
Santa Clara University Santa Clara University

Scholar Commons Scholar Commons

Engineering Ph.D. Theses Student Scholarship

2-2020

Mission-Oriented Multirobot Adaptive Navigation of Scalar Fields Mission-Oriented Multirobot Adaptive Navigation of Scalar Fields

Robert McDonald

Follow this and additional works at: https://scholarcommons.scu.edu/eng_phd_theses

 Part of the Mechanical Engineering Commons

https://scholarcommons.scu.edu/
https://scholarcommons.scu.edu/eng_phd_theses
https://scholarcommons.scu.edu/student_scholar
https://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages

Mission-Oriented Multirobot Adaptive Navigation

of Scalar Fields

By

Robert McDonald

Dissertation

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Mechanical Engineering
in the School of Engineering at
Santa Clara University, 2020

Santa Clara, California

Mission-Oriented Multirobot Adaptive Navigation of Scalar
Fields

Robert McDonald

Department of Mechanical Engineering
Santa Clara University
Santa Clara, California

2020

ABSTRACT

Scalar fields are spatial regions where each point has an associated physical value. These

fields often contain features of interest, such as local extrema and contours with a

value of significance. Traditional navigation techniques require robots to exhaustively

search these regions to find the areas of significance, while adaptive navigation allows

them to move directly to the points of interest based on measurements of the field

taken during the navigation process. This work expands existing adaptive navigation

techniques by adding a finite state machine layer to the control architecture, and using

it as a discrete mode controller; the state machine allows for the sequencing of individual

adaptive navigation control primitives for the purpose of enhancing performance and

achieving new mission-level capabilities. For example, it has enabled improvements to

existing ridge, trench, and saddle point navigators and the creation of a novel technique

for navigating along scalar fronts. In both cases, experimental results demonstrated

excellent tracking of the features of interest. Furthermore, mission-level capabilities

were developed for low-exposure waypoint navigation and mapping contours around an

extremum. These missions were evaluated through the use of 10,000 simulations with

success rates of 96.95% for low exposure waypoint navigation and 87.36% for contour

mapping.

iii

Acknowledgments

First and foremost I would like to thank my advisor, Dr. Chris Kitts. He has been

an excellent guide and source of inspiration throughout my research. I also want to

thank my doctoral committee for their feedback and insight, particularly Dr. Michael

Neumann, the best coauthor anyone could ask for.

As always I owe a lot to my predecessors in adaptive navigation research, as they

have paved the way for my work. My colleagues in the robotics systems lab have

lent their support as well. They are an excellent community of students and scholars,

and a small sample of the contributors include: Matt Condino, Scot Tomer, Danop

Rajabhandharaks, Mike Rasay, and Anne Mahacek.

Last but certainly not least, I would like to thank my family and friends, and anyone

else who has had to listen to me babble about robotics over the years. My wife Jill has

been particularly patient and supportive while I’ve been chasing dreams.

A portion of this work has been used for academic publication [1][2][3], and may be used

for additional publications in the future.

iv

Table of Contents

1 Introduction . 1

1.1 Adaptive Navigation Literature . 2

1.2 Project Statement . 5

1.3 Dissertation Organization . 6

2 Systems Overview . 7

2.1 Control Architecture . 7

2.1.1 Robot Control . 8

2.1.2 Cluster Control . 8

2.1.3 Adaptive Navigator . 9

2.1.4 Finite State Machine . 10

2.2 Simulation Architecture . 11

2.3 Experimental Testbed . 11

3 Experimental Verification of Ridge, Trench, and Saddle Navigation 14

3.1 Review of Ridge/Trench/Saddle Controller 14

3.1.1 Cluster Definition . 15

3.1.2 Differential Control Strategy . 17

3.2 Experimental Results . 19

3.2.1 Linear Trench . 20

3.2.2 Parabolic Trench . 23

3.2.3 Wide Cubic Ridge . 27

3.2.4 Narrow Cubic Ridge with Saddle Point 29

3.2.5 Summary . 29

v

4 Navigating Scalar Fronts . 33

4.1 Control Strategy . 34

4.1.1 Cluster Formation . 36

4.1.2 Front Seeking . 38

4.1.3 Front Following . 40

4.1.4 State Controller . 41

4.2 Simulation Results . 42

4.3 Experimental Results . 44

4.3.1 Straight Front . 44

4.3.2 Sinusoidal Front . 48

4.3.3 Front with Changing Width . 48

4.4 Summary . 52

5 Low-Exposure Waypoint Navigation 53

5.1 Cluster Formation . 53

5.2 Control Strategy . 54

5.3 Simulation . 60

5.3.1 Simulation Environment . 60

5.3.2 Results . 60

5.4 Summary . 66

6 Mapping Contours Around an Extrema 67

6.1 Control Strategy . 68

6.2 Simulation Results . 74

6.2.1 Testing on a Simulated Field . 74

6.2.2 Simulating on Real-World Radiation Data 75

6.3 Summary . 81

7 Conclusion . 82

7.1 Summary . 82

7.2 Future Work . 83

vi

Bibliography . 84

Appendices . A1

vii

List of Figures

1.1 Waypoint navigation (top) is conducted by moving the vehicle to a se-
ries of points, while path planning and trajectory control prescribe the
specific, continuous route to be taken (bottom). 2

1.2 The Autonomous Benthic Explorer. 3

1.3 Three automated kayaks traversing a scalar field at Stevens Creek Reser-
voir in Cupertino, CA . 4

1.4 The fundamental primitive features of a scalar field. 5

2.1 The multirobot adaptive navigation control architecture with state-based
behavior. From right to left, we have the robot level controller, the cluster
controller, the adaptive navigator, and the state controller. 7

2.2 A single omnidrive robot on a printed scalar field. 12

3.1 Generic five robot cluster pose definition for the ridge/trench/saddle navi-
gation technique. There are two serial-chain structures defined from robot
one. 17

3.2 The cluster of robots is displayed on a ridge, where it is laterally and
rotationally offset from the feature. The lateral differentials center the
formation on the ridge and provide rotational commands, while the lon-
gitudinal ones set the travel direction. 18

3.3 State Diagram for Ridge/Trench Following. State zero is used when off
the feature, state 1 is used when on the feature 19

3.4 The position of all five robots as they follow a linear trench, superimposed
upon a rendering of the grayscale scalar field. 21

3.5 Time history for the absolute tracking error value for the trial depicted
in Figure 3.4. 21

3.6 Controller state (s) as the robots travel the path in Figure 3.4. There is
only a single transition from state 0 to state 1. 22

3.7 Time history of the di values for the test presented in Fig. 3.4. 22

viii

3.8 Experimental data for the cluster center from multiple runs as robots
navigate up a trench with a linear path, superimposed upon a rendering
of the grayscale scalar field. The blue path is the same run depicted in
Fig. 3.4. 24

3.9 Experimental data for five robots navigating up a trench with a parabolic
path, superimposed upon a rendering of the grayscale scalar field. 25

3.10 Experimental data for the cluster center from multiple runs as robots nav-
igate up a trench with a parabolic path, superimposed upon a rendering
of the grayscale scalar field. 26

3.11 Experimental data for five robots navigating down a ridge with a cubic
path, superimposed upon a rendering of the grayscale scalar field. 27

3.12 Experimental data for the cluster center from multiple runs as the robots
navigate down a ridge with a cubic path, superimposed upon a rendering
of the grayscale scalar field. 28

3.13 Experimental data for five robots navigating down a ridge with a cubic
path until they come to rest at a saddle point, superimposed upon a
rendering of the grayscale scalar field [2]. 30

3.14 Experimental data for the cluster center from multiple runs as the robots
navigate down a ridge with a cubic path until they come to rest at a
saddle point, superimposed upon a rendering of the grayscale scalar field.
In each case, the robot cluster oscillates around the location of the saddle
point. 31

3.15 Time histories of the scalar differentials between robots 2 and 4 (top),
and robots 3 and 5 (bottom), for the run presented in Fig. 3.13. Includes
both the unfiltered values used in the control computation, and the result
after filtering with the response with a 50 sample moving average. 32

4.1 (a), an idealized front, and (b), a generalized frontal region. The lines
represent equally spaced contours of a scalar field, descending in value
from left to right, and the highlighted region indicates where the front is
located. 34

4.2 Two pairs of robots follow the edges of a scalar front. 35

4.3 An example of the robot formation on a scalar front, with example ve-
locity commands. The contour lines are in equal scalar increments, de-
scending from top to bottom. 36

4.4 Six Robot Cluster Pose Definition: Cluster space pose variables for a
six robot cluster with intermediate frame centered between two pairs of
robots, and the aggregate cluster frame centered between the two inter-
mediate frames. 37

ix

4.5 Each controller state is listed with the appropriate value for s, and the
slope criteria for each state transition. m is the measured slope of the
feature, mmin is the minimum slope required for the feature to be con-
sidered a front, mhyst is a higher slope requirement for exiting hysteresis
states, and s is a variable used in the front following controller. 41

4.6 A three dimensional rendering of the scalar front used for simulated front
following. 43

4.7 An overhead view of six robots navigating the scalar front; they start off
the feature, climb up to it, travel in the positive y until the front ends,
then travel back in the −y direction. 43

4.8 The time history of the cluster and subcluster slopes, as compared to the
desired values. The vertical lines indicate the points at which the robot
cluster is commanded to reverse direction. 44

4.9 Experimental data for six robots navigating along a front with a linear
path, superimposed upon a rendering of the grayscale scalar field. 45

4.10 Performance plot for d1, d2, d5, d6 for the experiment displayed in Figure
4.9. 46

4.11 Time history for the measured slope of the front, and the slopes detected
by each subcluster of the formation, for the experiment depicted in Fig.
4.9. Vertical lines indicate points where the cluster begins the process of
reversing direction. 46

4.12 Controller state as the robots travel the path in Fig. 4.9. 47

4.13 The centroids of each subcluster and the center of the aggregate cluster
as it travels along a front, where the run from Fig. 4.9 is in blue. 47

4.14 Experimental data for six robots navigating along a front with a sinusoidal
path and a ridge feature, superimposed upon a rendering of the grayscale
scalar field. 48

4.15 Time history for the measured slope of the feature, and the slopes de-
tected by each subcluster of the formation, for the experiment depicted
in Fig. 4.14. Vertical lines indicate points where the cluster begins the
process of reversing direction. 49

4.16 Experimental data for five separate runs, where the centroids of each
subcluster and of the aggregate cluster are plotted for each, superimposed
upon a rendering of the grayscale scalar field. 49

4.17 Experimental data for the robots as they navigate along a front with
changing width, superimposed upon a rendering of the scalar field. 50

x

4.18 Time history for the measured slope of the feature, and the slopes de-
tected by each subcluster of the formation, for the experiment depicted
in Fig. 4.17. 51

4.19 Experimental data for five separate runs on the front with changing width,
where the centroids of each subcluster and of the aggregate cluster are
plotted for each, superimposed upon a rendering of the grayscale field. . . 52

5.1 A four robot formation used for low exposure waypoint navigation, con-
tour mapping, and seeking multiple extrema. It is an equilateral triangle
with a fourth robot at the center to detect curvature. 54

5.2 Overview of states and transitions for low exposure waypoint navigation. 55

5.3 A simplified example of a low exposure waypoint navigation scenario,
where the arrows represent the direction of travel as the cluster follows
the displayed contour. Each sub-figure displays a portion of the travel,
where the new movement is highlighted in blue. The green diamond is
the starting point, while the red one is the end point. The red dashed
line is a boundary for the navigation area. 56

5.4 The contour plot for the interpolated Cs-137 in Chernobyl Exclusion Zone
soil samples. The red rectangle represents the boundaries set for the
simulations conducted in this chapter. 61

5.5 The cluster center positions corresponding to a single test of the low
exposure waypoint navigation technique superimposed on the scalar field
of interest. The red line indicates the right boundary of the operating area. 62

5.6 A plot of the time history of the navigator states for the run presented
in Figure 5.5. 63

5.7 The time history for the scalar value sensed by robot 4 throughout a low
exposure waypoint navigation test. 64

5.8 100 simulated runs displayed on the interpolated radiation data, all of
which have the same destination. Green circles represent start points,
red indicates the finish, red lines are boundaries. 65

6.1 An example contour mapping scenario, starting at the green diamond. . . 68

6.2 The state diagram for the contour mapping technique. It includes four
states and five transition criteria. 69

xi

6.3 The contour mapping navigation strategy operating on a simulated scalar
field. (a) shows the cluster navigating a contour that does not encircle
the peak, and in (b) the navigator recovers from this scenario and begins
navigating another invalid contour. In (c) the navigator recovers again
to find a viable route, and finally in (d) the cluster recovers once again
and continues onward. 76

6.4 A single contour mapping test conducted on a scalar field interpolated
from soil samples taken in the Chernobyl Exclusion Zone. 77

6.5 A subsection of Figure 6.4 in order to provide a more detailed view of the
beginning of the motion. A small portion of each of the three individual
contours followed can be seen in this view. 78

6.6 Time history of the controller state for the test displayed in Figure 6.4. . 79

6.7 Time history of the average scalar value for the test displayed in Figure
6.4. 79

xii

List of Tables

3.1 Cluster parameter error for the straight trench test presented in Fig. 3.4. 20

3.2 The RMS trenchline tracking error for all five trials plotted in Fig. 3.8. . 23

3.3 Cluster parameter error for the parabolic trench test presented in Fig. 3.9. 24

3.4 The RMS trenchline tracking error for all five trials plotted in Fig. 3.10. 25

3.5 Cluster parameter error for the wide ridge test presented in Fig. 3.11. . . 28

3.6 The RMS ridgeline tracking error for all five trials plotted in Fig. 3.12. . 29

3.7 Cluster parameter error for the test presented in Fig. 3.13 with a cubic
ridge terminating in a saddle point. 30

3.8 The RMS ridgeline tracking error for all five trials plotted in Fig. 3.14. . 31

4.1 Slope errors for the subclusters for the straight front tests presented in
Fig. 4.13. 47

4.2 Slope errors for the subclusters for the tests presented in Fig. 4.16. . . . 50

4.3 Slope errors for the subclusters for the tests presented in Fig. 4.19. . . . 51

6.1 Simulation End Conditions . 81

1 The parameters for the scalar field equations for each experiment. A1

2 Greyscale ranges for the scalar fields. A2

3 Cluster parameter RMS errors for the front tests presented in Figs. 4.9,
4.14, and 4.17. B1

xiii

Nomenclature

Frequently Used Notation

Robot i position xi, yi

Robot i angular rotation θi

Robot space pose vector ~R

Robot i scalar value zi

Cluster position xc, yc

Cluster angular rotation θc

Cluster space pose vector ~C

Set of kinematic transforms KIN()

Jacobian Transform J

Rotation matrix from b to a Ra
b

Local gradient estimate ~g

Bearing of the local gradient ~bgrad

List of Acronyms

RMS Root Mean Square

AUV Autonomous Underwater Vehicle

ASV Autonomous Surface Vessel/Vehicle

ABE Autonomous Benthic Explorer

RSL Robotic Systems Laboratory

RGB Red Green Blue

PID Proportional Integral Derivative

GPS Global Positioning System

xiv

Chapter 1

Introduction

In a traditional robotic navigation scenario, the destination and route are known at the

outset, and control strategies are used to implement the desired motion. Commonly

used techniques include waypoint navigation, path following, and trajectory control.

