2,782 research outputs found

    Boundary tracking and source seeking of oceanic features using autonomous vehicles

    Get PDF
    The thesis concerns the study and the development of boundary tracking and source seeking approaches for autonomous vehicles, specifically for marine autonomous systems. The underlying idea is that the characterization of most environmental features can be posed from either a boundary tracking or a source seeking perspective. The suboptimal sliding mode boundary tracking approach is considered and, as a first contribution, it is extended to the study of three dimensional features. The approach is aimed at controlling the movement of an underwater glider tracking a three-dimensional underwater feature and it is validated in a simulated environment. Subsequently, a source seeking approach based on sliding mode extremum seeking ideas is proposed. This approach is developed for the application to a single surface autonomous vehicle, seeking the source of a static or dynamic two dimensional spatial field. A sufficient condition which guarantees the finite time convergence to a neighbourhood of the source is introduced. Furthermore, a probabilistic learning boundary tracking approach is proposed, aimed at exploiting the available preliminary information relating to the spatial phenomenon of interest in the control strategy. As an additional contribution, the sliding mode boundary tracking approach is experimentally validated in a set of sea-trials with the deployment of a surface autonomous vehicle. Finally, an embedded system implementing the proposed boundary tracking strategy is developed for future installation on board of the autonomous vehicle. This work demonstrates the possibility to perform boundary tracking with a fully autonomous vehicle and to operate marine autonomous systems without remote control or pre-planning. Conclusions are drawn from the results of the research presented in this thesis and directions for future work are identified

    Environmental Monitoring using Autonomous Vehicles: A Survey of Recent Searching Techniques

    Get PDF
    Autonomous vehicles are becoming an essential tool in a wide range of environmental applications that include ambient data acquisition, remote sensing, and mapping of the spatial extent of pollutant spills. Among these applications, pollution source localization has drawn increasing interest due to its scientific and commercial interest and the emergence of a new breed of robotic vehicles capable of performing demanding tasks in harsh environments without human supervision. In this task, the aim is to find the location of a region that is the source of a given substance of interest (e.g. a chemical pollutant at sea or a gas leakage in air) using a group of cooperative autonomous vehicles. Motivated by fast paced advances in this challenging area, this paper surveys recent advances in searching techniques that are at the core of environmental monitoring strategies using autonomous vehicles

    Mission-Oriented Multirobot Adaptive Navigation of Scalar Fields

    Get PDF
    Scalar fields are spatial regions where each point has an associated physical value. These fields often contain features of interest, such as local extrema and contours with a value of significance. Traditional navigation techniques require robots to exhaustively search these regions to find the areas of significance, while adaptive navigation allows them to move directly to the points of interest based on measurements of the field taken during the navigation process. This work expands existing adaptive navigation techniques by adding a finite state machine layer to the control architecture, and using it as a discrete mode controller; the state machine allows for the sequencing of individual adaptive navigation control primitives for the purpose of enhancing performance and achieving new mission-level capabilities. For example, it has enabled improvements to existing ridge, trench, and saddle point navigators and the creation of a novel technique for navigating along scalar fronts. In both cases, experimental results demonstrated excellent tracking of the features of interest. Furthermore, mission-level capabilities were developed for low-exposure waypoint navigation and mapping contours round an extremum. These missions were evaluated through the use of 10,000 simulations with success rates of 96:95% for low exposure waypoint navigation and 87:36% for contour mapping

    Large-area visually augmented navigation for autonomous underwater vehicles

    Get PDF
    Submitted to the Joint Program in Applied Ocean Science & Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2005This thesis describes a vision-based, large-area, simultaneous localization and mapping (SLAM) algorithm that respects the low-overlap imagery constraints typical of autonomous underwater vehicles (AUVs) while exploiting the inertial sensor information that is routinely available on such platforms. We adopt a systems-level approach exploiting the complementary aspects of inertial sensing and visual perception from a calibrated pose-instrumented platform. This systems-level strategy yields a robust solution to underwater imaging that overcomes many of the unique challenges of a marine environment (e.g., unstructured terrain, low-overlap imagery, moving light source). Our large-area SLAM algorithm recursively incorporates relative-pose constraints using a view-based representation that exploits exact sparsity in the Gaussian canonical form. This sparsity allows for efficient O(n) update complexity in the number of images composing the view-based map by utilizing recent multilevel relaxation techniques. We show that our algorithmic formulation is inherently sparse unlike other feature-based canonical SLAM algorithms, which impose sparseness via pruning approximations. In particular, we investigate the sparsification methodology employed by sparse extended information filters (SEIFs) and offer new insight as to why, and how, its approximation can lead to inconsistencies in the estimated state errors. Lastly, we present a novel algorithm for efficiently extracting consistent marginal covariances useful for data association from the information matrix. In summary, this thesis advances the current state-of-the-art in underwater visual navigation by demonstrating end-to-end automatic processing of the largest visually navigated dataset to date using data collected from a survey of the RMS Titanic (path length over 3 km and 3100 m2 of mapped area). This accomplishment embodies the summed contributions of this thesis to several current SLAM research issues including scalability, 6 degree of freedom motion, unstructured environments, and visual perception.This work was funded in part by the CenSSIS ERC of the National Science Foundation under grant EEC-9986821, in part by the Woods Hole Oceanographic Institution through a grant from the Penzance Foundation, and in part by a NDSEG Fellowship awarded through the Department of Defense
    corecore