

WLAN Entropy based on external WLAN APs

Similarly, this is entropy for the distribution of WLAN access points scanned within the

given period. Only WLAN APs external to the university are considered.

4.3.2 Behavioral Effects of Low Intensity Symptoms (Runny Nose, Sore

Throat and Cough)

A sore throat or runny nose report may either be a symptom of CDC-defined influenza or

simply an independent respiratory condition due to common colds or allergies.
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(a) Total communication
increases ***

(c) Overall bluetooth
entropy decreases *

Figure 4-1: Behavior effects of runny nose,
p < 0.05 **: p < 0.01 ***: p < 0.001

(b) Late-night early
morning communica-
tion increases **

9R-

(d) Total WLAN
APs detected in-
crease **

congestion, sneezing symptom, n=587/2283, *:

For the runny nose condition (n=587/2283), participants show increased total communi-

cation as well as increased late night early-morning communication. Additionally, total

counts of Bluetooth proximity and measures of WLAN entropy increases, which is per-

haps counter-intuitive. P-values are generated using unbalanced t-tests assuming unequal

variance.

For sore-throat reports, Bluetooth-based entropy with respect to other residents in the

study dormitory increases. This again, is slightly counter-intuitive, but may be explained if

participants are spending more time indoors and hence have a higher likelihood of interacting

with other participants, than they would if they were spending time in classes and activities.

It is also found that WLAN based entropy measures, both with respect to university WLAN

W% -4



(a) Bluetooth en-
tropy with respect to
other dorm residents
increases **

d

d-

(b) WLAN entropy
with respect to uni-
versity WLAN APs
reduces *

(c) WLAN entropy
with respect to exter-
nal WLAN APs re-
duces **

Figure 4-2: Behavior effects of
**: p < 0.01 ***: p < 0.001

sore throat and cough symptom, n=393/2283, *: p < 0.05

APs and external WLAN APs decrease with sore-throat reports, indicating more predictable

movement patterns for the individual.



4.3.3 Behavior Effects of Higher-Intensity Symptoms (Fever and Influenza)

(a) Late night early
morning calls and
SMS decrease **

(c) WLAN based en-
tropy with respect
to university WLAN
APs decreases ***

(b) Late night
morning Bluetooth
counts and entropy
decrease*

(d) WLAN Entropy
with respect to exter-
nal WLAN APs de-
creases ***

Figure 4-3: Behavior effects of fever, n=36/2283, *: p < 0.05 **: p < 0.01 ***: p < 0.001

For more intense conditions like a fever or CDC-defined influenza, participants have lower

activity and entropy levels, and this is captured using mobile sensors. Due to the severity

of these symptoms, the number of reported cases in our dataset is lower than that of

low intensity symptoms (runny nose, sore throat/cough). The number of rate of infection

amongst participants and study cohort sizes, however, are comparable to Phase I clinical

trials [102].

For fever, variations are observed in the late night and early morning behavior. Phone

communication, Bluetooth proximity counts, and Bluetooth entropy all show a decrease for

the late night early morning window. WLAN-based entropy measures with respect to the

university WLAN APs as well as external WLAN APs both reduce dramatically.



(a) Total Bluetooth
interactions and en-
tropy decrease **

(c) WLAN based en-
tropy with respect
to university WLAN
APs decreases ***

Figure 4-4: Behavior
0.01 ***: p < 0.001

(b) Late night early
morning Bluetooth
entropy with respect
to other participants
decreases **

(d) WLAN Entropy
with respect to exter-
nal WLAN APs de-
creases ***

effects of CDC-defined influenza, n=54/2283, *: p < 0.05 **: p <

Similar effects are seen for days labeled as CDC-defined Influenza, as overall bluetooth

entropy, bluetooth entropy with regard to other dorm residents and WLAN based entropy

features decrease. This is also expected because fever is a known influenza symptom.



4.3.4 Behavioral Effects of Stress and Mental Health Symptoms

(a) Total communication
decreases *

d

d

(d) Late night early
morning Bluetooth
entropy with respect
to other experiment
participants reduces
**

(b) Late-night early
morning communica-
tion decreases *

d

(e) WLAN based en-
tropy with respect
to university WLAN
APs decreases ***

(c) Overall Bluetooth
entropy decreases *

(f) WLAN Entropy
with respect to exter-
nal WLAN APs de-
creases ***

Figure 4-5: Behavior Changes with self-reported
n=282/2283, *: p < 0.05 **: p < 0.01 ***: p < 0.001

sad-lonely-depressed

In addition to the physical symptoms described in the above section, the on-device mobile

questionnaire also includes two daily questions related to stress levels and sadness, loneliness

or depression. As discussed in the previous section, the link between behavior change, phys-

ical symptoms and stress is not very well understood. Measuring these self-report variables

alongside symptom data allows modeling the covariance and potentially causation across

the three sets of variables. With both often-stressed and sad-depressed-lonely responses

in our dataset, participants show a consistent tendency to isolate themselves, reflected in

various sensor modalities.

responses



(a) Communication
diversity decreases **

(b) Overall Blue-
tooth entropy
decreases **

d

(c) Late night early
morning Bluetooth
entropy with other
experiment par-
ticipants reduces
**

(d) WLAN based en-
tropy with univer-
sity WLAN APs de-
creases ***

d'

(e) WLAN Entropy
with external WLAN
APs decreases ***

Figure 4-6: Behavior Changes with self-reported often-stressed responses n=559/2283, *: p
< 0.05 **: p < 0.01 ***: p < 0.001

For the often-stressed response, participants communication diversity decreases, both overall

Bluetooth based entropy and Bluetooth entropy with respect to other residents during late-

night early morning hours decreases, and WLAN based entropy decreases both with respect

to university WLAN APs and external WLAN APs.

For the sad-lonely-depressed responses, a similar tendency to isolate themselves is observed.

Total communication decreases and communication during late-night early morning de-

crease, overall Bluetooth entropy and Bluetooth entropy with respect to other residents

decreases.



4.3.5 Symptom Classification using Behavioral Features

It is evident that there are characteristic behavioral changes associated with respiratory

symptoms, fever, influenza, stress and depression. With this is in mind, is it useful to train

a classification scheme that identifies when individuals are likely to be symptomatic from

behavioral features alone. There are two key considerations with regard to designing such

a classification scheme.

First, consider how such a classification system would be used in a scenario where the user

has the mobile sensing application installed on their personal phone. When this application

detects uncharacteristic variations in behavior, it could predict the likelihood that the user is

infected with a known symptom and potentially inform a nurse, family member or healthcare

professional. Such proactive healthcare is especially useful for conditions with risk of under-

reporting by patients (e.g., mental health, elderly healthcare). With this goal in mind, the

classification model should have asymmetric misclassification penalties.

A second consideration is due to correlations amongst dependent symptoms. While behavior

variations with respect to symptoms are reported individually in the previous section, in

reality, self-reported symptoms are correlated. Figure 4-7 shows the correlations between

these variables, reordered using K-nearest-neighbor clustering based on effect size. Four

main clusters that emerge are: stress + depression; runny nose + sore throat; fever +

influenza; and runny nose + sore throat + fever + influenza.