Examples of these methods are depicted in Figure 1.1. Waypoint navigation can be

seen as moving to a series of points; path following controls the vehicle’s route to a

specific path; and trajectory control is similar to path following with time constraints

where the vehicle is controlled to reach each point on the path at a particular time.

All of these methods require significant a priori knowledge and route planning. By

contrast, adaptive navigation techniques leverage environmental information sensed by

the vehicle to make course adjustments throughout the navigation process. There are

many examples of adaptive navigation techniques including: obstacle avoidance [4],

rerouting paths based on air traffic conditions [5], and seeking particular environmental

phenomena [6].

A specific class of adaptive navigation is a set of techniques used to navigate scalar

fields. A scalar field is a spatial region in which every point has an associated quantity.

The scalar values can be artificially created or naturally occurring, and example values

of interest are depth, radiation counts, gas concentration, temperature, or any scalar

measurement. Intelligently navigating these scalar fields provides the ability to navigate

directly to or along points of interest, as opposed to the time and resource intensive

alternative of exhaustively mapping a region. The numerous potential applications of

these techniques include seeking sources of gas leaks, establishing safe perimeters around

radiation environments, following the extent of ocean thermal fronts, etc. This work

introduces a novel state-based method for sequencing adaptive navigation primitives

in order to enhance performance and to accomplish more complex, mission-oriented

objectives. This introductory chapter summarizes the literature concerning adaptive

navigation of scalar fields (Section 1.1), and presents the project statement outlining

the objectives and contributions of this work (Section 1.2).

1

Fig. 1.1: Waypoint navigation (top) is conducted by moving the vehicle to a series of
points, while path planning and trajectory control prescribe the specific, continuous
route to be taken (bottom).

1.1 Adaptive Navigation Literature

Adaptive navigation of scalar fields has been the subject of a large amount of research,

most of which has been focused on seeking extrema and following contours. [7] and [8]

discuss a variety of general robotic environmental monitoring methods. An extremely

thorough literature review has been presented in [1], which can be consulted for addi-

tional information about scalar field specific techniques. Adaptive navigation strategies

have been implemented with a variety of methods, to include both single and multirobot

approaches. Knowledge of the structure of the local scalar field is required to make nav-

igation decisions, typically in the form of gradients or differentials. Several distributed

measurements are needed to compute these quantities.

Single robot approaches require additional motion to acquire the needed spatial data.

For example, [6] used an autonomous underwater vehicle (AUV) called the Autonomous

Benthic Explorer (ABE), depicted in Figure 1.2, to follow bathymetric gradients by

adding additional motion to the vehicle path inspired by Escherichia coli (E. Coli.)

bacteria. Other approaches include [9], which used a bio-inspired technique based on

the way a moth moves in and out of pheromone plumes, and a simulated method that

used a sliding mode controller to move toward extreme points [10]. The same research

group also demonstrated sliding mode methods for contour following in simulation and

used a real robot to follow a simulated scalar field [11][12].

2

Fig. 1.2: The Autonomous Benthic Explorer [13]. Image reproduced with permission.

While there is some additional operational overhead involved with deploying multiple

robots, many research groups have found that multirobot methods are a more effec-

tive way to perform scalar field navigation, as a formation of robots does not require

spurious motion to determine the local trend of the scalar field. Instantaneous spatial

characterization of the local field is both more efficient and improves the tracking of

transient features [14]. The size and shape of the formation can also be tailored to

suit the desired application. The majority of the literature focuses on extrema seeking,

followed by contour following, and simulated technique verification is far more common

than experimental methods; while field demonstrations are extremely rare.

The most common multirobot adaptive navigation application in the literature is source-

seeking. [15] uses a multirobot approach with a spatial dither to follow the gradient

toward an extrema. Other examples include a probabilistic technique robust to noise

which was used to follow gradients in [16] and [17] which seeks sources using gradient

and Hessian information. An example of a non-gradient based approach is [18], which

used a swarm based approach with simulated attraction forces. Gradient climbing with

experimental verification is presented in [19], which used several light sensing robots on

a tabletop.

3

Fig. 1.3: Three automated kayaks traversing a scalar field at Stevens Creek Reservoir
in Cupertino, CA [25]. Image reproduced with permission.

Contour focused examples include: [20], in which robots individually tracked a contour

while sharing information, [21] which follows contours using a provably stable and con-

verging technique, and a technique presented in [22] that uses a simulated two robot

formation with a priori knowledge of a flow field to track the edge of a plume. Notable

examples with experimental data include [23], which used a multirobot approach to

follow a tape boundary, and [24] which used several robots to circumnavigate colored

mats using simple controllers similar to tape following techniques.

The Robotic Systems Laboratory (RSL) at Santa Clara University has conducted sig-

nificant work in the area of multirobot adaptive navigation, with a particular focus on

experimental verification, and ultimately full field tests. The gradient based techniques

for seeking extrema and following contours have been verified in the field, at Lake Tahoe

and Stevens Creek Reservoir in California [25]. Figure 1.3 depicts the autonomous sur-

face vessels used for these deployments as they navigate the bathymetry of the reservoir.

The effort was extended to less commonly researched features, including ridges, trenches,

and saddle points. These methods were demonstrated in simulation in [1].

Altogether, extrema, contours, ridges, trenches, and saddle points comprise a set of

primitive features of a scalar field with varied applications in the field. Figure 1.4

displays these features as they are labeled on a simulated scalar field. As examples,

locating maxima is useful for finding sources of dangerous leaks, minima can represent

areas without service, contours can represent safe boundaries around hazardous regions,

ridges can lead to the impact zone of plumes, trenches are low-exposure approaches,

4

Fig. 1.4: The fundamental primitive features of a scalar field [1].

and saddle points can be low energy gateways between regions.

1.2 Project Statement

The objective of this research is to explore how a state-based architecture can improve

the effectiveness of adaptive navigation strategies. This is the first time state-based

behavior has been applied to the adaptive navigation primitives, and it is used to improve

performance of adaptive navigation controllers and to explore three complex mission-

level capabilities.

The first contribution is the design and implementation of the state machine architecture

itself. Previous work has been focused on individual navigation primitives tailored for

specific features, and using a state machine allows these to be sequenced in order to

improve performance.

The ridge, trench, and saddle point navigator is the first technique to leverage this

architecture. It provides the ability to initially seek the ridge/trench, and to recover

in the case that the cluster is no longer spanning the feature. It was also the first full

experimental verification of these adaptive navigation primitives.

The first mission-level navigator presented in this work is the first comprehensive method

for navigating scalar fronts. It is verified with a full experimental implementation. Two

other examples presented include a method for navigating to a waypoint without crossing

above a preset scalar threshold and a method for mapping the contours around a local

5

extremum. A set of transition criteria and failure prevention methods are developed to

support these efforts. The techniques are verified via large-batch simulations.

Additionally, the front navigator was the first adaptive navigation technique to adap-

tively size the cluster formation throughout the navigation process. This showcases the

potential for the formation to adapt based upon the characteristics of the local scalar

field. Finally, two cluster formations were designed to support the techniques that had

experimental verification. Each cluster design required the development of a set of

forward and inverse kinematics, and the associated inverse Jacobian transform.

1.3 Dissertation Organization

Chapter 2 describes the architecture of the enhanced adaptive navigation control ap-

proach, and shows how the state machine is incorporated. Chapter 3 shows how state-

based behavior is used to improve primitive level performance for the ridge/trench fol-

lowing and saddle point station keeping techniques and results of the first experimental

implementation of these primitives. Chapters 4, 5, and 6 show how state machine based

integration of adaptive navigation primitives can be used to implement more complex,

application or mission-level tasks. The first of these, front following, is verified in simu-

lation, and through simple experiments. Other mission-oriented tasks are verified with

statistics provided by large-batch simulations.

6

Chapter 2

Systems Overview

2.1 Control Architecture

A layered control architecture, as seen in Figure 2.1, is used to implement the mul-

tirobot adaptive navigation techniques, providing convenient abstraction between the

navigation commands and the lower level controllers. The robot layer is used to control

the vehicles, and their actuators. It receives commands from the cluster control layer,

which is responsible for formation keeping and cluster level movements. The cluster

level commands are sent by the adaptive navigator, which uses scalar field readings to

estimate local field characteristics and to compute appropriate commands given the se-

lected adaptive navigation control primitive. Finally, as part of the research conducted

by the author, a state machine layer selects the adaptive navigation primitive to be ex-

ecuted at any particular time using a sequencing policy developed to execute a specific

task.

•

•

•

 State Controller

Robot Cluster

!"⃗ , !"⃗ % , &⃗

 Adaptive Navigator

gradb

R
ρ

R&
ρ

Cluster Space Controller

Robot 1 Controller

Robot n
Feature

Estimation
KIN

J

J.-1

cz

Adaptive
Navigator

Shape Policy

'%(,)%(, *%(

ijdiff

+⃗,-.

+⃗%,-.

+⃗

+⃗%

&⃗

!"⃗

!"⃗ %

/⃗0⃗

/⃗0⃗%
+⃗%(1, !"⃗ %,-. !"⃗ %23,-.

!"⃗ %43,-.

!"⃗ 2, !"⃗ %2, &2

!"⃗ 4, !"⃗ %4, &4

Next State
Computation

State
Update

Clk

Nav
mode

5⃗

Fig. 2.1: The multirobot adaptive navigation control architecture with state-based be-
havior. From right to left, we have the robot level controller, the cluster controller, the
adaptive navigator, and the state controller [2].

7

2.1.1 Robot Control

The robot control layer is responsible for executing the control of the individual vehicles

in a multirobot formation. Depending on the needs of these vehicles, input control

specifications can be provided either in the form of vehicle velocity commands (for

resolved rate cluster spaces controllers [26]) or force/torque commands (for dynamic

cluster space control [27]). Each vehicle implements these commands, executing vehicle

control as required. This approach has been implemented for vehicles with varying

degrees of freedom, and for robots that are both holonomic and non-holonomic. This

variety includes vehicles such as rovers [28], flying drones [29], and autonomous surface

vessels [29][30].

2.1.2 Cluster Control

The cluster control layer of the architecture is responsible for maintaining the robot

formation and translating formation information between robot space and cluster space.

This provides a convenient layer of abstraction while performing complex multirobot

tasks, which allows the geometry of the formation to be controlled directly as opposed

to commanding each individual vehicle. This allows for a high level of customization, as

the geometry of the cluster is selected (and manipulated) based upon the requirements

of a mission.

This is accomplished by treating the formation as a fully articulated virtual mechanism

[31]. The pose information for each vehicle in the planar case, (xi, yi, θi) for i = 1-n,

where n is the number of vehicles, is represented by the vector ~R. A more convenient set

of variables, ~C, is selected based upon the desired cluster geometry for the application

or altered during the mission based on operational requirements. The cluster vector is

computed from the robot space information using a set of kinematic transforms, as seen

in Equation 2.1 assuming n robots with m degrees of freedom. rmn corresponds to a

robot space variable, gmn is a kinematic equation for computing a cluster space variable,

and KIN() is the full set of kinematic transformations. The same transforms can be

inverted to accomplish the reverse. Mobile robots are frequently designed to accept

velocity commands, so the cluster control technique makes use of a Jacobian transform

to map the robot velocities to cluster space, as in Equation 2.2, and the reverse can be

applied via the inverse Jacobian transform, as in Equation 2.3. The formation control

loop itself is typically executed in cluster space, which provides more intuitive behavior.

8

~C=

c1

c2
...

cmn

=KIN(~R)=

g1(r1,r2,···,rmn)

g2(r1,r2,···,rmn)
...

gmn(r1,r2,...,rmn)

 (2.1)

~̇C = J(~R) ~̇R (2.2)

~̇R = J−1(~R) ~̇C (2.3)

This technique has been used for a variety of applications and environments to include

guarding an objective [32] and aligning a string of robots to relay communications

[33]. It has also been demonstrated that the technique is capable of both holonomic

and non-holonomic cluster movement, obstacle avoidance, and has been proved to be

Lyapunov-stable [34]. The particular formations used for each technique presented in

this work are detailed in the appropriate chapters.

2.1.3 Adaptive Navigator

The adaptive navigator is responsible for executing the currently selected adaptive nav-

igation control primitive, which is typically accomplished using information about the

local scalar field. These metrics are acquired by processing the scalar readings from each

individual robot in the formation. The techniques discussed in this work typically use

gradient based methods, scalar differentials, or some combination thereof. These values

are used by the adaptive navigation primitive controllers, which ultimately generate the

commanded cluster-level velocities. In the simplest case, the commanded formation is

static, however the control architecture provides the navigator with the ability to re-

shape the cluster throughout the mission as necessary. The cluster controller itself is

responsible for maintaining this prescribed formation. The control equations themselves

and other details for the primitive controllers for each application are described in the

relevant chapters.

9

2.1.4 Finite State Machine

The state machine control layer, which is new to this work and developed by the author

of this dissertation, is dedicated to selecting the relevant control primitive based upon

mission parameters and sensed scalar information. Every control technique presented

in this work leverages this layer of the control architecture for a variety of reasons.

Depending on the application, it is used for tracking recovery/robustness, a patrolling

behavior, splitting a mission into distinct tasks, and cycling through primitive navigators

in order to achieve a more complex net effect. While most of the controllers within the

individual states are already well defined, there is significant nuance in selecting and

implementing the appropriate state transition criteria in a way that both meets the

objectives of the given mission, and provides robustness to: failure, cyclic behaviors,

false positives, etc.

A transition between controller states typically involves multiple criteria, and each in-

dividual criterion can be categorized by both its purpose and method. The purpose of

a given criterion either directly flows down from the mission objective, in which case

we call it a primary criterion, or it is in place to prevent a failure mode, in which case

we call it a secondary criterion. The method of a criterion can be categorized based

upon the information used to make the logical decision, which for our purposes can be

spatial, temporal, or environmental. For example, a primary spatial criterion would be

whether the cluster of robots reached a target destination, whereas a primary environ-

mental criterion would be whether the estimated local gradient of the field was above

a certain threshold, and furthermore a secondary temporal criterion could be whether

enough time has passed since the last state transition.

