511 research outputs found

    Development of symbolic algorithms for certain algebraic processes

    Get PDF
    This study investigates the problem of computing the exact greatest common divisor of two polynomials relative to an orthogonal basis, defined over the rational number field. The main objective of the study is to design and implement an effective and efficient symbolic algorithm for the general class of dense polynomials, given the rational number defining terms of their basis. From a general algorithm using the comrade matrix approach, the nonmodular and modular techniques are prescribed. If the coefficients of the generalized polynomials are multiprecision integers, multiprecision arithmetic will be required in the construction of the comrade matrix and the corresponding systems coefficient matrix. In addition, the application of the nonmodular elimination technique on this coefficient matrix extensively applies multiprecision rational number operations. The modular technique is employed to minimize the complexity involved in such computations. A divisor test algorithm that enables the detection of an unlucky reduction is a crucial device for an effective implementation of the modular technique. With the bound of the true solution not known a priori, the test is devised and carefully incorporated into the modular algorithm. The results illustrate that the modular algorithm illustrate its best performance for the class of relatively prime polynomials. The empirical computing time results show that the modular algorithm is markedly superior to the nonmodular algorithms in the case of sufficiently dense Legendre basis polynomials with a small GCD solution. In the case of dense Legendre basis polynomials with a big GCD solution, the modular algorithm is significantly superior to the nonmodular algorithms in higher degree polynomials. For more definitive conclusions, the computing time functions of the algorithms that are presented in this report have been worked out. Further investigations have also been suggested

    Resolving zero-divisors using Hensel lifting

    Full text link
    Algorithms which compute modulo triangular sets must respect the presence of zero-divisors. We present Hensel lifting as a tool for dealing with them. We give an application: a modular algorithm for computing GCDs of univariate polynomials with coefficients modulo a radical triangular set over the rationals. Our modular algorithm naturally generalizes previous work from algebraic number theory. We have implemented our algorithm using Maple's RECDEN package. We compare our implementation with the procedure RegularGcd in the RegularChains package.Comment: Shorter version to appear in Proceedings of SYNASC 201

    Reconstructing Rational Functions with FireFly\texttt{FireFly}

    Full text link
    We present the open-source C++\texttt{C++} library FireFly\texttt{FireFly} for the reconstruction of multivariate rational functions over finite fields. We discuss the involved algorithms and their implementation. As an application, we use FireFly\texttt{FireFly} in the context of integration-by-parts reductions and compare runtime and memory consumption to a fully algebraic approach with the program Kira\texttt{Kira}.Comment: 46 pages, 3 figures, 6 tables; v2: matches published versio

    Constructing Permutation Rational Functions From Isogenies

    Full text link
    A permutation rational function fFq(x)f\in \mathbb{F}_q(x) is a rational function that induces a bijection on Fq\mathbb{F}_q, that is, for all yFqy\in\mathbb{F}_q there exists exactly one xFqx\in\mathbb{F}_q such that f(x)=yf(x)=y. Permutation rational functions are intimately related to exceptional rational functions, and more generally exceptional covers of the projective line, of which they form the first important example. In this paper, we show how to efficiently generate many permutation rational functions over large finite fields using isogenies of elliptic curves, and discuss some cryptographic applications. Our algorithm is based on Fried's modular interpretation of certain dihedral exceptional covers of the projective line (Cont. Math., 1994)

    Modular Las Vegas Algorithms for Polynomial Absolute Factorization

    Get PDF
    Let f(X,Y) \in \ZZ[X,Y] be an irreducible polynomial over \QQ. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of ff, or more precisely, of ff modulo some prime integer pp. The same idea of choosing a pp satisfying some prescribed properties together with LLLLLL is used to provide a new strategy for absolute factorization of f(X,Y)f(X,Y). We present our approach in the bivariate case but the techniques extend to the multivariate case. Maple computations show that it is efficient and promising as we are able to factorize some polynomials of degree up to 400

    Discovering the roots: Uniform closure results for algebraic classes under factoring

    Full text link
    Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots rr is small but the multiplicities are exponentially large. Our method sets up a linear system in rr unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,,xn)f(x_1,\ldots,x_n) of size ss we prove that each factor has size at most a polynomial in: ss and the degree of the squarefree part of ff. Consequently, if f1f_1 is a 2Ω(n)2^{\Omega(n)}-hard polynomial then any nonzero multiple ifiei\prod_{i} f_i^{e_i} is equally hard for arbitrary positive eie_i's, assuming that ideg(fi)\sum_i \text{deg}(f_i) is at most 2O(n)2^{O(n)}. It is an old open question whether the class of poly(nn)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial ff of degree nO(1)n^{O(1)} and formula (resp. ABP) size nO(logn)n^{O(\log n)} we can find a similar size formula (resp. ABP) factor in randomized poly(nlognn^{\log n})-time. Consequently, if determinant requires nΩ(logn)n^{\Omega(\log n)} size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ\tau, f(τx)f(\tau\overline{x}) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems, supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \& Burgisser, FOCS 2001).Comment: 33 Pages, No figure

    Normal Elliptic Bases and Torus-Based Cryptography

    Full text link
    We consider representations of algebraic tori Tn(Fq)T_n(F_q) over finite fields. We make use of normal elliptic bases to show that, for infinitely many squarefree integers nn and infinitely many values of qq, we can encode mm torus elements, to a small fixed overhead and to mm ϕ(n)\phi(n)-tuples of FqF_q elements, in quasi-linear time in logq\log q. This improves upon previously known algorithms, which all have a quasi-quadratic complexity. As a result, the cost of the encoding phase is now negligible in Diffie-Hellman cryptographic schemes
    corecore