Given these considerations and unbalanced class sizes, classification is done using a Bayesian-

network classifier with MetaCost, a mechanism for making classifiers cost-sensitive [96].

Structure learning for the network is performed using K2 hill climbing and the results are

based on 4-fold cross-validation.

Recall, Precision and F-measure for the symptoms class as a function of increasing misclas-

sification penalty for the symptoms class are plotted in Fig 4-8(a) - 4-8(e), for different

symptom clusters. Recall from the trained classifier is also compared with random as-

signment of priors averaged over 1000 simulated runs, to demonstrate improvement over

'chance'. The X-Axis represents increasing MetaCost misclassification penalties, and the



Sad/Depressed

Stress 0.5

Fever

Flu 0

Sore Throat

0.5
Runny Nose

Nausea
-1

Scale: R for Each Variable Pair

Figure 4-7: K-nearest neighbour reordering of correlations between the different dependent
symptoms, to illustrate the dependent symptom variables that are closely related to each
other

Y-Axis shows Recall, Precision, F-Measure (for symptom class) and Recall based on chance.

As seen, Recall of the symptom class improves substantially for the sore throat + runny

nose + congestion cluster, and also for influenza and fever clusters. Overall prediction ac-

curacy (not shown) is not a useful quality metric due to unbalanced classes, and ranges

between 60-80%.

..............



Sod/Depressed or Stressed

-4- Faasma

0- -0-ion

P--- A A-ca-

0--0-0

1.0 1.5 2.0 2.5 3.0

(a) Sad-Depressed-Stressed Symptoms

Ids
Fever. Neuss Stress

--40- FWCM
-0- FMmLa
-I- PMilbn

ft -MPACO

0-0-0-0

LM --------------

1 2 3 4 5 6

(b) Sore-Throat, Cough, Runny Nose, Con-
gestion, Sneezing Symptoms

Flu or Fever

Q -

0

0

0- 0-00 0
---

0

1 2 3 4 5 6

(d) Flu and Fever Symptoms

1 2 3 4 5 6 7

(c) Fever, Nausea, Stress Symptoms

Flu Only

Q - _____
- I

-a- Fljam I
-- Pcinim

0

- 0 0-0 -0

r- ~~~ ~.... ----- ~

1 2 3 4 5 6

(e) Flu only (as per CDC definition)

Figure 4-8: Classification results, recall for different symptoms ranges from 0.6 to 0.9 for
the symptom class. Y-Axis shows Recall, Precision, F-Measure (for symptom class) and
Recall based on chance. X-Axis is the MetaCost misclassification penalty used with the
Bayesian Network classifier. 89

Common Co

0-0 0-0-m

,~ ,6 srs



4.3.6 Temporal Flux Between Behavior, Stress and Physical Symptoms

There is extensive medical and health policy interest in understanding the temporal link

between behavior change, stress and physical symptoms. In econometrics, the Granger

causality test is a technique for determining whether one time series is useful in forecasting

another- A time series X is said to Granger-cause Y if it can be shown, usually through a

series of F-tests on lagged values of X (and with lagged values of Y also known), that those X

values provide statistically significant information about future values of Y. Unfortunately,

Granger causality tests have been shown to have poor noise immunity [89]. In this section,

we use a recently proposed spectral method, Phase Slope Index to gain insight into the

temporal relationships between signals of behavior features, stress and physical symptoms.

The Phase Slope Index (PSI) Method

PSI [49] is a recently proposed spectral estimation method designed to measure temporal

information flux between time-series signals. The method is based on the knowledge that

the phase slope of the cross-spectrum of two signals can be used to estimate information

flux between these signals in the time domain. Independent noise mixing does not affect the

complex part of the coherency between multivariate spectra, and hence PSI is considered

more noise immune than Granger analysis. PSI has been used to make causal inferences

for brain cell activation and other domains, and is calculated as,

Wij = T E C (f)Cii(f + 6f)

where Cij is the complex coherency. When the input signals are distributed across multiple

epochs, then this estimate is normalized by its standard deviation, calculated using the

Jackknife method [49].



Results

Our approach to using PSI for measuring information flux is based on validating causal links

consistently across multiple participants in our dataset. This approach is first validated on

two simulated time series of varying sequence lengths (n, representing number of continu-

ous samples available per user) that have a partial-causal relationship between them, and

additive noise. The leading time series has x symptom days. The follower time series has

y lagged symptom days and z days of additive uniform noise, where the lag between the

two series for symptom days is 1 or more days. The scatter-plot in Figure 4-9 shows the

ability of PSI to recover causal structure (normalized PSI coefficient > 0) across different

ranges of parameters for the simulated signals. The X and Y-axes represent n and x, and

each point is averaged over 1000 runs with y = x/3 and z = x/3, (these values are such

that would be intuitively expected for symptoms in our dataset), and all points above the

plane of Z = 0 represent correctly-estimated PSI values. It is important to note that the

method recovers the correct direction of information flux for 97.6% of the samples over the

surface of the simulated signals.

In order to apply PSI to our dataset, the subset of participants that show both physical

symptoms and stress and depression related responses are considered. There is however,

a trade off to be made between using data from fewer participants with longer sequences

and hence more reliable estimates, versus using data from more participants with shorter

sequences, and better validation across participants. Hence, PSI was estimated for two sets

of data- sequences of minimum length 40 days and minimum length 60 days, shown in

Figure 4-10.

Each approach generates slightly different directed links and normalized coefficients. The

twelve largest PSI coefficients across both methods on the basis of a combined ranking score

are listed in descending order in Table 5.1 and illustrated in Figure 4.3.6. An example in-

sight is that 'often-stressed' is useful in forecasting proximity, communication and WLAN

behaviors, which suggests that individuals realize and report that they are stressed before it

is reflected in their behavior. Another insight is that in two cases Bluetooth interaction fea-

tures are used to forecast WLAN features- this suggests that a behavior change is reflected
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Figure 4-9: PSI evaluation on simulated data. Z-axis is the estimated PSI value, across a
wide range of total days (n) and sick days(x), with additive noise. Points above the Z=O
plane (97.6%) represent correctly estimated direction of information flux, for the simulated
data.

in face-to-face interactions with others before it is reflected in the movement patterns of the

individual.
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Table 4.2: PSI Results ordered by combined
n=60

Source
Runny nose
Sad-depressed-lonely
Often stressed
Communication diversity

Often stressed
Often stressed

Bluetooth entropy with other resi-
dents
Runny nose
Often stressed
Bluetooth proximity counts with
other residents
Late-night early morning commu-
nication
Sad depressed lonely

scores from sequences of min n=40 and min

Follower
WLAN entropy with external APs
Sore throat-cough
Total Bluetooth proximity counts
Late-night early morning Blue-
tooth proximity counts
Communication diversity
Late-night early morning Bluetooth
proximity counts
External WLAN entropy