As stated previously, the cluster control technique itself has been shown to be Lyapunov

stable, so to confirm stability for a state based method as a whole, the stability of the

state switching itself needs to be considered. There are several methods to ensure sta-

bility when switching between states. A simple solution is to wait for any transient

behaviors to die out before switching states, as rapid state changes can cause insta-

bility [35]. The work presented in [35] further describes methods for conducting a full

Lyapunov stability analysis on a system. This technique is used in [36] to evaluate

the consequences of changing cluster states while allocating robots to different tasks; it

was determined that if the commanded rate remained less than or equal to the original

rate, the switches would be stable. This could be directly applied to the state-based

controllers used for navigation in this work. A more formal set of constraints could be

10

imposed, however the techniques presented here largely use constant-magnitude velocity

commands, which by definition meets the required criteria. Even if this were not the

case instability would be unlikely as rapid state transitions are not common with this

technique, as often times there are minimum time requirements for state transitions,

and/or significant spatial movement required before the next transition occurs.

2.2 Simulation Architecture

Many of the navigation strategies presented in this work make heavy use of simula-

tion results. In all cases, the simulation software was developed using a combination

of MATLAB and Simulink. The structure of the Simulink diagrams is much like that

of the control architecture that has already been presented. There is a primary MAT-

LAB function that manages the adaptive navigation and state changing logic, and the

Simulink portion manages the appropriate dynamics, tracks systems states, etc., all of

which is logged for later analysis.

While additional details of the simulations are described further in the relevant chapters,

it is worth noting that the depth of the simulation is different depending on the appli-

cation. For example, the simulation for verifying the front controller used in Chapter

4 has full vehicle dynamics, sensor noise, etc, while the simulations used in Chapters 5

and 6 have simplified dynamics so that the performance of the state-based controllers

can be verified via large batch simulations without taking a prohibitive amount of time

and computational resources.

2.3 Experimental Testbed

The testbed used in the experimental portions of this work was previously designed

specifically for testing adaptive navigation techniques, which can be difficult to test given

that a suitable scalar phenomena must be located or created. The testbed consists of

up to 12 small omnidrive vehicles (one of which is shown in Figure 2.2) with embedded

processing and the capability to send and receive messages over a wireless network. The

size of the workspace varies based upon the experiment being conducted, but within

this work, it is on the order of several meters in both width and length. The robots

themselves have a footprint of approximately 20 cm by 20 cm. Robot position tracking

11

Fig. 2.2: A single omnidrive robot on a printed scalar field.

is performed with a network of 16 infrared cameras that track reflective markers on

each robot; tracking accuracy is achieved with a standard deviation of less than 7.5 mm

across the workspace [2], making it significantly smaller than both the workspace and

individual robot dimensions.

The key feature of the testbed is the ability to navigate custom scalar fields represented

by printed grayscale sheets. The vehicles sense the reflectance of any given point on

the sheet using RGB reflectance senors mounted to the underside of the robots. These

sensors have four channels: one with a red filter, one with a green filter, one with a

blue filter, and finally a clear channel. For this work only the clear channel is used,

meaning we are effectively measuring the reflectivity of the surface. The sensed values

are sent to a base station running MATLAB/Simulink, which returns the appropriate

robot velocities at a 10 Hz servo rate based on the results of adaptive navigation and

cluster control computations. The computation stack on the robots translates these

velocities into wheel speed setpoints and implements them via PID speed control on

each of the three motors.

Notable sources of error in the testing process include packet loss over the network, noise

from the sensors, and the quality of the printouts. Despite these drawbacks, the testbed

12

has performed well, and has validated multiple novel adaptive navigation techniques.

Full details about this system are provided in [37], to include characterization of the

sensors, detailed design information, etc.

13

Chapter 3

Experimental Verification of Ridge,
Trench, and Saddle Navigation

While the viability of ridge/trench following and saddle point station keeping was

demonstrated in [1], this was done only in simulation, with simplified vehicle dynamics

and without any real-world effects. The author of this dissertation played a significant

role in the development of work contained in [1], and is the primary contributor for all

the further content in this chapter. The experimental implementation and verification

of the navigators is the next step for this work. This required the first full implementa-

tion of the 5-robot formation. Finally, this is the first adaptive navigator to incorporate

state-based primitive switching. This is used to significantly increase the robustness and

versatility of the controllers. Without the state-based behavior the ridge/trench/saddle

navigator must start on the feature, and remain on it at all times. With the addition

of the state machine, the cluster can start off the feature, and while it was a non-issue

in the experimental results in this chapter, it also has the potential to recover should it

fail to track the feature. In such situations, the state machine would select an alternate

adaptive navigation primitive until the cluster could (re)acquire the feature of interest.

3.1 Review of Ridge/Trench/Saddle Controller

The majority of previous adaptive navigation research has been in the area of source

seeking. [38] navigated up a plume to a source by changing which robot was the leader

based upon which vehicles were in the plume. A technique that mimicked the behavior

of a moth was used to dither in and out of a spatially planar cross-section of a plume

until reaching a source [9]. Navigating down a ridge has the opposite objective, as it can

be used to follow a feature outward from a source, and determine the areas impacted

by it. This is something that has not been done previously aside from [1] where the

algorithm was first presented.

14

The adaptive technique for ridge/trench/saddle navigation is different from our estab-

lished extrema and contour following adaptive navigation techniques in that it does not

compute gradient vectors. Instead it calculates the scalar differentials between robots

in the cluster, and uses those to make control decisions. Accomplishing this requires

certain features of the cluster formations, and a new set of control equations.

For this work a ridge is defined as a series of points that are a maximum in a given axis

on a scalar surface with monotonic scalar values along the principle line of the feature.

A trench is an inverse of a ridge, with a series of points located at directional minima,

and monotonic scalar values. These criteria can be met in a number of circumstances,

including some that may not be considered a ridge given the current mission objec-

tive. To accommodate this, the required pronouncement of feature can be added as a

requirement to transitions within the state controller.

3.1.1 Cluster Definition

The five robot cluster is shown in Figure 3.1. As it consists of five spatially planar

robots, the robot space pose vector ~R consists of two translation and one rotational

degree of freedom for each vehicle, for a total of 15 degrees of freedom. The kinematic

transforms transform the robot space variables into the cluster space variables, which

include the position and orientation of the cluster frame placed on robot 1 (xc, yc, θc),

the distances between robots in a serial chain (d2, d3, d4, d5), the angles between the

serial links (β3, β4, β5), and the orientation of each robot relative to the cluster frame

(φi, for i ∈ 1,. . . ,5). For the experiments presented in this work, all desired βi and φi

values were set to zero, and the desired di values were held constant. The formation

size was set manually, and varied from experiment to experiment to accommodate the

varying spatial frequencies of each scalar field used in testing.

The kinematic equations used to transform the robot space variables to cluster space

are given in Equations 3.1 through 3.15. xi, yi, and θi are the robot space pose variables

for the individual vehicles 1

xc = x1 (3.1)

1All inverse tangent computation in this work is ultimately implemented using MATLAB’s atan2()
function, which is a two input function that computes the result such that the angle is in the proper
quadrant.

15

yc = y1 (3.2)

θc = tan−1

(
x1 − x2
y2 − y1

)
(3.3)

φ1 = θ1 − θc (3.4)

d2 =
√

(x2 − x1)2 + (y2 − y1)2 (3.5)

φ2 = θ2 − θc (3.6)

d3 =
√

(x3 − x1)2 + (y3 − y1)2 (3.7)

φ3 = θ3 − θc (3.8)

β3 = tan−1

(
x3 − x1
y1 − y3

)
− θc (3.9)

d4 =
√

(x4 − x2)2 + (y4 − y2)2 (3.10)

φ4 = θ4 − θc (3.11)

β4 = tan−1

(
y4 − y2
x4 − x2

)
− θc (3.12)

d5 =
√

(x5 − x3)2 + (y5 − y3)2 (3.13)

φ5 = θ5 − θc (3.14)

16

x

y

{C}

x̂c

ŷc

θc

{5} x̂5

ŷ5

{3}

x̂3

ŷ3

{2}

x̂2

ŷ2

{4}
x̂4

ŷ4

{1}
x̂1

ŷ1

d3

d2

d4

d5

φ2

β4

β3
φ1

φ3

β5

φ4

φ5

(xc, yc)

Fig. 3.1: Generic five robot cluster pose definition for the ridge/trench/saddle navigation
technique. There are two serial-chain structures defined from robot one [2].

β5 = tan−1

(
y5 − y3
x5 − x3

)
− θc (3.15)

3.1.2 Differential Control Strategy

Tracking of the ridge/trench is accomplished by sending cluster level translational and

rotational commands based on longitudinal and lateral differentials. Robots 2 through

5 are used to compute these differentials, while robot 1 is used to confirm that the

formation is still on the feature. The controller is in state 0 when it is unable to confirm

whether it is on the feature, and in state 1 when it can.

The longitudinal differentials are z2− z4 and z3− z5, which are used for determining the

17

Fig. 3.2: The cluster of robots is displayed on a ridge, where it is laterally and rotation-
ally offset from the feature. The lateral differentials center the formation on the ridge
and provide rotational commands, while the longitudinal ones set the travel direction
[2].

direction of travel along the feature. The lateral differentials are z2 − z3 and z4 − z5,
and are used for both centering on the ridge/trench and aligning with it rotationally.

The relationship between these differentials and the local field is depicted in Figure 3.2.

The differences between these differential pairs are used to make control decisions.

Equations 3.16 through 3.18 translate these scalar differentials into the cluster level

velocity commands; ẋc, ẏc, and θ̇c. Computed velocity setpoints are discrete, with the

cluster differentials used to determine the sign of the values, which for these experiments

were vx = 0.1 m/s, vy = 0.1 m/s, and ωz = 0.3 rad/s. These values were set based

upon the capabilities of the testbed, as there were restrictions on space, update rate,

etc. When navigating down a ridge d = 1, and d = −1 when following a trench upward.

s = 1 when the cluster is properly situated on the feature (state 1).

(ẋc) = s× d× vx {sgn [(z2 − z4) + (z3 − z5)]} (3.16)

(ẏc)= d× vy {sgn [(z2 − z3) + (z4 − z5)]} (3.17)(
θ̇c

)
= d× ωz {sgn [(z4 − z5)− (z2 − z3)]} (3.18)

The adaptive navigator determines whether the cluster is aligned with the feature by

checking if robot 1 is at a higher scalar level than robots 2 and 3 in the ridge case

18

0) Seek
Ridge/Trench

1) Follow
Ridge/Trench

B) Off
Feature

A) On
Feature

Fig. 3.3: State Diagram for Ridge/Trench Following [2]. State zero is used when off the
feature, state 1 is used when on the feature.

(Equation 3.19), and lower in the trench case (Equation 3.20). This relationship is

what gives the controller state-based behavior. zmar is a value that can be adjusted to

change the requirements for how pronounced the feature must be. For the experiments

presented in this chapter, this value is set to zero. When on the feature and s = 1

the cluster follows the feature as usual, and when off the feature (state 0, s = −1) the

cluster instead seeks higher scalar values in both x̂c and ŷc directions while maintaining

the same alignment control, until it is spanning the crest of the ridge/trench. This

state-based controller is summarized in Figure 3.3.

Ridge Criteria: (z1 > z2 + zmar) AND (z1 > z3 + zmar) (3.19)

Trench Criteria: (z1 < z2 − zmar) AND (z1 < z3 − zmar) (3.20)

The state-based behavior aids in the tracking of the ridge/trench as the robots can

recover if they lose the feature, and also aids in the initial seeking of the feature. For

the experiments presented here, s is only equal to −1 in state 0 before the cluster

locates the feature initially, indicating that the formation never lost the ridge/trench

after locking onto it initially.

3.2 Experimental Results

The experiments to validate these control laws are performed on the testbed summarized

in Section 2.3. Tests are performed on several printed scalar features in order to see

19

Table 3.1: Cluster parameter error for the straight trench test presented in Fig. 3.4 [2].

RMS Error

β3 (rad) 0.0715

β4 (rad) 0.0691

β5 (rad) 0.0446

d2 (m) 0.0327

d3 (m) 0.0199

d4 (m) 0.0299

d5 (m) 0.0339

how the navigator performed under a variety of conditions. These include a trench with

a linear spatial path, a trench with a parabolic path, and two ridges with cubic paths,

one that has a wider cross section and one with a narrow cross section terminating in

a saddle point. For each set of tests we examine the performance of the formation, the

tracking error relative to the center line of the ridge trench, and compare them to the

ability of the cluster to continue spanning the center line as it travels.

3.2.1 Linear Trench

The linear trench is presented first, as it is the most straightforward scenario. As the

scalar measurements are based upon reflectance, the lightest regions of the printout

represent the highest values, while the dark areas are associated with low values. The

path of each robot for a single run is plotted in Figure 3.4. Figure 3.5 depicts the

magnitude of the tracking error over time, which had an RMS error of 82.14 mm if we

exclude the initial transient behaviors associated with locating the trench while s = −1.

Figure 3.6 provides of the value of s over time. The tracking error was computed by

measuring the perpendicular distance between robot 1 and the center of the trench.

Previous work ignored all cluster and robot dynamics [1], therefore this is the first time

this particular cluster formation has been implemented, so special attention was given

to the quality of the formation-keeping. Figure 3.7 displays the time history for the di

values (set to 0.7 m), and Table 3.1 includes performance information for both these

and the βi pose variables. The RMS error values were significantly smaller than the

cluster sizing, indicating good performance.

20

Fig. 3.4: The position of all five robots as they follow a linear trench, superimposed
upon a rendering of the grayscale scalar field. [2]

Fig. 3.5: Time history for the absolute value of the tracking error for the trial depicted
in Fig. 3.4 [2].

21

Fig. 3.6: Controller state (s) as the robots travel the path in Figure 3.4 [2]. There is
only a single transition from state 0 to state 1.

Fig. 3.7: Time history of the di values for the test presented in Fig. 3.4 [2].

22

Table 3.2: The RMS trenchline tracking error for all five trials plotted in Fig. 3.8.

RMS Error (mm)

Trial 1 82.14

Trial 2 84.82

Trial 3 89.80

Trial 4 83.18

Trial 5 108.48

In order to demonstrate the repeatability of this technique on this particular feature,

Figure 3.8 superimposes the results of five different runs on top of the field. The robots

are consistently successful in navigating the trench, and the RMS tracking error for

each run is tabulated in Table 3.2. The variation between separate runs can be due

to a number of different factors: the ambient lighting in the room affects both the

sensor readings and the accuracy of the vision system calibration, the starting position

of the robots changes which portion of the trench is navigated, packet loss reduces the

formation performance, etc. Despite this, all of the RMS error values are more than an

order of magnitude smaller than the total cluster width (d1 + d2 = 1.4 m). This is a

key comparison because the goal while navigating the feature is to keep the principle

line of the ridge/trench within the baseline of the cluster. If the tracking error were to

approach the cluster width, it would frequently not be spanning the highest point of the

feature, indicating a failure to track it.