Total WLAN counts
WLAN entropy with university APs
External WLAN entropy

Overall Bluetooth entropy

Bluetooth entropy



(a) Min Length 40 (b) Min Length 60

Figure 4-10: PSI co-efficients for two sets of sequences based on participant data. List
of features: 1=sad-depressed-lonely 2=often-stressed 3=sore-throat 4=runny-nose 5=fever
6=nausea 7= influenza 8=total communication 9=latenight/early morn comm. 10= com-
munication diversity 11=total Bluetooth proximity 12=overall Bluetooth entropy 13=Blue-
tooth proximity with other residents 14=Bluetooth entropy with other residents 15=late-
night/early morn Bluetooth proximity with other residents 16=late-night/early morn Blue-
tooth entropy with other residents 17=WLAN counts 18=external WLAN counts 19=overall
WLAN entropy 20=WLAN entropy with university APs 21=WLAN entropy with external
APs

sore th

overall bluetooth entropy

roat-cough -nicat
t conununication

total wlan coun

runny

wlan external entr

ts

sad-depressed-lonely

nose
communication diversity

wlan univ oj

oopy ; -ni luetooth prox.

hprox.total bluetoot

bluetootprox. external wlan counts
within residents bluelth entropy

within residents

Figure 4-11: Highest-ranked PSI relationships across both data subsets. Directed ties rep-
resent temporal flux.
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4.4 Discussion

In this chapter, we describe a novel application of sensing face-to-face interactions. We use

mobile phones as an active sensing and prediction platform to identify behavior changes

reflected in mobile phone sensors, when individuals suffer from common colds, influenza,

fever, stress and mild depression. We show that it is possible to determine the health status

of individuals using information gathered by mobile phones alone, without having actual

health measurements about the subject. Given the pervasiveness of the mobile phone, this

opens an avenue for modeling of epidemiological contagion in social networks without the

need for medical health reports. We hope our findings can have a direct impact in the fields

of spatial and behavioral epidemiology.

There are limitations of this work, that should be improved upon in the future. The sta-

tistical tests linking features to symptoms assume that the samples are independent, which

is not an entirely correct assumption, since we have repeated measures from a limited set

of individuals. This would be improved with a repeated-measures approach, similar to that

used in Chapter 3 with political opinions, that will also allow us to understand how much of

the observed variation in symptomatic behavior is individual dependent. Our work does not

account for confounding behavior changes due to external events, e.g., exams or the end of

semester. On the modeling front, the Bayesian classifier used does not incorporate stochas-

tic information about symptoms or behaviors from previous days- this temporal structure

could be better modeled using the latent Markov family of models. As mentioned earlier,

there is also extensive interest in augmenting compartmental epidemiological models with

parameters that represent empirical behavior changes for symptomatic individuals. In ad-

dition to classifying observed symptoms from behavior, we are also interested in forecasting

when individuals are likely to be sick in future analysis.

The understanding of behavior change in social health will also benefit from the continu-

ous evolution of mobile sensing technologies. The mobile platform used did not support

Bluetooth signal strength, which could provide a better measure of physical proximity.

WLAN-based location sensing could be replaced with GPS and other location technologies



in the future.

Nonetheless, these results have the potential to truly impact healthcare and the medical

system. The development of mobile predictive health tools will improve the doctor-patient

interaction model, such that health-workers and nurses can use diagnostic information for

early detection of conditions, ultimately leading to better healthcare for individuals and

lower costs for providers and insurers..



Chapter 5

Face-to-Face Networks and Social

Health

What is the role of face-to-face interactions in the diffusion of health-related behaviors- diet

choices, exercise habits, and long-term weight changes? In this chapter, we use mobile co-

location and communication sensing to model the diffusion of social health-related behaviors

via face-to-face interactions.

According to the World Health Organization [114], our society is currently in the midst of a

global obesity epidemic, with over a billion overweight and over 300 million clinically obese

adults worldwide. This increasing trend is attributed to lifestyle changes in our society,

including increased consumption of energy-dense, nutrient-poor foods with high levels of

sugar and saturated fats, and reduced physical activity.

Physiological sensing is being increasingly used to study health [71, 94, 80]. However, the

focus on social determinants of health is limited. Recent work suggests that obesity and

other health-related lifestyle decisions spread through social networks, and in particular

long-term face-to-face networks may play an important role. Longitudinal studies based

on the Framingham Heart study social network indicate that health-related behaviors from

obesity [27] to happiness [45] can spread through social ties. This work has generated



greater interest in the study of peer effects on health [46]. Further, the effects of social

networks and social support on physical and mental health and the powerful role that they

can play in health promotion are well documented [13, 14, 15, 60, 31, 75].

While these studies clearly indicate the importance of social determinants on health, there

is limited work studying real-world interactions and their impact on health at a closer level.

The latest sensing technologies provide us with the capabilities to collect such fine-grained

data and gather new insights, and understand how actual face-to-face interactions lead to

changes in behavior. For example, to what extent are eating habits of an individual in-

fluenced by those of their spouse, roommate, close-friend or casual acquaintance? Is the

diffusion of social behaviors a characteristic of the person being influenced, or the influencer

or simply the context of the relationship? Is the underlying causal process social contagion

or is it practically impossible to disambiguate homophily and confounding due to the limi-

tations imposed by measurement and estimation techniques? These are some examples of

open questions in the context of social contagion of health behaviors. Understanding the

role of social network interactions in the ongoing obesity epidemic will enable the design of

novel technologies and better interfaces to control adverse spreading, and facilitate social

support real-time interventions for positive reinforcement of a healthy lifestyle.

Similar to the analysis of political opinions in Chapter 3, popular epidemiological models

do not incorporate social exposure effectively. Cascade and threshold models treat inter-

actions between nodes as a point-estimate, related to tie-strength, and not as dynamic,

multi-dimensional interactions. SEIR (susceptible-exposed-infected-recovered) models are

an extension of SIR epidemiological models that include an exposure state, but only as

an averaged incubation period parameter common to the sample population and not as a

unique value for every node. In this paper, exposure to different opinions for individuals as

measured using mobile phone sensors is used to explain BMI changes.

The analysis in this chapter is based on social interaction data and health related behavior

self-reports, collected as part of study described in Chapter 2. We find that social health

behaviors in participants are correlated with the behaviors of peers that they are exposed

to over continuous long-term durations. Automatically captured social interactions can be



Table 5.1: Monthly Social Health Survey Instrument
Survey Question Possible Responses

Current weight and height (weighing scales provided Actual numeric values
in common areas)
Servings of salads consumed, on average per week 0 to 6 servings
Servings of fruits and vegetables consumed, on average 0 to 6 servings
per week
Self reported level of healthiness of diet 5-point Likert scale

Very Unhealthy to Very
Healthy

Instances of aerobic exercise (20 mins or more), on 0 to 6 times
average per week
Instances of active sports, on average per week 0 to 6 times

used to estimate exposure for individuals and subsequently predict future BMI changes

amongst participants. To better understand the diffusion mechanism, we contrast the role

of exposure to various behaviors peers that are obese, are inactive, have unhealthy dietary

habits and those that display similar weight changes in the observation period. These results

suggest that it is possible to design self-feedback tools and real-time interventions in the

future.

5.1 The Social Health Dataset

In the following analysis, social interaction data for the entire 2009 spring semester is

considered. The mobile phone dataset for this period includes of 20609 phone calls, 11669

SMS messages and 2,291,184 scanned bluetooth devices, which includes communication

with non-residents as well.

For training labels, participants completed social health related survey instrument for the

months of March, April and June, which included the following questions:

As with the survey instrument in Chapter 4, this was also designed under the supervision

of an epidemiologist . Participants also listed their close friends and social acquaintances

'Dr. Devon Brewer



(binary responses) while completing each monthly survey. The histograms of BMI changes

and weight changes for all participants from March to June is plotted in Figure 5-1. Figure

5-1 also shows the Pearson's correlations between the dependent variables.

5.2 Results

The effect of social influence on behavior has been well established in the literature, and

behavior is at the root of the obesity problem with dietary choices and exercise habits

playing a significant role. Christakis and Fowler's recent work [27] on the effect of social

ties on obesity has generated greater interest in the study of peer effects on health [46].

While these studies have used networks of self-identified social contacts, they lacked data

about real face-to-face interactions that occur on a more regular basis. With the belief that

this information is useful in studying this phenomenon, we analyze the effect that friends,

acquaintances and face-to-face interactions have on weight change in our study population.

5.2.1 Features that Reflect Exposure

Mobile phone interactions reflect exposure to opinions and behaviors in physical proximity

and phone communication. For each individual, we compute exposure as the number of

alters reflected the interaction modalities listed below, conditional to specific eating and

exercise behaviors described in the next section.

" Total Bluetooth exposure: alters reflected in Bluetooth co-location data

" Late-Night & Early-morning Bluetooth exposure: alters reflected in Bluetooth co-

location data between the hours of 9am and 9am the next morning

" Weekend Bluetooth exposure: alters reflected in Bluetooth co-location data only for

Saturdays and Sundays
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(a) Histogram of BMI changes across all (b) Histogram of Weight changes across all
participants from March to June 09. More participants from March to June 09 (in lbs)
participants lost weight than gained weight,
during the spring semester.
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(c) Pearson correlation coefficient matrix for all de-
pendent self-report variables for June 09, all p < 0.01.
From top to bottom, left to right, the variables are
salads per week (mean = 1.5, sd = 1.4), veggies and
fruits per day (mean = 1.9, sd = 1.3), healthy diet
category (mean = 3.8, sd = 1.1), aerobics per week
(mean = 2.1, sd = 2.1), sports per week (mean =
0.8, sd = 1.5), BMI change compared to March 09
(mean = 0.11, sd = 0.68). BMI Change does not show
a strong correlation with either the eating or exercise
habits. A healthy diet shows some correlation with
the playing sports.

Figure 5-1: Characteristics of self-reported dependent variables related to BMI change,
weight change, diet and exercise habits
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o Total Phone and SMS exposure: alters reflected in phone communication and SMSs

exchanged; both incoming and outgoing communication are included. Duration of

calls is not considered

o Weekend Phone and SMS exposure: alters reflected in phone communication and SMS

exchanged only for Saturdays and Sundays

In addition to in the following analysis, we also considered the interaction counts for the

ego-alter pair as exposure features. However, simply the number of auto-detected alters

conditioned by their behaviors outperformed the more complex features in our dataset.

5.2.2 Exposure and its Impact on Body Mass Index

Body Mass Index (BMI) is a commonly used metric to estimate healthy body weight, based

on an individual's height. It is equal to the mass in kilograms divided by the square of an

individual's height in meters. Individuals with a BMI of 30 or over are categorized as obese

while those who have a BMI between 25 and 30 are considered overweight.

An individual's change in BMI is used as the dependent variable, and role of various

exposure-based independent variables described above is estimated using linear regression.

As mentioned earlier, BMI is a better indicator of healthy weight as it takes into account

individual differences in physical stature. Approximately similar results as described below

were also obtained while using an individual's weight change (in lbs) as a dependent variable

(see Table 5.3.

Exposure to Overweight and Obese Peers

As per the definition of obesity, participants with BMI >= 30 are considered obese in our

dataset. The independent variables used in this analysis were the number of obese persons

that had actual interactions with the individual in question in the form of Total Bluetooth
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exposure and Late-Night & Early-morning Bluetooth exposure. A significant correlation

that explained about 17% of the variation was found as reported in Table 5.2.

For comparison, this analysis was compared to the use of independent variables where as the

number of self-reported close friends and social acquaintances that were obese. However, no

significant correlation was found between the self-reported independent variables and the

dependent variable measuring change in an individual's BMI from March to June 2009.

As the dataset contains only a small number of obese people, hence the linear regression

analysis was repeated using exposure features to include both overweight and obese indi-

viduals (BMI >= 25) as opposed to just obese individuals. In this case, Total Bluetooth

exposure and Late-Night & Early-morning Bluetooth exposure to individuals that are over-

weight or obese explained about 25% of the variation (see Table 5.2).

Similar to above, when this analysis was repeated using exposure to self-reported close

friends and social acquaintances that were either overweight or obese, no significant corre-

lation was found between the self-reported independent variables and the dependent variable

measuring change in an individual's BMI from March to June 2009.

Exposure to Peers with Unhealthy Diets and Poor Exercise Habits

So far, we have looked at exposure features that focused on the physical aspects indicative

of the health of peers. In this section, exposure features indicative of healthy or unhealthy

diets and poor exercise habits are considered.

As explained previously, in monthly survey responses, users self-reported their diet on a

7-point Likert scale ranging from "Very Unhealthy" (1) to "Very Healthy" (7). Based on

the distribution of responses, a response of 3 or less on this scale is considered as unhealthy

eating behavior for this analysis.

BMI Change for the period of March to June 2009 was once again the dependent variable

and a similar pattern of results as earlier were observed. Total Bluetooth exposure and

Late-Night & Early-morning Bluetooth exposure to peers with unhealthy eating habits
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explained approximately 17% of the variation in the dependent variable. The exposure to

close friends and social acquaintances with unhealthy eating habits did not show significant

correlation with BMI change in this period.

We now attempt to understand the role of exposure to individuals who tend to be less

physically active. Total activity is the sum of self-reported responses for aerobics per week

and sports per week, from the survey responses in the previous section. Based on the

distribution of responses, an individual is considered inactive if the total activity is less

than or equal to 3. The results were again consistent with the previous section, where Total

Bluetooth exposure and Late-Night & Early-morning Bluetooth exposure to peers who were

physically inactive explained about 23% of the variance in BMI change.

Exposure to Peers Who Had Substantial Weight Gain in the Same Period

Finally, we looked to see if there was a correlation between BMI change for an individual

from March-June 2009 and exposure to peers who gained substantial weight during the

same period. Only individuals who gained more than 4 pounds were considered.

The Total Bluetooth exposure and Late-Night & Early-morning Bluetooth exposure features

show the most significant correlation to BMI change of all our analyses, and these features

together explain about 35% of the variability in the independent variable.