3.2.2 Parabolic Trench

The next scalar field was selected in order to see how the adaptive navigator handles an

input feature with a principle line that consistently changes over time. A trench with

a parabolic principal line was used to accomplish this. The paths for all five robots as

they follow the feature are plotted in Figure 3.9. The RMS errors for cluster parameters

throughout this test are collected in Table 3.3.

Repeated tests with different initial conditions are plotted in Figure 3.10. The RMS

tracking errors for these runs are collected in Table 3.4. The errors are larger compared

to the width (2di = 1.4 m) than they were for the straight trench, indicating that the

changing spatial input does in fact impact tracking performance. The tracking is better

on the straighter sections of the parabola, further reinforcing this conclusion.

23

Fig. 3.8: Experimental data for the cluster center from multiple runs as robots navigate
up a trench with a linear path, superimposed upon a rendering of the grayscale scalar
field. The blue path is the same run depicted in Fig. 3.4.

Table 3.3: Cluster parameter error for the parabolic trench test presented in Fig. 3.9
[2].

RMS Error

β3 (rad) 0.1803

β4 (rad) 0.0864

β5 (rad) 0.1385

d2 (m) 0.0304

d3 (m) 0.0617

d4 (m) 0.0357

d5 (m) 0.0585

24

Fig. 3.9: Experimental data for five robots navigating up a trench with a parabolic path,
superimposed upon a rendering of the grayscale scalar field [2].

Table 3.4: The RMS trenchline tracking error for all five trials plotted in Fig. 3.10 [2].

RMS Error (mm)

Trial 1 163.95

Trial 2 80.93

Trial 3 119.27

Trial 4 128.12

Trial 5 103.95

25

Fig. 3.10: Experimental data for the cluster center from multiple runs as robots navigate
up a trench with a parabolic path, superimposed upon a rendering of the grayscale scalar
field [2].

26

Fig. 3.11: Experimental data for five robots navigating down a ridge with a cubic path,
superimposed upon a rendering of the grayscale scalar field [2].

3.2.3 Wide Cubic Ridge

The third feature is a ridge with a cubic principal line, and a larger lateral width than

the other features tested (the scalar value falls off more slowly as distance from the

center line is increased), which required a larger cluster sizing of di = 0.8 m to reduce

the sensitivity to sensor and field noise. The positions of the robots are displayed by

Figure 3.11, with corresponding formation-keeping errors in Table 3.5.

Repeated trials are given in 3.12, with performance data in Table 3.6. Unsurprisingly,

the tracking performance is worst near the inflection points, due both to the shape of

the feature and the size of the cluster. That said, the cluster width also allows for more

error during tracking, which was still far below the half-width of the cluster.

27

Table 3.5: Cluster parameter error for the wide ridge test presented in Fig. 3.11 [2].

RMS Error

β3 (rad) 0.0572

β4 (rad) 0.0515

β5 (rad) 0.3675

d2 (m) 0.0478

d3 (m) 0.0319

d4 (m) 0.0517

d5 (m) 0.0596

Fig. 3.12: Experimental data for the cluster center from multiple runs as the robots
navigate down a ridge with a cubic path, superimposed upon a rendering of the grayscale
scalar field [2].

28

Table 3.6: The RMS ridgeline tracking error for all five trials plotted in Fig. 3.12 [2].

RMS Error (mm)

Trial 1 120.78

Trial 2 225.58

Trial 3 256.40

Trial 4 121.80

Trial 5 325.13

3.2.4 Narrow Cubic Ridge with Saddle Point

The final scalar field was selected for two reasons; it provides a contrasting feature width

to compare to the previous field, and it terminates in a saddle point. Unlike in the pre-

vious cases, the cluster is expected to settle at the saddle point at the end of the run.

The behavior is demonstrated in Figures 3.13, with formation performance in Table 3.7.

The formation size was smaller (di = 0.5 m) for this run, as the feature was far narrower.

Repeated tests (Figure 3.14) demonstrated the reliability of the technique with low

tracking error, as seen in Table 3.8. The tracking error was improved over the wide

ridge scenario due to the reduced width of both the feature and the cluster, while still

remaining smaller than the now reduced cluster width. The narrower cluster provides

finer sensing resolution, resulting in less attenuation of higher spatial frequencies, result-

ing in better tracking of the turns. Additionally, the cluster settles on the saddle point

in all cases. This result is reinforced by examining Figure 3.15 which provides filtered

information about the longitudinal differentials over time. These values ultimately reach

a steady state, indicating that the cluster settled on the feature.

3.2.5 Summary

These experiments verify the previously published adaptive navigation technique for fol-

lowing ridges/trenches and station keeping on saddle points. This was achieved through

multiple demonstrations of feature following for a variety of configurations. In all cases

the cluster was able to track the feature of interest with a low amount of error compared

to the width of the cluster, which indicates that the robots were effectively straddling

the feature the entire time. This set of experiments was the first time these navigation

29

Fig. 3.13: Experimental data for five robots navigating down a ridge with a cubic path
until they come to rest at a saddle point, superimposed upon a rendering of the grayscale
scalar field.

Table 3.7: Cluster parameter error for the test presented in Fig. 3.13 with a cubic ridge
terminating in a saddle point [2].

RMS Error

β3 (rad) 0.2298

β4 (rad) 0.0981

β5 (rad) 0.1689

d2 (m) 0.0217

d3 (m) 0.0394

d4 (m) 0.0311

d5 (m) 0.0696

30

Fig. 3.14: Experimental data for the cluster center from multiple runs as the robots
navigate down a ridge with a cubic path until they come to rest at a saddle point,
superimposed upon a rendering of the grayscale scalar field. In each case, the robot
cluster oscillates around the location of the saddle point [2].

Table 3.8: The RMS ridgeline tracking error for all five trials plotted in Fig. 3.14 [2].

RMS Error (mm)

Trial 1 62.75

Trial 2 56.87

Trial 3 99.19

Trial 4 57.82

Trial 5 77.64

31

Fig. 3.15: Time histories of the scalar differentials between robots 2 and 4 (top), and
robots 3 and 5 (bottom), for the run presented in Fig. 3.13. Includes both the unfiltered
values used in the control computation, and the result after filtering with the response
with a 50 sample moving average [2].

methods were implemented outside of simulation, with full dynamics, vehicles, and real-

world effects like sensor noise, field noise, tracking error, communication latency, etc.

This means the full set of adaptive navigation primitives described in [1] has now been

demonstrated experimentally.

32

Chapter 4

Navigating Scalar Fronts

For the purposes of this work, we define fronts as a high gradient region at the boundary

of two regimes with a comparatively slowly varying scalar value. Figure 4.1 depicts a

generic front, with a width in the high gradient direction, and the length perpendicular

to it. Part (a) of the figure demonstrates an idealized front, while part (b) is used to

illustrate the different possible behaviors, like the wandering of the center line, changing

width, changing scalar value, etc. Because of these variations, the key to tracking fronts

is the local slope measurement, rather than by following a particular scalar value or the

spatial center of the feature. The goal of this work is to develop a technique to navigate

along the length direction of these fronts while spanning them in the width direction

by using several slope measurements. The author of this dissertation is the primary

contributor for this work.

Fronts are a common and important phenomena that occur in nature, and the scalar

value of interest can be pressure, altitude, salinity, etc. Fronts are often scientifically

significant in the marine environment, and have been the subject of a large amount

of study. For example, [39] uses data sampled in 1999 from the turbidity front of the

Ŕıo de la Plata Estuary in South America to analyze the structure of the front, as

well as various velocity and temperature profiles. Field data from an estuarine salinity

front in San Francisco is studied in [40] to determine how marine life interact with

it, and in [41] the link between temperature fronts and animal life is studied via the

Antarctic Circumpolar Current, the Subtropical Front, and the Subantartic Front. Yet

another example from the field is [42], in which the energy dissipation at the 1 km

wide temperature front in the Kuroshio Current is studied via a significant scientific

expedition. In many of these works, a costly, time intensive, and manual field expedition

was required, which indicates that automated methods would be valuable.

While the adaptive navigation techniques presented in Chapter 1 can effectively follow

contours, which might apply for very well behaved fronts, a more robust approach is

required to navigate a generalized front as defined above. There has been some limited

33

Fig. 4.1: (a), an idealized front, and (b), a generalized frontal region. The lines represent
equally spaced contours of a scalar field, descending in value from left to right, and the
highlighted region indicates where the front is located [3].

work in this area, such as [43], which conducted field deployments in the Monterey Bay

using multiple AUVs to estimate and align with the local temperature gradient. [44]

uses methods closer to the applications we are looking for in this work; a single ASV

(Autonomous Surface Vessel) was used to determine the extent of the same marine

temperature front by traveling along the length while zig-zagging across the width using

a 1 km spatial low pass filter while taking temperature measurements. The local gradient

was estimated by taking the difference between sequential measurements. If this value

remained above a threshold of 0.15 ◦C/km for 1 km, it was considered to be on a front;

after this condition was met, the vehicle was commanded to continue on for another

30 minutes before changing directions to continue the process. A similar process was

used by the same group with the addition of vertical ‘yo-yo’ behavior to track three

dimensional features [45].

The work presented here includes a more feature-complete planar multirobot technique,

capable of adaptively sizing a formation to span a front while moving along its length,

allowing it to find the full extent of the feature without extraneous movement.

4.1 Control Strategy

This technique uses a combination of differential and gradient based techniques with

a size-adaptive cluster, and state-based behavior. The formation first seeks the front,

then follows it, and then uses a state-based set of techniques to patrol back and forth

34

x

y

1

2

3 4

ẏc1 ẏc2

Spatial Distance

M
ea
su
re
d
S
ca
la
r
V
al
u
e

Fig. 4.2: Two pairs of robots follow the edges of a scalar front.

along the feature.

Front-seeking can be accomplished a number of ways, however the examples presented

here use the contour following controller. The formation begins off the front, and is set

to a desired contour value that is presumed to be present on the opposite side of the

feature. Once on the front, the controller switches to following the front.

As previously mentioned, we define a front as a region of high slope, rather than asso-

ciating it with a particular set of scalar values. The goal is also to span the feature,

rather than to simply stay within it. This is accomplished with a six robot cluster. Two

pairs of robots are used to track the edges of the front—one on the high side, and one

on the low side. An example of this behavior is in Figure 4.2.

While the four co-linear robots can accomplish the spanning requirement, they are

unable to ensure proper rotational alignment. This is maintained with the addition of

a fifth vehicle, which allows for a more accurate gradient estimate, allowing the cluster

to align with the contour direction. Finally, a sixth robot is added to provide symmetry

in the gradient computation. Figure 4.3 provides an example of all the front following

behaviors, with example velocity commands.

35

Fig. 4.3: An example of the robot formation on a scalar front, with example velocity
commands. The contour lines are in equal scalar increments, descending from top to
bottom [3].

4.1.1 Cluster Formation

Figure 4.4 presents the cluster used for front following. It contains 6 planar robots, with

a total of 18 degrees of freedom. The formation has two functions: to estimate the local

gradient, and to use two subclusters to track the edges of the front. The frames for the

subclusters {c1} and {c2} are located at the center of robot pairs 1-2 and 3-4, while d1

and d2 are the distances to the robots from the frame centers. d is the distance from

the cluster frame C, located at the midpoint of the two subclusters. The angles of the

subcluster frames relative to C are denoted by β1 and β2 and the positions of robots

5 and 6 relative to C are represented using the distances d5 and d6, and angles β5 and

β6, respectively. Finally, the rotation angles of individual robots are represented by φi,

where for robots 1 through 4 they are based on c1 and c2, and 5 and 6 are relative to

{C}. For this application all βi values are set to zero in order to align robots 1 through

4. The di values are set based upon the scalar field, based upon the spatial frequencies

of interest.

The following kinematic equations (4.1 through 4.13) are used to transform the variables

from robot space to cluster space. Recall that xi, yi, and θi are the robot space pose

36

x

y

{1}

x̂1

ŷ1

{2}

x̂2

ŷ2

{3}

x̂3

ŷ3

{4}
x̂4

ŷ4

{5}
x̂5

ŷ5

{6} x̂6

ŷ6

{c1}

x̂c1

ŷc1

−φ1
φ2

{c2}

x̂c2

ŷc2

φ3

−φ4

φ5

−φ6 {C}

x̂c

ŷc

θc

−β1

β2

β5

β6

d5

d6

d

d

d1
d1

d2

d2

(xc, yc)

Fig. 4.4: Six Robot Cluster Pose Definition: Cluster space pose variables for a six robot
cluster with intermediate frame centered between two pairs of robots, and the aggregate
cluster frame centered between the two intermediate frames [3].

variables.

xci =
1

2
(x2(i−1)+1 + x2(i−1)+2); i = 1, 2 (4.1)

yci =
1

2
(y2(i−1)+1 + y2(i−1)+2); i = 1, 2 (4.2)

di =
1

2
((x2(i−1)+1 − x2(i−1)+2)

2

+(y2(i−1)+1 − y2(i−1)+2)
2)1/2; i = 1, 2

(4.3)

xc =
1

2
(xc1 + xc2) (4.4)

yc =
1

2
(yc1 + yc2) (4.5)

37

d =
1

2
((xc1 − xc1)2 + (yc1 − yc2)2)1/2 (4.6)

di = ((xc − xi+2)
2 + (yc − yi+2)

2)1/2; i = 3, 4 (4.7)

θc =
π

2
+ tan−1

(
yc1 − yc2
xc1 − xc2

)
(4.8)

βi =
π

2
+ tan−1

(
y2(i−1)+1 − y2(i−1)+2

x2(i−1)+1 − x2(i−1)+2

)
− θc; i = 1, 2 (4.9)

βi = tan−1

(
yi+2 − yc
xi+2 − xc

)
− θc; i = 3, 4 (4.10)

φi = θi − β1 − θc; i = 1, 2 (4.11)

φi = θi − β2 − θc; i = 3, 4 (4.12)

φi = θi − θc; i = 5, 6 (4.13)

4.1.2 Front Seeking

Any number of strategies can be used to locate a front, from exhaustive mapping, to

random search, to gradient based techniques. For the purpose of this work, we use a

gradient-based contour following approach to initially locate the front and align with it.

It is assumed that the formation is on one side of the front, and that a desired scalar

value is selected such that the robots would have to pass through the front in order

to reach it. This does require some a priori knowledge of the field to do this without

leveraging time history information, but far less than the specific front location.

The first requirement is to compute the local gradient, which for this application is done

using information from all six robots to make a planar, least squares approximation of

the local scalar field. The normal vector of this plane is projected onto the x-y plane to

38

estimate the gradient. Equation 4.14 describes the relevant matrices, where A contains

the robot positions, and B contains the scalar measurements for each robot. The normal

vector of the plane is computed using Equation 4.15, and the gradient is calculated using

Equation 4.16.

A =

x1 y1 1

x2 y2 1
...

...
...

xi yi 1

 , B =

z1

z2
...

zi

 (4.14)

~N = (ATA)−1ATB (4.15)

bgrad = tan−1

(
Ny

Nx

)
+ π (4.16)

The computed gradient bearing is used to align the the cluster ŷc direction with the

gradient via Equation 4.17. The scalar level of the cluster is controlled using Equations

4.18 and 4.19, where Kct is a cross-track gain, zdes is the desired contour level, zc is the

average scalar value of the subclusters, and bcf is the desired cluster bearing. By doing

so, the cluster seeks a scalar level assumed to be on the far side of the front. Throughout

contour navigation, the local slope m is computed by estimating a one dimensional

gradient along the major axis of the robot cluster. This value is continuously checked

in order to determine whether a front has been located (m > mmin).

θ̇c =
(
bgrad −

π

2

)
− θc (4.17)

bcf = bgrad + d {sgn (zdes − zc)
×min [Kct × ‖zdes − zc‖ , π/2]− (π/2)}

(4.18)

ẋc = cos(bcf), ẏc = sin(bcf) (4.19)

39

4.1.3 Front Following

The same gradient computation technique is used when navigating the front, and align-

ment is achieved with Equation 4.20. This ensures the cluster orientation is such that

the two subclusters are aligned with the front in the width direction, while robots 5 and

6 are aligned with the length direction, as pictured in Figure 4.3. This keeps robots 1

through 4 in position to measure the local slope of the front while resizing in order to

span it.

θ̇c = Kθ(bgrad −
π

2
− θc) (4.20)

Moving in the length direction of the front is accomplished with a simple velocity set-

point (Equation 4.21), where s = ±1 based on the controller state, and vx is the constant

velocity command value.

ẋc = svx (4.21)

Each subcluster aims to track one edge of the front. The motion commands for each

subcluster are in Equations 4.22 and 4.23. The zi values are the measured scalar values

from each vehicle, mmin is the minimum slope requirement for the front, and P is a

value between 0 and 1. P is changed in order to set the subclusters to track a slope

value appropriate for the relevant feature.

ẏc1 = sign

(
Pmmin −

|z1 − z2|
2d1

)
(4.22)

ẏc2 = sign

(
Pmmin −

|z3 − z4|
2d2

)
(4.23)

These values are then translated into cluster pose variables such that they can be ex-

ecuted within the control architecture. Equations 4.24 and 4.25 explicitly show how

these behaviors are implemented by manipulating the yc and d pose variables.

ẏc =
1

2
ẏc1 +

1

2
ẏc2 (4.24)

40

� > �ℎ���

� < ����

� > �ℎ���

� < ����

State 4:
� = 1

State 1:
� = 1

State 2:
� = −1

State 3:
� = −1

State 0:
Front Seeking

� > ����

Fig. 4.5: Each controller state is listed with the appropriate value for s, and the slope
criteria for each state transition. m is the measured slope of the feature, mmin is the
minimum slope required for the feature to be considered a front, mhyst is a higher slope
requirement for exiting hysteresis states, and s is a variable used in the front following
controller [3].

ḋ =
1

2
ẏc2 −

1

2
ẏc1 (4.25)

4.1.4 State Controller

The state machine portion of the controller allows for the sequencing of behaviors, and

is summarized in Figure 4.5. It begins in state 0, which is the front-seeking behavior

described in Section 4.1.2. Once magnitude of the local slope m exceeds the minimum

slope mmin, the controller enters state 4.

The cluster travels in the positive x̂c direction in states 1 and 4, and the reverse in 2

and 3. Whenever the cluster reaches one of the ends of the front (detected by a drop

in slope), it reverses direction and enters one of the hysteresis states, wherein the exit

criteria is a higher slope to avoid oscillation at the edges (mhyst). The selection of mhyst

is just as important as selecting mmin, as it needs to be a value commonly found along

the length of the front in order to reliably trigger the state transitions. It is assumed

that there is enough prior knowledge of the front in order to make effective choices for

41

these values. In addition to the slope requirements for each state change, there is also a

±π/18 radian alignment requirement for each state transition, as the measured slopes

are only accurate if the cluster is properly aligned with the gradient.

4.2 Simulation Results

A thorough simulation was developed in MATLAB/Simulink and tested to validate the

front navigation technique in circumstances that emulate a probable field scenario. It

aims to emulate similar circumstances to those found in [44], by using a temperature

front 1600 m long, 400 m wide, and a temperature range of about 2.5 ◦C. In order to

exercise the full features of the controllers, the test front, seen in Figure 4.6, incorporates

a changing path, changing width, and changing scalar level along the length of the front

by using a piecewise-defined function.

The simulation models six non-holonomic robots with first order dynamics, with time

constants of 1 sec for translational degrees of freedom, and 5 sec for rotational degrees of

freedom. There is added positioning error based upon the specifications of the Garmin

GPS unit used in [25], with a standard deviation of 7.5 m [46]. Temperature sensing

errors are based upon a Vernier temperature probe [47], adding noise with a standard

deviation of 0.5 degrees Celsius and a first order time constant of 4.35 sec to the sensed

temperature information.

Figure 4.7 shows the cluster beginning off the front, then moving up to the feature,

and patrolling it. For this particular run the fixed parameters were, d1 = d2 = 12 m,

d5 = d6 = 48 m, mmin = 0.014 oC/m, mhyst = 0.018 oC/m, and P = 0.5. While

it can clearly be seen from the overhead view that the cluster successfully tracks the

front, we can further examine the performance by looking at time history information.

The measured slopes for both the full cluster and the subclusters are plotted in Figure

4.8. This clearly confirms that the cluster properly reverses direction when the mmin

requirement is violated, and the subclusters track their slope target with low RMS errors

of 0.0021 and 0.00019 oC/m.

42

Fig. 4.6: A three dimensional rendering of the scalar front used for simulated front
following [3].

Fig. 4.7: An overhead view of six robots navigating the scalar front; they start off the
feature, climb up to it, travel in the positive y until the front ends, then travel back in
the −y direction [3].

43

Fig. 4.8: The time history of the cluster and subcluster slopes, as compared to the desired
values. The vertical lines indicate the points at which the robot cluster is commanded
to reverse direction [3].

4.3 Experimental Results

Several sets of experiments were conducted on the adaptive navigation testbed (section

2.3) in order to validate the performance of the front following technique with real-world

effects. As with the experimental verification of the ridge/trench/saddle navigation, the

front following technique was tested on several different scalar field printouts in order

to ensure it could successfully follow a variety of different features.

4.3.1 Straight Front

The first scalar field tested is the simplest option—a front with a linear path. An

overhead view of all six robot paths for a single test is provided in Figure 4.9. As

expected, they move to reach the feature, follow it, and reverse direction up on reaching

the end.

The formation performance is particularly relevant in this case, as the cluster was being

actively resized, and the position and orientation relative to the front could significantly

alter the local slope measurements. The di values with constant set points are plotted

in Figure 4.10. A table with the RMS error for the cluster parameters is in Appendix B.

44

Fig. 4.9: Experimental data for six robots navigating along a front with a linear path,
superimposed upon a rendering of the grayscale scalar field [3].

In all cases the tracking errors are on the order of the positioning error of the testbed.

Once again, performance can be analyzed by looking at the measured and desired slopes

over time, as in Figure 4.11. The states are plotted over time in Figure 4.12, confirming

that the controller is changing modes properly. Once the controller exits state 0, the

measured slope m remains above the threshold mmin = 2.4 u/m (scalar units per meter)

until it is commanded to reverse direction. This indicates both that the front is being

detected and that the cluster is reversing the direction of travel at the appropriate values.

Similarly, the slopes of the subclusters oscillate about the desired setpoint, indicating

that they are tracking the feature effectively.

Figure 4.13 is provided to show the repeatability of the technique, and depicts the

locations of the cluster and subcluster centroids for five runs on the same scalar field,

each of which had different initial conditions. After initial transients, the cluster paths

are very consistent. The average and RMS slope errors for the subclusters are listed

in Table 4.1. As the distance between robots in a given subcluster is very small, small

robot movements can result in large changes in measured error. Despite this, the errors

are not too large, and tracking performance is adequate, as confirmed by the overhead

plots.

45

0 20 40 60 80 100 120
Time (s)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Le
ng

th
 (m

)
d1
d2
d1/d2 setpoint
d5
d6
d5/d6 setpoint

Fig. 4.10: Performance plot for d1, d2, d5, d6 for the experiment displayed in Fig. 4.9
[3].

Fig. 4.11: Time history for the measured slope of the front, and the slopes detected by
each subcluster of the formation, for the experiment depicted in Fig. 4.9. Vertical lines
indicate points where the cluster begins the process of reversing direction [3].

46

Fig. 4.12: Controller state as the robots travel the path in Fig. 4.9 [3].

Fig. 4.13: The centroids of each subcluster and the center of the aggregate cluster as it
travels along a front, where the run from Fig. 4.9 is in blue [3].

Table 4.1: Slope errors for the subclusters for the straight front tests presented in Fig.
4.13 [3].

Mean Err. 1 RMS Err. 1 Mean Err. 2 RMS Err. 2

(u/m) (u/m) (u/m) (u/m)

Run 1 0.0345 0.3769 0.0598 0.4024

Run 2 0.0105 0.3767 0.0470 0.4361

Run 3 0.0364 0.3881 0.0107 0.4501

Run 4 0.0045 0.3545 0.0388 0.4613

Run 5 0.0099 0.3753 0.0576 0.4365

47

Fig. 4.14: Experimental data for six robots navigating along a front with a sinusoidal
path and a ridge feature, superimposed upon a rendering of the grayscale scalar field
[3].

4.3.2 Sinusoidal Front

The next front has a sinusoidal path, and a localized increase in scalar value to a ridge

around y = −2 m. These additions provide additional challenge for the navigator,

and showcase the slope-based capabilities of the controller. An example of the cluster

navigating the feature is provided in Figure 4.14. Detailed formation data is once again

in the appendix.

The tracking performance is analyzed by looking at the time history of the slope values,

as in Figure 4.15. This time the slope criteria was mmin = 1.15 u/m, and the scaling

factor for the subcluster slopes was set to P = 0.8. Five different runs are summarized

with Figure 4.16, all of which have different initial conditions, and are successful. The

slope tracking errors associated with these runs are in Table 4.2, and are not significant

enough to impact performance.

4.3.3 Front with Changing Width

The third and final set of tests were conducted on a scalar front with changing width and

slope. Figure 4.17 shows the route followed by the robots, while Figure 4.18 depicts the

slope time histories. The slope parameters for this set of experiments were mmin = 1.1

u/m and P = 0.9. Cluster performance information can be found in Appendix B.

48

Fig. 4.15: Time history for the measured slope of the feature, and the slopes detected
by each subcluster of the formation, for the experiment depicted in Fig. 4.14. Vertical
lines indicate points where the cluster begins the process of reversing direction [3].

Fig. 4.16: Experimental data for five separate runs, where the centroids of each subclus-
ter and of the aggregate cluster are plotted for each, superimposed upon a rendering of
the grayscale scalar field [3].

49

Table 4.2: Slope errors for the subclusters for the tests presented in Fig. 4.16 [3].

Mean Err. 1 RMS Err. 1 Mean Err. 2 RMS Err. 2

(u/m) (u/m) (u/m) (u/m)

Run 1 0.0296 0.3644 0.0088 0.3445

Run 2 0.0330 0.3706 0.0153 0.3175

Run 3 0.0241 0.3460 0.0037 0.3236

Run 4 0.0108 0.3216 0.0088 0.3166

Run 5 0.0297 0.3293 0.0052 0.3437

Fig. 4.17: Experimental data for the robots as they navigate along a front with changing
width, superimposed upon a rendering of the scalar field [3].

50

Fig. 4.18: Time history for the measured slope of the feature, and the slopes detected
by each subcluster of the formation, for the experiment depicted in Fig. 4.17 [3].

Table 4.3: Slope errors for the subclusters for the tests presented in Fig. 4.19 [3].

Mean Err. 1 RMS Err. 1 Mean Err. 2 RMS Err. 2

(u/m) (u/m) (u/m) (u/m)

Run 1 0.1264 0.4795 0.1344 0.3157

Run 2 0.0395 0.3294 0.0393 0.4822

Run 3 0.0324 0.2892 0.0937 0.3254

Run 4 0.0462 0.3492 0.1036 0.3276

Run 5 0.1312 0.5866 0.0861 0.4273

Figure 4.19 provides information for repeated runs, all of which are successful after

starting with different conditions. While the RMS errors presented in Table 4.3 let to

acceptable performance, they are noticeably higher than the tests conducted on other

fields. This not surprising due to the increased complexity of this particular scalar field,

and the rate at which the slope changes.

51

Fig. 4.19: Experimental data for five separate runs on the front with changing width,
where the centroids of each subcluster and of the aggregate cluster are plotted for each,
superimposed upon a rendering of the grayscale field [3].

4.4 Summary

Scalar fronts are a common occurrence in nature, and are seen in a variety of environ-

ments, however marine fronts in particular have been the subject of a significant amount

of scientific study. While there has been some previous work in adaptively navigating

along marine fronts, it has been limited in scope. This work presents the first fully

featured, multirobot approach for front navigation, which can navigate a wide variety

of fronts, with a variety of sizes and shapes. This technique has now been validated

in both a realistic simulation, and in several sets of experiments. In both cases, fronts

with a variety of behaviors were used in order to fully exercise the technique. The six

robot cluster performed admirably under these varying conditions despite the hardships

of real-world effects like latency, packet-loss, field noise, etc.

Improvements could be made in order to reduce the amount of a priori knowledge about

the feature of interest. As discussed previously, setting mmin and mhyst appropriately

is required for good performance, and currently these values are set before navigation.

These values could be set adaptively by leveraging time history information while nav-

igating the front. Additional states could also be incorporated into the controller in

order to prevent the cluster from traveling indefinitely by using timeouts or setting a

spatial boundary for the mission area. The techniques presented in Chapters 5 and 6

demonstrate how the state architecture can handle an out-of-bounds scenario.

52

Chapter 5

Low-Exposure Waypoint Navigation

This chapter presents a technique for navigating to a predetermined destination without

exposing the centroid of the cluster to a scalar value above or below a predetermined

limit, or going out of a designated spatial region. The presumption is that there is an

asset that needs to be kept safe from a hazardous environment. Another scenario might

be supporting travel while maintaining a minimum service level. This is accomplished

by using a combination of traditional waypoint navigation and adaptive contour follow-

ing techniques. While, individually, these navigation schemes are not novel, sequencing

them properly and designing the state transition criteria effectively is a significant con-

tribution. The author of this dissertation is the primary contributor for this work.