Consistent with the above analysis, exposure to exposure to close friends and social ac-

quaintances who gained weight did not show significant correlation. it is also interesting

to note that when the same analysis was repeated using individuals who lost more that 4

pounds, none of the features showed significant correlations.
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Table 5.2: Least square regression results: BMI Change
Features R-Squared p-value
Exposure to Obese Individuals 0.168 0.009
Exposure to Overweight and Obese Individuals 0.251 0.001
Exposure to Individuals That Eat Unhealthy 0.167 0.009
Exposure to Individuals That Are Inactive 0.246 0.001
Exposure to Individuals That Gained Weight 0.349 <<0.0001

Table 5.3: Least square regression results: Weight Change
Features R-Squared p-value
Exposure to Obese Individuals 0.174 0.003
Exposure to Overweight and Obese Individuals 0.259 0.0009
Exposure to Individuals That Eat Unhealthy 0.086 0.06
Exposure to Individuals That Are Inactive 0.252 0.001
Exposure to Individuals That Gained Weight 0.373 <<0.0001
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5.3 Discussion

In this chapter, we study the impact that face-to-face interactions have on BMI and weight

changes in our community. Our approach allows us to compare the role of social exposure

to different types of peers- those that are obese, overweight, have unhealthy dietary habits,

and inactive lifestyles.

We find that exposure measured using bluetooth proximity to peers that are overweight or

obese and to peers that have unhealthy dietary habits or inactive lifestyles, is correlated

with weight changes in an individual as opposed to exposure to close friends and social

acquaintances, with the same health-related behaviors. The largest correlations observed

are with from exposure to peers with weight gains (> 4 lbs) during the same period. In

all cases, we find that exposure measured via self-reported close-friend and acquaintance

relationships is not statistically significant. These results are intuitive, and reiterate that

we are affected by the behaviors of people that we interact regularly with.

As with the other analyses in this thesis, it should be noted that these results are based

on small population of students, and it an open question of how it applies to real-world

communities. However, they provide a starting point for the discussion on the importance

of studying social networks based on real world interactions. We see statistically significant

results indicating that face-to-face interactions might actually have a much larger effect on

individual behaviors affecting health. In Chapter 3, a similar effect is seen with political

opinions, where social exposure explains the evolution of political opinions better than

self-report data.
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Chapter 6

Social Ties and Viral Media

In this chapter, we study the role of face-to-face interactions in social relationships, and the

spead of viral media (music).

Viral media has become an important part of our popular culture. A growing research

area is modeling how ideas and 'memes' propagate though society. Probabilistic topic

modeling and information retrieval approaches [17, 77, 111] have been used to measure

social diffusion for weblogs and online forums. By tracking hyperlinks and named entities

[2], researchers have modeled information cascades through online social media networks.

The propagation of information 'memes' [68] has been shown to reflect the daily 'news cycle'.

Viral recommendations for products show a long-tailed distribution, and social influence is

more relevant in the adoption of niche products [67]. Salganik et. al. [107] measured social

influence for online music in eight simultaneous 'worlds' and found highly unpredictable

and completely varying rankings of music tracks in each instance, unrelated to the actual

quality of music - evidence of social influence of previous listeners.

In this chapter, we study a new dimension of viral media propagation, i.e., the link between

face-to-face interactions and the social diffusion process. We show that it is possible to

recover social network ties and predict the sharing of music using mobile social interaction

features alone. This mechanism seems to work differently for strong versus weak ties. The
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pilot deployment and analysis in this section preceded, and informed, the primary study

detailed in Chapter 2.

6.1 Methodology and Dataset

A variant of the mobile phone platform described in Chapter 2 was deployed with seventeen

residents of three floors of a similar undergraduate dormitory for one month, as a pilot

experiment to validate platform capabilities before the launch of the primary study. Data

was captured from two sources; long-term social interaction data in the form of WLAN IDs,

call and sms logs were captured using mobile phones; and in addition, the consumption and

propagation of music with timestamps was logged on a central server. Data was discarded

from two participants due to logging errors.

A custom-built music player was installed on the mobile phones, which allowed participants

to listen, share, rate and search through music tracks provided on thier device. Overall,

participants had access to over 1500 independent music tracks from a wide assortment of

genres during the course of the study. All music-related events were logged on the server-

side, and user-ratings were also captured, as a potential control for track quality. To send

a track to any other participant, participants simply click on the 'share' button in the

mobile phone application and select the recipient. Before sending, and optionally anytime

during playback, participants provided a quality 'rating' for the music track. The player

interface and 5-star rating system was similar to that used by the popular iTunes [58] mobile

application, and is shown in Figure 6.1.

An important consideration in the experiment design was sourcing content for the music

application. Participants become aware of new music [99] from both external media (e.g.

radio, internet, etc.) and through recommendations in their personal network. By choosing

independent music across different genres, it was possible to ensure that the artists and

albums distributed through the study music service were not featured in mass media or

were otherwise familiar to the participants. This eliminated potential confounding effects,

since the only way participants could be exposed to other artists or music tracks was though
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Figure 6-1: UI Screenshot of music player application installed on mobile phones, in addition

to the background data-collection scripts. The four top tabs are Manage, Friends, Playlist

and Inbox (which shows new tracks received). Users could play, rate and share tracks with

other participants. Users were assigned a limited number of music tracks (80) at the start,

and when they shared a track, a randomly selected new track was added to their library.
Quality ratings (from 5 stars) were required for every music track that was shared. To

share a track, user's could select any participants from the experiment using a dropdown

(alphabetical) list. A total of 1500 indie tracks from all genres were available in the service.

111 songs were shared and 1234 songs were played during the 30 day period.

their peers- either via explicit sharing or social exposure in common areas etc. To avoid

any potential copyright violations, the content was sourced under the Creative Commons

license or with explicit permission from the independent artists for experimental use.

The social interaction dataset for the entire month consisted of 3499 unique call events

(making a call, receiving a call or missed call), 350 short message (SMS) events (sending

or receiving), and 570,000 snapshots of WLAN identifiers. The average length of a call is

122 seconds, 663 call events are during off-peak hours (i.e. after 11pm and before 9am),

and 1154 call events are from weekends (i.e. either Saturday or Sunday). Over the entire

month, 111 songs were shared and 1234 songs were played by users on mobile phones.

The following features were extracted for every possible dyad of participants and used in the
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subsequent analysis of relationships and sharing behavior. After eliminating missing data,

interactions and dependent variables from 210 possible dyads was used in the following

analysis.

Communication features

The communication features used in analysis were:

" Total phone communication and SMS communication, i.e., features that represent the

strength of ties

" Off-peak communication (after 11pm and before 8am) and weekend communication

(Saturday and Sunday of the week), which represent the nature of ties

" Incoming versus outgoing communication, which has been shown to reflect importance

of an individual

Location-based features

For some of the analysis, the following co-location features were also used:

* the Jensen Shannon divergence [29] between distributions of the first hundred most-

frequently observed WLAN IDs between individuals. This feature represents the

tendency of individuals to visit the same set of locations both within and outside the

universty (e.g., classrooms, coffee shops, etc.).
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6.2 Social Relationships

Is there a interaction signature that identifies our close friends or casual acquaintances? It

has been shown that co-location patterns are closely related to existing social ties, as well

as the future ties [42]. In this analysis, we evaluate the the role of phone communication

patterns and viral media in predicting social relationships.