Avoiding hazards while navigating is a common area of research in mobile robotics.

One example [48], which determines whether terrain is a ‘hard’ or ‘soft’ hazard, de-

termines which route to take accordingly. Another is [49] which uses knowledge of

regional weather patterns to avoid hazards in flight, while minimizing harmful emis-

sions of the vehicle. While the low-exposure waypoint navigator presented here has a

similar objective compared to these examples, it is avoiding a scalar feature rather than

physical obstacles or weather patterns. That said, obstacles and weather features could

be modeled as scalar fields in order to apply our techniques.

5.1 Cluster Formation

In order to focus on the appropriate state-based switching of the adaptive navigation

primitives, robot and cluster dynamics were not simulated; the clusters were assumed

to be virtual rigid bodies. This also reduced simulation time, an advantageous feature

since the navigation capability was evaluated by running 10,000 simulations. In this

case the formation was assumed to be an equilateral triangle, as implemented in [25],

with a fourth vehicle in the center, as in Figure 5.1. It is noted that a formation with a

53

4

1

2

3

{C}

x̂c
ŷc

x

y

4

d

d

d

(xc, yc)

1

Fig. 5.1: A four robot formation used for low exposure waypoint navigation, contour
mapping, and seeking multiple extrema. It is an equilateral triangle with a fourth robot
at the center to detect curvature.

minimum of three vehicles is required for the contour following control primitive. The

fourth vehicle represents the asset being escorted.

For the stated formation, the cluster frame was placed on the middle robot with x̂c

pointing to robot 1 and ẑc pointed down. The fixed cluster size was denoted by d.

The cluster was assumed to be capable of aggregate holonomic motion with first order

dynamics.

5.2 Control Strategy

A state-based control technique is used here. An overview of these states and transition

criteria are given in Figure 5.2. Three states are used, one of which is a simple go-to,

another is the same gradient-based contour following technique used in [25], and the

final one is a hysteresis state used when the cluster goes out of bounds and reverses

54

0) Go to
Waypoint

1) Follow
Contour

2) Spatial
hysteresis

C) Out of
Bounds

A) Scalar value
too high

D) Distance
Req. Met

B) Viable
Path

Fig. 5.2: Overview of states and transitions for low exposure waypoint navigation.

its contour travel direction. The formation of robots begins by heading directly toward

the target destination until it reaches an unacceptable scalar level, at which point it

will switch to contour following until an appropriate route is identified used gradient

information.

Figure 5.3 provides a high level view of an example navigation scenario. Figure 5.3A

covers the first two states used, the cluster travels directly toward the target destina-

tion, reaches the contour, selects a counter-clockwise travel direction based upon local

information, and follows the contour line until reaching the boundary. Next, in part B,

the cluster reverses direction and tracks the contour in a clockwise direction, until there

is a viable route toward the destination, and it leaves the contour line. In C, another

local decision is made to travel counter-clockwise, which results in repetitive behavior,

and reaching the boundary once again. Finally, in D, the cluster reverses direction, and

follows the contour until another clear route to the destination is reached. It does not

leave the contour where it did before, as we require it to be significantly closer to the

destination to transition again. While this cyclic behavior is not desirable, the state-

based behavior successfully limits it in such a way that the cluster will not change states

in the same place repeatedly and end up getting stuck in looped behavior.

55

A B

C D

Fig. 5.3: A simplified example of a low exposure waypoint navigation scenario, where
the arrows represent the direction of travel as the cluster follows the displayed contour.
Each sub-figure displays a portion of the travel, where the new movement is highlighted
in blue. The green diamond is the starting point, while the red one is the end point.
The red dashed line is a boundary for the navigation area.

56

State 0: Go To Waypoint

The first state attempts to go directly to the target destination. Equation 5.1 computes

the desired heading based upon the destination and the center of the cluster frame in

global coordinates, where xd and yd are the x and y coordinates for the destination.

~h =

(
xd − xc
yd − yc

)
(5.1)

Equation 5.2 is used to compute the x and y command velocities for the cluster, where

Rc
g is the rotation matrix from the global frame to the cluster frame. The motion of the

overall cluster is holonomic to avoid excess vehicle movement, so the cluster rotation

angle θc is not specified.

(
ẋc

ẏc

)
= Rc

gĥ (5.2)

The exit criteria for this state is triggered when the scalar value of robot 4 exceeds a

predetermined limit, which is set such that there is a safety factor of 10%. The state

transition occurs when equation 5.3 evaluates as true. The inequality can be reversed

for the case in which the formation needs to remain above a given set point.

z4 > zlim (5.3)

This state transition (A) also determines the contour travel direction by comparing

the angle of contour vector to that of the destination vector. The gradient vector is

computed via Equations 5.4 through 5.7, which is the same method used in [25].

~R12 =

x2 − x1y2 − y1
z2 − z1

 (5.4)

~R13 =

x3 − x1y3 − y1
z3 − z1

 (5.5)

57

~N = −~R12 × ~R13 (5.6)

~g =

(
Nx

Ny

)
(5.7)

Using this information, the absolute angle of the local contour is computed using equa-

tion 5.8, the angle of the destination vector is computed using equation 5.91.

θcont = tan−1

(
gy
gx

)
− π

2
(5.8)

θdest = tan−1

(
hy
hx

)
(5.9)

Finally, the contour travel direction, dc, is selected by comparing these two angles. If

the inequality 5.10 evaluates as true, then dc = 1, else dc = −1.

|θcont − θdest| <
π

2
(5.10)

State 1: Follow Contour

The second state of this controller is meant to direct the robots around the contour

line of maximum allowed scalar value, until a descending path toward the destination

is available. The desired bearing of the contour follower is determined using equation

5.11, where zdes is the desired scalar level of the contour, zc is the average scalar value

of the formation and Kct is the cross-track gain.

bcf = bgrad + dc {sgn (zdes − zc)
×min [Kct × ‖zdes − zc‖ , π/2]− (π/2)}

(5.11)

The x and y components are computed using equation 5.12, by simply computing the

desired global components from the bearing, then rotating the vector into the cluster

1Both of these equations make use of the MATLAB ATAN2 function.

58

frame.

(
ẋc

ẏc

)
= Rc

g

(
cos(bcf)

sin(bcf)

)
(5.12)

The transition (B) to the next state occurs when the destination vector and the negative

direction of the gradient are within π/2 radians of each other. The angle between the

two vectors is computed using equation 5.13.

φ = cos−1
(
~h · ~g

)
(5.13)

While much of the time the controller will perform without issue with this sole criterion,

there are some situations in which this will not be effective, as there may be some

repetitive motion if the state transitions continue to occur in the same location. In

order to prevent this behavior, a secondary criterion was added to ensure that each

time the controller exits State 1, it is leaving the contour path at a location that is

closer than the previous time the state exited. This criterion requires the inequality

5.14 to be true, where ~hprev is the destination vector as recorded the last time this

state transition occurred, and dmar is the required additional linear distance toward the

destination covered since the last time State 1 was exited.

||~h|| > ||~hprev||+ dmar (5.14)

Alternatively, if the cluster center passes out of bounds while navigating a contour,

the navigator transitions (C) to state 2. The borders of the operational area could be

defined any number of ways, however for the simulations presented here, the valid area

was rectangular. Given this, the state changes if any of the criteria in Equations 5.15

or 5.16 are met, where the comparison limits are the corners of the rectangle.

x4 > xulim OR x4 < xllim (5.15)

y4 > yulim OR y4 < yllim (5.16)

59

State 2: Spatial Hysteresis

Upon entering State 2, the cluster immediately reverses direction (dc = −dc) in order to

move back into a valid operating area. All navigation commands are otherwise the same

as State 1. State 2 exists to provide hysteresis when reversing direction; the navigator

reverts back to State 1 (transition D) as soon as the centroid of the formation is more

than a perpendicular distance Dhyst from the out-of-bounds region. This value was set

to 500 meters for the simulations presented here.

5.3 Simulation

As there are so many factors in play, these behaviors are difficult to analyze with closed-

form mathematical methods, or with limited-run experiments. The technique is vali-

dated via 10,000 simulations conducted in parallel.

5.3.1 Simulation Environment

The parallel simulations were run using MATLAB/Simulink. Because the goal was to

run large numbers of simulations, the dynamics of the cluster were greatly simplified,

and the formation was assumed to be rigid. The scalar field of interest was interpolated

from a real set of Cs-137 soil samples taken from the Chernobyl Exclusion Zone [50].

Figure 5.4 displays a contour plot of this interpolated radiation data.

5.3.2 Results

The sizing and boundary parameters for the batch simulations were d = 100 m, yllim =

1.3E5 m, yulim = 1.62E5 m, xllim = 2.5E4 m, and xulim = −2E4 m. The scalar

exposure limit for the center vehicle was set to 7000 kBq/m2. Three criteria were set

to determine whether a given simulated run was successful: whether or not the cluster

made it to the destination, whether the center robot experienced scalar levels in excess

of 1.1zlim, and whether the cluster moved more than 200 m past the boundary of the

mission area. Limiting the success criteria allows a large number of simulations to be

analyzed without it taking a prohibitive amount of time.

60

Fig. 5.4: The contour plot for the interpolated Cs-137 in Chernobyl Exclusion Zone soil
samples. The red rectangle represents the boundaries set for the simulations conducted
in this chapter.

61

Fig. 5.5: The cluster center positions corresponding to a single test of the low exposure
waypoint navigation technique superimposed on the scalar field of interest. The red line
indicates the right boundary of the operating area.

Figure 5.5 displays a single simulated run, with a black ‘x’ marking the location of the

center robot at each time interval. Green circles denote the starting location for each

run, and a red circle marks the finish. The red lines mark the boundaries of the work

area; note that the robots reverse the contour following direction upon reaching the

edge. In this case, the cluster clearly reaches the final destination successfully.

Figure 5.6 plots the time history of the controller state throughout this test. It begins

in state 0, moving directly toward the target destination. When it reaches the contour,

it transitions to state 1 and selects a contour following direction based upon the local

gradient. There is some repetitive behavior similar to the scenario discussed in the

controller section. While backtracking along the contour is not ideal, the state plot

clearly shows that it does not get stuck in this repetitive cycle.

The success of this test can be further enforced by examining the scalar value of the

center vehicle over time, as in Figure 5.7. In this case, the scalar limit was set to 7, 700

kBq/m2, so we would expect the value to never exceed this value. The plot confirms

62

Fig. 5.6: A plot of the time history of the navigator states for the run presented in
Figure 5.5.

this is the case, and also contains a long period of time during which the scalar value

is in the vicinity of 7, 000 kBq/m2. This makes sense, particularly when compared to

the state plot, as we know that the cluster was set to follow the 7, 000 unit contour for

a significant portion of the test.

Figure 5.8 overlays 100 tests with randomized initial conditions. Of the 100 tests, only

one passes above the prescribed scalar limit, likely due to tracking error while following

the contour, as this was the most commonly observed failure mode. Further tuning

of the control gains might alleviate some of these issues; note that only proportional

control is used for contour tracking.

In order to further evaluate the reliability of this navigation technique, a batch of 10, 000

simulations was run. This time, both the start and end locations were generated from

bounded random numbers. All of these successfully made it to the destination, none

went out of bounds, and 305 strayed above a scalar value of 7, 700 kBq/m2, meaning

that 96.95% of the runs were successful. This indicates a high level of repeatability. A

future improvement could be to change the factor of safety when selecting the exposure

level based upon the sensed gradient of the field. This would allow for more conservative

behavior when navigating particularly steep scalar fields.

63

Fig. 5.7: The time history for the scalar value sensed by robot 4 throughout a low
exposure waypoint navigation test.

64

Fig. 5.8: 100 simulated runs displayed on the interpolated radiation data, all of which
have the same destination. Green circles represent start points, red indicates the finish,
red lines are boundaries.

65

5.4 Summary

The objective of the low exposure waypoint navigation technique is to reach the final

destination without the cluster centroid exceeding a predefined scalar level. While some

of the vehicle dynamics were simplified in simulation, the technique was successfully

vetted using 10,000 simulations on a realistic scalar field based upon real field samples.

All recorded failed runs were due to moving above the set scalar limit, as opposed to

getting stuck on features of the field, or moving too far out of bounds. The number

of failures could likely be reduced by improving the contour tracking beyond a simple

proportional controller, or adapting the safety factor of the scalar set point.

66

Chapter 6

Mapping Contours Around an
Extrema

This chapter presents a state based technique for mapping the contours around a local

extrema. Contour mapping has a variety of potential applications for environmen-

tal characterization; for example, it could generate a focused topographic altitude/-

bathymetry map around a peak, or establish exposure perimeters around a hazardous

source. This is accomplished by following several contours of decreasing/increasing

scalar value which encircle a maximum/minimum. Upon fully circumnavigating one

contour, the navigator selects the next contour scalar value. The example scenario

examined here is the evaluation of a radiation hazard, using the same data set as in

Chapter 5. The author of this dissertation is the primary contributor for this work.

While there has been significant interest in using mobile robots to gain information

about a radiation field, this work has largely been constrained to source-seeking and

mapping an environment using prior knowledge. Examples include [51] which uses a

single mobile robot equipped with a Geiger counter to search for radioactive sources,

[52] which maps a known environment to locate radiation generated by a cyclotron, and

[53] which takes images at multiple locations in order to estimate the radiation field.

The contour mapping technique presented here, rather than simply locating extrema,

aims to find them, then map the region around them in order to determine the extent

of the hazard. While the technique described in [53] can generate similar information,

it is restricted by the need for a sophisticated imaging device, and is less suitable for

large scalar fields, as it would require a large number of images.

67

Fig. 6.1: An example contour mapping scenario, starting at the green diamond.

6.1 Control Strategy

This technique requires the formation to provide contour following, gradient ascent/de-

scent capabilities, and the ability to sense local curvature. To accomplish this, we use

the same formation as in Chapter 5. Figure 6.1 provides an example of the contour

mapping navigator in use on a scalar field, where the direction of travel for the cluster is

represented by arrows. The controller begins in extrema-seeking mode (marked in blue)

until it reaches a peak, then transitions to a state designed to descend incrementally

to a target contour level, then to another state for following said contour. The con-

troller continues to descend to and map contours at constant intervals as appropriate,

terminating when a predetermined number of contours have been mapped. There is an

additional state that is triggered if the cluster passes out of the pre-designated work

area, the boundary for which is marked with a red line in the example figure.

Ideally each contour mapped will circumnavigate the peak of interest, however there are

scenarios in which the cluster of robots follows a closed contour that does not encircle

68

0) Seek
Extrema

1) Descend
to Contour

2) Follow
Contour

B) Contour
Reached

A) Extrema
Reached

C) Extremum
in Contour

3) Follow
Boundary

D) Out of
Bounds

5) Find New
Contour

4) Return to
Extremum

H) Contour
Reached

F) Peak not
in Contour

G) Extremum
Reached

E) Contour
Reached

Fig. 6.2: The state diagram for the contour mapping technique. It includes four states
and five transition criteria.

the peak. For example, the cluster may descend to a contour which encircles a local

minimum. We wish to mitigate this circumstance in two ways. First of all, we need to

have a method of checking to see whether the contour encloses the peak. Second, we

need a way to recover from this scenario, and preferably, locate a viable contour. The

state controller accomplishes this by detecting the behavior, returning to the extrema,

and seeking a contour in a new direction. A four robot cluster shown in Figure 5.1 is

used to implement this functionality. An overview of the states and transitions used by

the navigator is provided by Figure 6.2.

State 0: Extrema Seeking

The extrema seeking state uses a gradient based approach that we have used previously

in other work. The controller commands the cluster to move forward at a constant

velocity headed in the direction of ascent. The θ̇c command is generated using Equation

6.1 where ωc is a constant velocity set point, ẋc is set to a constant value, and ẏc is set

to zero.

θ̇c = ωcsign(tan−1

(
gy
gx

)
− θc) (6.1)

The primary and only exit criterion for this state occurs when the extrema is detected,

69

as determined when the inequality in 6.2 evaluates as true for all i = [1 : 3]. zsens is a

preset sensitivity parameter which is included to prevent sensor noise from triggering a

premature transition (A).

z4 > zi + zsens (6.2)

After this criteria is met, the desired level of the contour to follow zdes is set to z4−zdrop,
where zdrop is the desired spacing between contours to be mapped. The coordinates of

the extrema, (xpeak, ypeak), are also recorded.

State 1: Descend to Contour

This state is responsible for descending to the correct contour from either the previous

one, or the extrema. The cluster orients to the gradient, while descending the gradient to

reach the correct scalar value, and moving perpendicular to the gradient in the contour

direction. The orientation controller for this state is the same as that of state 0. The ẋc

command is set using equation 6.3 where vc is a constant speed set point, and the sign

of the ẏc command is set to either 1 or −1 depending on whether we wish to circle the

contour clockwise or counter-clockwise.

ẋc = vxsign(zdes − z4) (6.3)

As the primary goal of this state is to ensure we are properly on, and aligned with the

desired contour, the primary exit criteria (to use transition B) are twofold; the criterion

in Expression 6.4 ensures the cluster is at the right scalar value, and the criterion in

Expression 6.5 ensures it is aligned properly.

|zdes − z4| < zsens (6.4)

|θdes − θc| < θsens (6.5)

Finally, there is a secondary temporal criterion, for the purpose of mitigating any tran-

sient behaviors. This simply requires that the difference in time between the entry and

exit of this state is above a given threshold. Once all the criteria have been met, several

70

values are computed and recorded for later use, including the vector from the peak to

the robot position as in Equation 6.6.

~P p
c =

(
xc − xpeak
yc − ypeak

)
(6.6)

State 2: Follow Contour

This state simply follows a given contour line at the scalar level zdes until it has been

circumnavigated. This is done by moving in the contour direction until returning to

the starting position. The contour following controller itself is the same as the one

presented in State 1. Two quantities are computed and then used to determine whether

the circumnavigation has been completed: the radius (||~P ||) and angle (Equation 6.7)

relative to the peak, where Px and Py are the x and y components of ~P , respectively.

θv = tan−1

(
Py
Px

)
(6.7)

In order to ensure that the contour has been fully navigated (transition C), the cluster

is required to reach the starting point on the contour. A secondary criterion is required

in order to prevent the navigator from falsely transitioning when passing this location

the first time around. This is achieved through the use of a boolean flag that indicates

whether the cluster has reached a point sufficiently far away from the starting point on

the contour, using the radius and angle requirements in Equations 6.8 and 6.9, where

the minimum values are set based on how far the cluster needs to be from the starting

point.

|(||~P || − ||~Pstart||) > Rmin (6.8)

θv − θvstart > θmin (6.9)

Once these criteria have been met, the requirement to exit this state with transition C is

that the cluster reaches the starting point on the contour. This condition is represented

by Equations 6.10 and 6.11, where Rmar and θmar are the radius and angle margins of

71

error. These values are set based on the field characteristics, expected noise, etc. They

are necessarily smaller than Rmin and θmin.

||~P || = ||~Pstart|| ±Rmar (6.10)

θv = θvstart ± θmar (6.11)

After determining that the full contour has been navigated, we need to determine

whether it encircles the extremum of interest. To do this we use the time history

of the spatial position of the cluster center, and determine whether the peak is within

the polygon generated by these points. This is accomplished using the inpolygon()1

MATLAB function. If the peak is within the contour the navigator transitions to state

1 and descends to the next contour of interest, if it is outside, it enters state 4 in order

to find a better route.

Should the cluster reach the boundary of the region of interest and triggers transition

D, the controller enters state 3.

State 3: Move Along Boundary

This state is entered from states 0 through 2 upon crossing the boundary of the work

area. Assuming the work area is rectangular and aligned with the global frame (as it

is for the simulations presented in this work), equations 5.15 and 5.16 from Chapter 5

are used to check this condition. The goal of controller state 3 is to direct the cluster

to navigate along a boundary line until it reaches conditions appropriate for returning

to the previous state, or another boundary line. Throughout navigation the cluster is

aligned with the boundary line with a constant forward command velocity and uses a

lateral velocity command to track the line.

The direction vector of the boundary line in question is ~vbound. In the simulations

conducted here, the boundary lines are always aligned with either the x or y axes. The

cluster aligns with this vector using Equation 6.12.

1This function is based on the methods used in [54], which takes elements from the standard ray
casting and winding number algorithms and produces a more computationally efficient result.

72

θ̇c = ωctan
−1

(
vbound−y
vbound−x

)
(6.12)

The cluster ẋc is simply set to a constant value, and ẏc is set to a constant value with

a sign that changes based on whether the cluster is inside or outside the boundary line.

Upon exiting this state the controller returns to the previous state, and the criteria is

different based on which state it is returning to. If returning to state 0, the controller

requires the gradient vector to be pointing away from the edge of the work area. If

returning to state 1 or 2, the transition occurs once the scalar value of the center robot

is close to the value of the desired contour, as in Equation 6.4. Alternatively, if the

cluster reaches another boundary line before these conditions are met, it will change to

a different sub-state in order to continue along the next boundary line.

State 4: Return to Extremum

The objective of states 4 and 5 is to recover from a scenario in which the cluster is

circling a contour that does not encircle the extremum of interest. State 4 uses simple

waypoint navigation to return to the extremum, computing the desired velocities via

Equations 6.13 and 6.14. Rc
g is the rotation matrix from the global frame to the cluster

frame as before, and k is a proportional gain.

~h =

(
xpeak − xc
ypeak − yc

)
(6.13)

(
ẋc

ẏc

)
= kRc

gĥ (6.14)

The exit criterion for this state is given by Equation 6.15, which requires the magnitude

of the peak vector to be below a maximum radius Rmax. Rmax is typically a very small

value, effectively indicating that the formation has returned to the initial location of the

extremum.

||~h|| < Rmax (6.15)

Upon reaching this location the controller enters State 5.

73

State 5: Find New Contour

State 5 is responsible for locating a contour in a new direction. The navigator deter-

mines which direction to travel by checking an array of available travel bearings. This

array represents a predetermined number of angular intervals relative to the peak of

interest. The time history from the previous contour following step is used to determine

which intervals have already been navigated; these intervals are removed from further

consideration. The next viable entry in the array is then selected as the travel direction.

Given this, the command velocities for the cluster are set to match the bearing of the

center of the angular interval, as in Equations 6.16 and 6.17, where θu and θl are the

upper and lower bounds of the interval, respectively. k is a proportional gain.

ẋc = kcos

(
1

2
(θu + θl)

)
(6.16)

ẏc = ksin

(
1

2
(θu + θl)

)
(6.17)

The state is exited with transition H, when the scalar value of the cluster is acceptably

close to the desired contour value, using the same criterion as 6.4. After a contour of

the desired scalar level that encircles the peak is navigated, the array of viable travel

directions is reset.

6.2 Simulation Results

Two scenarios are evaluated to test the performance of the contour mapping naviga-

tor. The first uses a simulated scalar field, designed to trap the cluster on non-viable

contours. The second is the same radiation field from the Chernobyl exclusion zone

used in the previous chapter. The simulations were conducted using the same MAT-

LAB/Simulink software architecture as in Chapter 5.

6.2.1 Testing on a Simulated Field

The scalar field used for these simulations was an artificially generated set of features,

with a dominate peak in the center, surrounded by three minima. Figure 6.3 demon-

74

strates the scenario in which the navigator is initially stuck on a contour, but successfully

recovers several times to ultimately complete the mapping task. Part (a) of the figure

shows the initial scenario where the navigator would get stuck if not for states 4 and 5.

(b), (c), and (d) show the rest of the progression, as the navigator recovers successfully

from multiple failure conditions.

1,000 simulations were run on this field without the recovery states, all of which failed.

Additionally, all 1,000 of the simulations run with the recovery states successfully

mapped three contours. This demonstrates that the recovery technique is a viable

method of avoiding this particular failure scenario, particularly when navigating simple

scalar fields.

6.2.2 Simulating on Real-World Radiation Data

This set of simulations were run using interpolated real-world soil radiation data. Figure

6.4 plots the position for the cluster center over time for a single simulated run. Note

that the cluster clearly follows the boundary line upon reaching it, and continues until

reaching the contour line on the other side. Figure 6.5 provides a more detailed view

of a subsection of the run in order to better display the initial motion. Here the cluster

appears to follow the first contour for an additional half loop; however, the controller

was not in state 2 for this entire duration. After the initial descent from the peak,

approximately one-half loop of pseudo-contour following (i.e., in state 1, not state 2)

occurred until the scalar and alignment criteria of Equations 6.4 and 6.5 were satisfied.

Hence, the official navigation of the contour (i.e., in state 2) did not commence until

the cluster was near the point where it subsequently descended to the second contour.

Figure 6.6 plots the time history of the navigator states throughout the same test.

This information can be used to verify that the state level of the navigator is working

properly. As we would expect, the cluster begins in state 0 in order to follow the

gradient toward a local extrema. Once the local topography indicates the maxima has

been reached, the navigator enters state 1 in which is descends toward a contour 200

kBq/m2 below the peak. As mentioned previously, the controller remains in this state

for a significant amount of time as it settles to the correct scalar value. Upon reaching

it, the controller uses state 2 to follow the contour. This process is repeated two more

times as contours are mapped. As seen from the time history, the time spent in state 1

is lower in each of these cases, indicating a dependence on the local scalar field, and also

75

Fig. 6.3: The contour mapping navigation strategy operating on a simulated scalar field.
(a) shows the cluster navigating a contour that does not encircle the peak, and in (b)
the navigator recovers from this scenario and begins navigating another invalid contour.
In (c) the navigator recovers again to find a viable route, and finally in (d) the cluster
recovers once again and continues onward.

76

Fig. 6.4: A single contour mapping test conducted on a scalar field interpolated from
soil samples taken in the Chernobyl Exclusion Zone.

that the navigation algorithms are robust to these variations. State 1 served its purpose

by ensuring good contour alignment for the mapping task in state 2. The cluster of

robots eventually began to follow a contour with a much longer perimeter, which lead

it to reach the edge of the mission area, triggering a transition to state 3. It remains

in this state until the cluster returns to the appropriate scalar level. In this particular

test, this sequence occurs twice. The test ultimately terminates upon mapping three

contours successfully.

Figure 6.7 can be used as another way to examine the performance of the contour map-

ping controller. In the beginning of the time history the scalar level climbs consistently

until reaching the local peak, after which is steps down as it maps each contour level.

There is a large, temporary spike while in state 3, as the scalar level is not being con-

trolled while traveling along the boundary, and high exposure regions are passed before

reaching the contour once again.

Ultimately the goal of the contour mapping technique is to approximate the scalar field,

which it accomplishes by tracing contour lines. A well behaved field with a limited

number of features would be easily reproduced with simple contour tracing. That said,

77

Fig. 6.5: A subsection of Figure 6.4 in order to provide a more detailed view of the
beginning of the motion. A small portion of each of the three individual contours
followed can be seen in this view.

78

Fig. 6.6: Time history of the controller state for the test displayed in Figure 6.4.

Fig. 6.7: Time history of the average scalar value for the test displayed in Figure 6.4.

79

fields in nature typically have many different features, including multiple local extrema.

Strictly following contours will often lead to bypassing some of these secondary features.

For example, the test in Figure 6.4 locates a local extrema, and bypasses several other

features as it continues to map contour lines. While the navigation algorithm is still

performing as designed in these cases, it does reduce the accuracy of the reconstruction

of the field.

10, 000 simulations were conducted in order to demonstrate the repeatability of the tech-

nique. The initial cluster positions were determined by generating uniformly distributed

pseudo-random integers such that the x position was 154, 000± 5, 000 m, and the y po-

sition was 4, 000 ± 9, 000 m. Once again the contour spacing was set to 200 kBq/m2.

Three fully circumnavigated contours were required in order to declare success. 87.37%

of these tests were successful and stayed within the boundaries. Of the remaining un-

successful runs, 219 detected that non-viable contours were circumnavigated, but were

unable to subsequently find a suitable direction of travel. For these simulations there

were eight angular intervals in the array, so some of these errors could be reduced by

increasing the granularity of the intervals.

The remainder of the failed runs were due to reaching the time limit of the simulation,

and are summarized in Table 6.2.2. It is difficult to diagnose the exact issue for each

run, but many of these may have simply run out of simulation time. The recovery and

boundary following states in particular can add a significant amount of travel time for the

cluster, as it effectively increases the number of contours to be navigated. Alternatively,

some of these errors may have been due to the tuning of the transition criteria relative

to a particular region of the scalar field. Most of these runs ended in state 2, which

indicated either the contours were too long to follow in a timely manner, or the local

characteristics of the field were such that a transition was prevented. State 1 likely

had similar issues of time and transition criteria, as the control equations are the same,

however as it is simply descending to a contour, the time spent in this state is much lower,

corresponding to a lower number of timeouts. The runs ending in state 3 were navigating

the boundary of the work area which requires a substantial amount of movement, and

may have simply taken too much time, or may have been seeking a scalar value that was

not present in the work area. Similarly, the runs ending in state 0 may have traveled

along the boundary for a significant amount of time before reentering the state. Finally,

those ending in 4 or 5 either spend too much time checking available directions, or where

unable to find a viable contour while moving outward from the peak in state 5.