User self-assessments of mutual-relationships from the sociometric survey instrument ('friend',

'acquaintance', or 'dont know this person') were used as training labels. The phone commu-

nication features were correlated with the user-stated relationship (R 2 ~ 0.37, p < 0.01).

The music sharing between individuals can be considered as an 'active message probe',

that reveals the underlying network structure, including the weak-ties, as music propagates

through the social network. With this in mind, when the number of music tracks shared

between individuals was included as an additional feature, the linear correlation improved

slightly (R 2 ~ 0.44, p < 0.01)

The communication and music sharing features can also be used to discriminate between

different types of relationships, i.e., 'friends' versus 'acquaintances'. The total communi-

cation and total number of shares between individuals are positively correlated with both

'friends' and 'acquaintance' types of relationships. However, off-peak communication and

SMS communication features were positively correlated only with the 'friend relationships,

and not with the 'acquaintance relationships. The linear separability between the 'friend

class of dyads and the 'non-friend' class is shown in Figure 6.2.

Using phone communication features, it is possible to recover 'friend' relationships from

amongst all possible dyads. The classification results for predicting relationships using a

cost-sensitive BayesNet classifier and SVM classifier with 5-fold cross validation are shown in

Table 6.1. The first row is the 'non-friends class and the second row is the 'friends class. As

the classes are unbalanced unbalanced (since only 59 of 210 dyads are self-reported 'friends'),

a cost-sensitive approach is used for model training, and the misclassification penalties for

the 'friends class: non-friends class were chosen as 3:1. The BayesNet classifier outperforms

SVM approach in overall accuracy, but recall for the friends class is slightly better with the
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Figure 6-2: Histogram of 'friend relationships vs. values predicted using phone communi-
cation features. X-axis values are a linear prediction based on the input features, and the
Y axis represents the freqency of relationships in that bin. As seen, the 'friends' class is
concentrated towards the left of the figure, while the 'non-friends' class has a flatter distri-
bution, that is shifted right. For a simple linear classifier, 'friends' can be visually separated
by drawing a vertical line at x=0.2.

SVM model.

In Table 6.2, we apply the idea that music sharing represents an 'active probe' that reveals

the underlying network structure as it propagates, to classification of social ties within

the community. With the use of music shares as an additional feature, the classification

accuracy improves.
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Table 6.1: Relationship classification accuracy with only phone communication features

(total, late night, and weekend calls and SMSs). 59 of 210 dyads belonged to the 'friends'
class. Ratio of misclassification penalties was 1 (non-friends) : 3 (friends).

Overall Class Precision Recall
Accuracy Measure

Cost-sensitive BayesNet 87.3% Non- 0.88 0.97 0.92
with 5-fold CV Friends

Friends 0.84 0.525 0.646
Cost-sensitive Support 83% Non- 0.88 0.89 0.891
Vector Machine with Friends
5-fold CV (polynomial
kernel)

Friends 0.615 0.6 0.608

Table 6.2: Relationship classification accuracy with phone communication features com-
bined with music sharing features (i.e., 'active probe' of the network). 59 of 210 dyads
belonged to the 'friends' class. Ratio of misclassification penalties was 1 (non-friends) : 3
(friends).

Model Overall Class Precision Recall F-
Accuracy Measure

Cost-sensitive BayesNet 90.1% Non- 0.89 0.98 0.94
with 5-fold CV Friends

Friends 0.92 0.6 0.73
Cost-sensitive Support 89.6% Non- 0.94 0.92 0.93
Vector Machine with Friends
5-fold CV (polynomial
kernel)

Friends 0.74 0.8 0.77
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6.3 Face-to-Face Interactions and Propagation

What is the relationship between viral propagation of music and face-to-face interactions?

Do people share music mostly with their close friends, or equally with everyone in the

community? For this analysis, communication and location features were correlated with

observed sharing behaviour (R 2  0.43, p < 0.01). The most significant predictors of music

sharing were total calls and total off-peak duration, SMS communication and co-location

based on WLAN APs.

It is interesting to note that dyadic sharing behaviour shows higher correlation with au-

tomatically captured communication and location features than self-reported relationships

(R 2  0.37, p < 0.01) for mutually acknowledged friends. This shows that social interactions

and exposure automatically captured using mobile phone sensors is a better predictor of the

likelihood of two individuals sharing music than their own self-assessments. The likelihood

of sharing did not vary significantly with the direction of music sharing for participants.

The music tracks shared with other users during this study can be broken down into two

distinct types:

" About 70% of the total shares were between mutually-acknowledged 'friends'. For

this pairs of individuals, the correlation of location and communication features with

propagation is even higher. This represents diffusion within strong ties.

" The remaining 30% of shares were between strangers or weak ties, i.e., people who

are in the same classes or floor, but were not close-friends. For this subset of dyads,

the location and communication features are not significantly correlated with sharing.

Weak ties [113] are know to play an important role in information diversity.

The two types of sharing highlight the strengths and weaknesses of our approach. Face-to-

face interaction features work well to predict transmission probability for cohesive, 'strong'

ties. However by themselves, they are less useful in identifying 'weak' social ties or the

transmission probabilities associated with such ties. Other approaches like mapping email
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interactions or social network sites may be more useful. The Author-Recipient-Topic (ART)

model and Latent Dirchlet Allocation (LDA) are examples of approaches that have been

used to identify roles, relationships and group membership from email interactions [17, 77].

Similar to the classification of social relationships above, it is possible to classify music

sharing based on the social interaction pattern between individuals. Instead of using a

regressive model, we redistribute the observations of music sharing between participants

into distinct classes determined from the underlying distribution. This can be implemented

in several ways. With a two-class model (sharing and no-sharing), without using any self-

report relationship data, the two-class prediction accuracy using a cost-sensitive Bayesian-

Net classifier is 71.5% (For the sharing class, Precision = 0.69, Recall = 0.426, and

F - Measure = 0.527).

Since for a majority of possible dyads, no tracks were shared, or less than three tracks

were shared, it may be better to use a three-class model for prediction. In this case, the

three classes are (a) no sharing (b) less than 3 tracks shared (c) greater than 3 tracks

shared. Classification accuracy across all three classes with this approach, using 5-fold

cross-validation and a BayesianNet classifier (not cost-sensitive) is 69%.

In the previous section, we find that music sharing patterns can be used as an 'active probe'

to recover social relationships. Based on this result, it is possible to reconstruct classification

as a heirarchial model, where we first infer 'close friend' ties in the data, and then use the

predicted ties as well as communication and location features to predict the music sharing

class (2 classes, music shared or not shared). The cross-validated classification accuracy

with this approach, using similar methods as above, is 72%.

6.4 Dynamic Bayesian Model of Social Influence

Social influence is the ability of a person to manipulate the propagation process, by inducing

others to adopt or reject a new opinion or music track. But how can we estimate the

tendency of participants to influence the music preferences of others? Our approach to
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measuring social influence is based on the latent-state influence model, proposed by Dong

[39]. The latent-state influence model is a tractable approximation for hidden Markov

modelling of multiple interacting stochastic processes. In a Hidden Markov model of n

interacting processes, the number of latent states is product of the number of latent states

per process, which implies that an impractical number of model parameters have to be

learnt as the number of interacting chains increases. In the corresponding influence model,

the number of model parameters is reduced as the latent state distributions for time t + 1

are based on a linear combination of the latent states for time t. The static weights for this

linear combination are the influence values, and reflect the coupling between the interacting

Markov chains.

P(s +1/sI, s , ...s") = aijP(si+1/S )
j=1:n

where s' is the latent state of markov chain i at time t, ci is the influence of chain i on

chain j, for n chains with k latent states per chain.

The forward backward algorithm for latent state estimation and the maximum likelihood

algorithm for estimation of model parameters of the influence model are derived from the

equivalence between the influence model and corresponding hidden Markov model, and can

be found here. [39]f.

The music consumption (i.e., playing songs) and propagation dynamics (i.e., sharing tracks

with others) between participants over time can be modelled as n interacting Markov chains

using the influence model. Each participant represents a chain, and the observed variable

is a function of captured interactions with other participants or media consumption. The

inter-chain influences then represent the 'social influence' between the nodes.

Figure 6.4 shows the influence values for sixteen participants based on observed media

consumption. The observed variable is the number of times a participant played one of the

three most popular tracks. Two latent states (k = 2) are assumed per chain and represent

the level of 'activation' for the participant. Each chain evolves with a time-step equal to
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one day. Self-influences are absent from this graph because the playback sequences per

person for the three most-popular tracks are sparse. In the future, it would be interesting

to explore how these influence values are related to transmission probability.

61

2 4 A 8 1 10 12 is

Figure 6-3: Social influence matrix ( a,) for 16 participants based on their music consump-
tion. The observed state for each chain is the number of times the three most popular tracks
are played (that day) by the participant. The time-step for all chains in 1-day, with data
from 30 days used in the model. Two latent states are assumed per chain and represent
the level of activation for the participant. The influence parameters represent inter-chain
dynamics for the entire 30-day period.

6.5 Discussion

This pilot deployment was our first step towards designing the year-long, community study

discussed in Chapter 2. This smaller study provided insight on the design of the mobile

platform, user adoption and usage, and the different types of social diffusion questions that

could be answered using this approach.

We find that passive phone communication features (i.e., calling records and SMS logs) are

correlated with stated relationships. These linear correlations increase when we consider

music sharing as active probes in the network. Overall, it is possible to correctly iden-

tify close to 90 percent of self-reported close friends in the community, using both phone

communication and music sharing patterns.
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With regard to the sharing of music, about 70 percent of the sharing behavior between dyads

is highly correlated with captured social interaction features, which is consistent with the

theory of influence due to social cohesion and strong ties. The remaining 30 percent of

sharing behavior is between weak ties or strangers. Music consumption (playback) for

individual nodes can be used to estimate the 'social influences' between people.
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Chapter 7

Conclusion

In this thesis, we quantify the role of face-to-face interactions and behaviors in the contexts

of different social diffusion phenomena, based on over 320,000 hours of behavior and inter-

action data. With political opinions, we use social exposure to reveal patterns of dynamic

homophily, and show that it is possible to identify discussants and estimate future opinions

from face-to-face interactions alone. In the context of epidemiology, we find that changes in

interaction patterns are a powerful predictor of physical and mental health symptoms and

syndromes, and can be used to explore the temporal relationship between behavior change

and physical and mental symptoms. With diet and obesity, we estimate the effects of differ-

ent types of social exposure on BMI changes over an entire semester. Finally, we show the

face-to-face interaction and phone communication patterns can be used to identify social

ties, predict the sharing of music, and compare the relative 'social influence' of individuals.

We now discuss various implications of this work, viz., the underlying cognitive mechanism

that may explain why face-to-face interactions seem to play such an important role, the

potential privacy risks, and real-world applications that such tools may enable.
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7.1 The Cognitive Link Between Social Exposure and Be-

havior Change

In the contex of political opinions and social health, we find that exposure to different types

of individuals is much more important than self-report data, for explaining the adoption of a

new opinion or behavior. Beyond the effect of informant inaccuracy, perhaps this is related

to the construct of social signaling in our behavior. It has been shown that mood and

emotion contagion occour in social settings and at the workplace [12]. Pentland and others

[101, 21] have proposed that such social signaling is an important component of our social

decision-making abilities, and is effectively captured in vocal prosody and physical gestures

and movement. It is hence, an open question, whether such social learning is also an avenue

for adoption of opinions and habits, which may explain why face-to-face interactions and

social sensing play such an important role.

7.2 Privacy Implications

As seen in the preceeding chapters, modeling human social behavior holds a lot of promise

for our digital society. However, the legal and ethical boundaries around data ownership and

user privacy with regard to such data are still unclear. We briefly discuss current legislative

standards towards using such data in both workplace and consumer settings [74].

At the workplace, behavior modeling approaches have the potential to increase productivity,

but there is also potential for disproportionate loss of privacy. With regard to data owner-

ship, the European Union (EU) has more stringent data privacy policies than the United

States. According to the EU Directive on Privacy and Electronic Communications for

public-sector employees, storage of individuals communication data is usually only permit-

ted if user have provided thier explicit consent. Similarly, the privacy rights of private-sector

employees are protected by Article 8 of the European Convention on Human Rights. The

United States, on the other hand, has a relatively lax policy concerning employee moni-

toring. As long as employees do not have a reasonable expectation of privacy (i.e., they
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have been previously informed of possible monitoring), companies are permitted to access

electronic communications, such as e-mail, stored on company servers and also allowed to

monitor employees through phone, computer, and video surveillance. Hence, to deploy

such social sensing technologies at the workplace, explicit employee consent is an important

consideration.

On the consumer front, social interaction data in various forms is collected by mobile phone

operators, banking institutions and other agencies. Although the respective companies

own this data, the Federal Communications Commission (FCC), through the Telecommu-

nications Act of 1996 Section 702, maintains fairly strict requirements on how the data

is used and shared. Companies are required to ensure the privacy of the data, and may

only disclose the data to business affiliates who provide secondary services necessary for

the telecommunications services being provided. Upon written request from the customer,

they are also required to disclose the customer's information to any party specified, which is

an important clause for researchers and developers interested in building applications with

such interaction data. Banks maintain similar privacy policies with their interaction data,

as required by Regulation P: Privacy of Consumer Financial Information (12 CFR 216) of

the Federal Reserve Board.

Anonymization cannot be guaranteed for social network data by the removal of personal

identifiers alone. Backstrom et. al. [9] have shown passive and active attacks whereby it

is possible to identify original participants using embedded nodes. Another approach for

passive de-anonymization, based on using a known auxiliary graph, was shown by Narayan

[86].

There is also risk that sensing technologies may unintentionally harm non-participants.

Consider an example a bluetooth transciever to log physical proximity. Individuals who

are not part of the experiment may object that their unique Bluetooth identifiers are auto-

matically logged by the system. However the data being collected is in some sense, public

information and non-users are free to set their Bluetooth devices to non-discoverable mode

(the default setting on most new phones and laptops, where Bluetooth communication is

active but the unique identifier is not continually broadcast). The legal precedent of such
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unintentional monitoring can be compared to that for phone calls, i.e., in the case of Smith

v. Maryland, it was shown that there is no legitimate expectation of privacy with respect to

information such as the recipient and duration of a call. The Bluetooth argument is possibly

analogous, i.e., if you are broadcasting your Bluetooth identifier; there is little expectation

of privacy with respect to your Bluetooth identity.

During our experimental deployment, two types of user reactions with regard to participant

privacy were observed. A majority of residents trusted the IRB evaluation process and

felt that any privacy risks related to participant had been alleviated. A small minority of

dormitory residents, however, were actively concerned and declined to participate in the

deployment. Fortunately, this minority represented a spatially isolated section of the build-

ing. Privacy-related quotes from some concerned non-participants, and some participant

responses, are given in Table 7.1.

These conversations illustrate various privacy perspectives related to our work. It is impor-

tant to outline technical, public policy and legal guidelines for data collection, storage and

analysis.
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Table 7.1: Specific quotes from non-participants participants who were concerned about
possible privacy implications of the study. In some cases, participants directly responded
to the concerns of their peers, and these comments are also reported below.

On the data collection process:
"privacy aside, I personally have problems with people who don't live here leaving things
in the dorm. Especially on a long-term basis, especially without permission, especially if
they're trying to 'study' us."

On the topic of participant privacy:
"So, just because I do something in a lounge where people can see it doesn't make it legal
for people to film me without permission and use it in a study. ... See also, the Fourth
Amendment."
"You do realize the Fourth Amendment applies to what the government can't do to citi-
zens, not what citizens can't do to other citizens?"

On the topic of informed consent:
" 'A quick poll of a cross-section of the dorm' does not constitute permission. A significant
fraction of xxx residents have a problem with this. Please do not place any devices in xxx"
"I actually have a really big objection to this. Your presenting this as fait accompli is
really problematic

On the topic of bluetooth co-location sensing:
"What's the big deal? I've been recording all blue tooth activity from the ceilings of
public spaces in the dorm for the past 9 years and posting all the data on xxxx. If you are
concerned with who is recording your bluetooth devices, this is the perfect opportunity
to change your privacy settings; god-forbid you walk past someone somewhere sometime
who is recording you"
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7.3 Real-World Mobile Applications

The future of such computational social science technologies lies in using the models and

knowledge, to give feedback to users, and influence public policy decisions, to induce people

towards positive behaviors and a better life. Hence, we have prototypes several mobile phone

applications that perform social inferences based on user behavior, and provide feedback to

the user directly.

In Figure 7-1, some of these examples are shown. Figure 7-1(a) is a general inference

mechanism and API to enable 'socially aware' applications. A specific example of an ap-

plication built on top of such APIs, is an automated 'speed-dialer' that predicts whom you

are likely to call next based on past location and phone communication patterns, as shown

in 7-1(b). Finally, we expect that the epidemiology related results could be used as part

of a predictive webservice for patients and doctors, and a screenshot of such a webservice

is shown in Figure 7-1(c).
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Appendix A

Supporting Information for

Political Analysis

A.1 ANOVA analysis for Dynamic Homophily

A.1.1 Political Interest for All Residents

Table A.1: Mean, SD and n for Dynamic Homophily estimates,
three conditions: Baseline, Final Debate and Election Day)

as a function of period (for

Period Mean SD Samples
Baseline 1.61 0.941 60
Final Debate 1.22 0.76 60
Election Day 1.45 0.84 60

Table A.2: Source Table for (Period) Repeated-Subjects ANOVA

Source Df. SS. MS F-value p
Period 2 4.32 2.18 8.49 0.00035**
Residuals 118 30.35 0.25

Hence the null hypothesis (i.e., three conditions have equal means) is rejected. The residual

normality assumption required for ANOVA holds true (See figure).
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A.1.2 Preferred Party for All Residents

Table A.3: Mean, SD and n for Dynamic Homophily estimates, as a function of period (for

three conditions: Baseline, Final Debate and Election Day)

Period Mean SD Samples

Baseline period 1.922 1.457 61
Final Debate period 1.788 1.325 61
Election Day period 1.83 1.27 61

Table A.4: Source Table for (Period) Repeated-Subjects ANOVA

Source Df. SS. MS F-value p
Period 2 0.582 0.2911 0.87 0.42

Residuals 118 40.2 0.33

Since the p-value is NOT significant, the null hypothesis (i.e., three conditions have equal

means) cannot be rejected. TThe residual normality assumption required for ANOVA holds

true (See figure).
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Figure A-2: Residual normality assumption is validated for ANOVA analysis of Preferred

Party dynamic homophily for all participants
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A.1.3 Liberal-Conservative for All Residents

Table A.5: Mean, SD and n for Dynamic Homophily estimates,

three conditions: Baseline, Final Debate and Election Day)
as a function of period (for

Period Mean SD Samples

Baseline period 2.05 1.22 61
Final Debate period 1.644 1.13 61
Election Day period 1.80 1.08 61

Table A.6: Source Table for (Period) Repeated-Subjects ANOVA

Source Df. SS. MS F-value p
Period 2 5.29 2.647 6.26 0.0026**

Residuals 118 50.74 0.422

Since the p-value is significant, the null hypothesis (i.e., three conditions have equal means)

is rejected. TThe residual normality assumption required for ANOVA holds true (See

figure).
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Figure A-3: Residuals normality assumption is validated for

Conservative dynamic homophily for all participants
ANOVA analysis of Liberal-

130

00



A.1.4 Political Interest for Freshmen Only

Table A.7: Mean, SD and n for Dynamic Homophily estimates, as a function of period (for
three conditions: Baseline, Final Debate and Election Day)

Period Mean SD Samples
Baseline period 1.69 0.925 18
Final Debate period 1.25 0.7 18
Election Day period 1.31 0.81 18

Table A.8: Source Table for (Period) Repeated-Subjects ANOVA

Source Df. SS. MS F-value p
Period 2 2.03 1.01 3.43 0.043*
Residuals 34 10.04 0.29

Since the p-value is significant, the null hypothesis (i.e., three conditions have equal means)

is rejected. The residual normality assumption required for ANOVA holds true (See figure).
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Figure A-4: Residuals normality assumption is validated for
Interest dynamic homophily for Freshmen only

ANOVA analysis of Political
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A.2 Dynamic Homophily graphs for the entire year period

Figure A-5: Dynamic Homophily (moving average) for the entire year for four different cases
based on bluetooth proxmity. From top to botton: (a) political interest for all residents (b)
preferred party for all residents (c) liberal-conservative for all residents (d) political interest
for freshmen only
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