80

Table 6.1: Simulation End Conditions
Outcome Number of Runs

Success 8,737

Surrounded by non-viable contours 219

State 0 73

State 1 20

State 2 440

State 3 203

States 4 and 5 308

6.3 Summary

The goal of the contour mapping technique is to estimate the scalar field in a region

around a local extrema. The effectiveness of the recovery states was verified with a

100% successrate on the artificial scalar field. The simulations conducted on the real-

world data also had a very high rate of success. 87.37% of them successfully mapped

three field contours, indicating that the contour mapping strategy presented in this

chapter is both viable and reliable. Failures typically occurred when there was no way

to both continue the contour navigation and remain in the designated area. A potential

future improvement could be adaptively selecting the contour spacing based upon the

gradient of the local field; closer spacing could be used in steeper areas, and wider

spacing in flatter regions. Similarly, adaptively selecting some of the contour tracking

scalar requirements could account for a wider variety of scalar fields.

81

Chapter 7

Conclusion

This chapter discusses the current achievements of state-based adaptive navigation, and

some potential future work that could expand its capabilities.

7.1 Summary

Adaptive navigation of scalar fields encompasses a powerful set of methods for locating

points of interest in a region, and executing tasks based upon environmental data. The

core objective of this work is to use state-based capabilities to improve the performance

of adaptive navigation techniques and to enable a wider variety of applications.

The state-based architecture has been created and integrated with the existing adaptive

navigation architecture. It has the capability to sequence adaptive navigation primitives

as necessary to accomplish the given task, and can accept a wide variety of transition

criteria to govern the switching behaviors. This has been demonstrated to work in a

variety of circumstances.

This work has added state-based behavior to improve the performance of ridge, trench,

and saddle point navigation. This enhancement allows the navigator to locate a nearby

feature, and to recover should it lose the ridge/trench while moving. Performance was

verified with a full set of experiments using scalar fields represented by a variety of

grayscale printouts.

The front following technique was fully developed within this work, and required not

only the development of the state behaviors, but also new adaptive navigators. This

front following technique was implemented in both a thorough simulation and laboratory

experiments. Two additional mission-oriented techniques were created in this work, a

method for navigating to a waypoint without passing above a present scalar level, and a

method for mapping contours around an extremum of interest. Both of these techniques

82

have been demonstrated for the first time, simulated using a real-world radiation data

set.

This front navigator includes adaptive sizing of the robot cluster based on the local scalar

field. Not only was this critical for this work, but it is the first step toward adding resizing

to other navigation primitives. Finally, the front and ridge/trench navigators required

the development of two novel cluster formations, the associated kinematic transforma-

tions, and the velocity relationships in terms of the Jacobian transforms.

All of these improvements constitute significant advances in the area of multirobot

adaptive navigation. Additionally, they provide the framework for future techniques

and improvements.

7.2 Future Work

The research to date has opened many avenues for future work. While the cluster size is

already varied depending on the environment, the sizing choices are typically made with

the use of a priori knowledge of the field of interest, and is fixed for the duration of the

navigation. The front navigation technique leverages adaptive sizing, but strictly for

spanning fronts. Future research could provide the capability to generically adaptively

size the cluster throughout the mission in order to optimize for the spatial frequencies

of interest. This would improve the effectiveness of the individual primitive navigators.

In addition to the sizing of the cluster itself, there is also the notion of adapting the

state transition and navigation thresholds based on the characteristics of the local scalar

field. For example, it may be beneficial to increase the contour following safety factor

for the low exposure waypoint navigation technique based on the magnitude of the local

gradient of the field, adjust the front slope thresholds based on the observed slopes

throughout navigation, etc.

Multirobot adaptive navigation can also be extended in a number of more general ways.

For example there is research being conducted into additional highly decentralized navi-

gation methods, and methods for extending some of the navigation strategies into three

dimensional applications. There is also interest in experimental verification and field

testing of navigators that have not yet been used in full field applications. For exam-

ple, there is a ridge of geological significance in the Emerald Bay region of Lake Tahoe

California that could be navigated with ASVs.

83

Bibliography

[1] C. A. Kitts, R. T. McDonald, and M. A. Neumann, “Adaptive Navigation Con-

trol Primitives for Multirobot Clusters: Extrema Finding, Contour Following,

Ridge/Trench Following, and Saddle Point Station Keeping,” IEEE Access, vol. 6,

pp. 17625–17642, 2018.

[2] R. T. Mcdonald, C. A. Kitts, and M. A. Neumann, “Experimental implementation

and verification of scalar field ridge, trench, and saddle point maneuvers using

multirobot adaptive navigation,” IEEE Access, vol. 7, pp. 62950–62961, 2019.

[3] R. T. McDonald, M. Condino, M. A. Neumann, and C. A. Kitts, “Navigation of

Scalar Fronts with Multirobot Clusters in Simulation and Experiment,” Accepted

by IEEE Systems Journal, 2020.

[4] T. Xinchi, Z. Huajun, C. Wenwen, Z. Peimin, L. Zhiwen, and C. Kai, “A research

on intelligent obstacle avoidance for unmanned surface vehicles,” in 2018 Chinese

Automation Congress (CAC), pp. 1431–1435, Nov 2018.

[5] Xiaohao Xu, Chenggong Li, and Yifei Zhao, “Air traffic rerouting planning based on

the improved artificial potential field model,” in 2010 Chinese Control and Decision

Conference, pp. 1444–1449, May 2010.

[6] E. Burian, D. Yoerger, A. Bradley, and H. Singh,“Gradient search with autonomous

underwater vehicle using scalar measurements,” in IEEE OES AUV Conference,

pp. 86–98, 1996.

[7] M. Dunbabin and L. Marques, “Robots for environmental monitoring: Significant

advancements and applications,” IEEE Robotics & Automation Magazine, vol. 19,

no. 1, pp. 24–39, 2012.

[8] B. Bayat, N. Crasta, A. Crespi, A. M. Pascoal, and A. Ijspeert, “Environmental

monitoring using autonomous vehicles: a survey of recent searching techniques,”

Current opinion in biotechnology, vol. 45, pp. 76–84, 2017.

84

[9] H. Ishida, T. Nakamoto, T. Moriizumi, T. Kikas, and J. Janata, “Plume-Tracking

Robots: A New Application of Chemical Sensors.,”Biological Bulletin, no. 2, p. 222,

2001.

[10] A. S. Matveev, H. Teimoori, and A. V. Savkin, “Navigation of a unicycle-like mobile

robot for environmental extremum seeking,” Automatica, vol. 47, no. 1, pp. 85–91,

2011.

[11] A. S. Matveev, M. C. Hoy, K. Ovchinnikov, A. Anisimov, and A. V. Savkin, “Robot

navigation for monitoring unsteady environmental boundaries without field gradi-

ent estimation,” Automatica, vol. 62, pp. 227–235, Dec 2015.

[12] A. S. Matveev, M. C. Hoy, A. M. Anisimov, and A. V. Savkin, “Tracking of de-

forming environmental level sets of dynamic fields by a nonholonomic robot without

gradient estimation,” in 10th IEEE International Conference on Control and Au-

tomation (ICCA), pp. 1754–1759, Jun 2013.

[13] Woods Hole Oceanographic Institution, Woods Hole, MA, Autonomous Benthic

Explorer configuration, 1996.

[14] P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperative control of mobile sensor

networks: Adaptive gradient climbing in a distributed environment.,” IEEE Trans-

actions On Automatic Control, vol. 49, no. 8, pp. 1292–1302, 2004.

[15] E. Biyik and M. Arcak, “Gradient climbing in formation via extremum seeking and

passivity-based coordination rules.,” ASIAN JOURNAL OF CONTROL, vol. 10,

no. 2, pp. 201–211.

[16] N. A. Atanasov, J. Le Ny, and G. J. Pappas, “Distributed algorithms for stochastic

source seeking with mobile robot networks,” Journal of Dynamic Systems, Mea-

surement, and Control, vol. 137, no. 3, 2015.

[17] L. Brinon-Arranz, A. Renzaglia, and L. Schenato, “Multirobot Symmetric Forma-

tions for Gradient and Hessian Estimation With Application to Source Seeking,”

IEEE Transactions on Robotics, pp. 1–8, 2019.

[18] V. Gazi, F. Fidan, L. Marques, and R. Ordonez, “Robot swarms: dynamics and

control,” in Mobile Robots for Dynamic Environments (E. Faruk Kececi and M. Cec-

carelli, eds.), ch. 4, pp. 79–107, New York: ASME, 2015.

85

[19] S. Li, R. Kong, and Y. Guo, “Cooperative distributed source seeking by multiple

robots: Algorithms and experiments,” IEEE/ASME Transactions on Mechatronics,

vol. 19, no. 6, pp. 1810–1820, 2014.

[20] S. Srinivasan, K. Ramamritham, and P. Kulkarni, “ACE in the Hole: Adaptive

Contour Estimation Using Collaborating Mobile Sensors,” in 2008 International

Conference on Information Processing in Sensor Networks (ipsn 2008), pp. 147–

158, Apr 2008.

[21] S. Al-abri and F. Zhang, “A Distributed Level Curve Tracking Control Law for

Multi-Agent Systems,” 2018 IEEE Conference on Decision and Control (CDC),

no. Cdc, pp. 2575–2580, 2018.

[22] J.-w. Wang, Y. Guo, M. Fahad, and B. Bingham, “Dynamic Plume Tracking by

Cooperative Robots,” IEEE/ASME Transactions on Mechatronics, vol. PP, p. 1,

2019.

[23] A. Joshi, T. Ashley, Y. R. Huang, and A. L. Bertozzi, “Experimental validation of

cooperative environmental boundary tracking with on-board sensors,” in American

Control Conference, pp. 2630–2635, Jun 2009.

[24] J. Clark and R. Fierro, “Cooperative hybrid control of robotic sensors for perimeter

detection and tracking,” in American Control Conference, pp. 3500–3505 vol. 5, Jun

2005.

[25] T. Adamek, C. Kitts, and I. Mas, “Gradient-Based Cluster Space Navigation for

Autonomous Surface Vessels,” IEEE/ASME Transactions on Mechatronics, vol. 20,

no. 1, pp. 506–518, 2015.

[26] I. Mas and C. A. Kitts, “Dynamic Control of Mobile Multirobot Systems: The

Cluster Space Formulation,” IEEE Access, vol. 2, pp. 558–570, 2014.

[27] M. A. Neumann and C. A. Kitts, “A hybrid multirobot control architecture for

object transport,” IEEE/ASME Transactions on Mechatronics, vol. 21, pp. 2983–

2988, Dec 2016.

[28] J. Acain, C. Kitts, T. Adamek, K. Ebadi, and M. Rasay, “A Multi-Robot Testbed

for Adaptive Sampling Experimentation via Radio Frequency Fields,” ASME/IEEE

International Conference on Mechatronic and Embedded Systems and Applications,

vol. 9, pp. 1–7, Aug 2015.

86

[29] P. Mahacek, “Design and Cluster Space Control of Two Autonomous Surface Ves-

sels,” Master’s thesis, Santa Clara University, dec 2009.

[30] P. Mahacek, I. Mas, O. Petrovic, J. Acain, and C. Kitts, “Cluster Space Control of

Autonomous Surface Vessels,” Marine Technology Society Journal, vol. 43, no. 1,

pp. 13–20, 2009.

[31] C. A. Kitts and I. Mas, “Cluster Space Specification and Control of Mobile Multi-

robot Systems,” IEEE/ASME Transactions on Mechatronics, vol. 14, pp. 207–218,

Apr 2009.

[32] I. Mas, S. Li, J. Acain, and C. Kitts, “Entrapment/Escorting and Patrolling Mis-

sions in Multi-Robot Cluster Space Control,” IEEE/RSJ International Conference

on Intelligent Robots and Systems, pp. 5855–5861, Oct 2009.

[33] J. Shepherd, A Framework for Collaborative Multi-Task, Multi-Robot Missions.

Doctoral thesis, Santa Clara University, Santa Clara, California, 2016.

[34] I. Mas and C. Kitts, “Obstacle Avoidance Policies for Cluster Space Control of

Nonholonomic Multirobot Systems,” IEEE/ASME Transactions on Mechatronics,

vol. 17, pp. 1068–1079, Dec 2012.

[35] D. Liberzon, Switching in systems and control. Springer Science & Business Media,

2003.

[36] J. T. Shepard and C. A. Kitts, “A multirobot control architecture for collabora-

tive missions comprised of tightly coupled, interconnected tasks,” IEEE Systems

Journal, vol. 12, pp. 1435–1446, June 2018.

[37] S. Tomer et al., “A low-cost indoor testbed for multirobot adaptive navigation

research,” in IEEE Aerospace Conference, pp. 1–12, March 2018.

[38] X. Kang and W. Li, “Moth-inspired plume tracing via multiple autonomous vehicles

under formation control,” Adaptive Behavior, vol. 20, pp. 131–142, Apr 2012.

[39] M. B. Framiñan, A. Valle-Levinson, H. H. Sepúlveda, and O. B. Brown, “Tidal

variations of flow convergence, shear, and stratification at the Rio de la Plata

estuary turbidity front,” Journal of Geophysical Research: Oceans, vol. 113, no. 8,

pp. 1–17, 2008.

87

[40] J. E. Cloern, A. D. Jassby, T. S. Schraga, E. Nejad, and C. Martin, “Ecosystem

variability along the estuarine salinity gradient: Examples from long-term study of

San Francisco Bay,” Limnology and Oceanography, vol. 62, pp. S272–S291, 2017.

[41] C. A. Bost, C. Cotté, F. Bailleul, Y. Cherel, J. B. Charrassin, C. Guinet, D. G.

Ainley, and H. Weimerskirch, “The importance of oceanographic fronts to marine

birds and mammals of the southern oceans,” Journal of Marine Systems, vol. 78,

no. 3, pp. 363–376, 2009.

[42] E. D’asaro, C. Lee, L. Rainville, L. Thomas, and R. Harcourt, “Enhanced Turbu-

lence and Energy Dissipation at Ocean Fronts,” Science, vol. 332, 2011.

[43] A. Branch, M. M. Flexas, B. Claus, A. F. Thompson, Y. Zhang, E. B. Clark,

S. Chien, D. M. Fratantoni, J. C. Kinsey, B. Hobson, B. Kieft, and F. P. Chavez,

“Front delineation and tracking with multiple underwater vehicles,”Journal of Field

Robotics, no. January, 2019.

[44] Y. Zhang, C. Rueda, B. Kieft, J. Ryan, C. Wahl, T. C. O’Reilly, T. Maughan,

and F. P. Chavez, “Autonomous tracking of an oceanic thermal front by a Wave

Glider,” Journal of Field Robotics, 2019.

[45] Y. Zhang, J. G. Bellingham, J. P. Ryan, B. Kieft, and M. J. Stanway, “Autonomous

Four-Dimensional Mapping and Tracking of a Coastal Upwelling Front by an Au-

tonomous Underwater Vehicle,” Journal of Field Robotics, vol. 33, no. 1, pp. 67–81,

2016.

[46] Garmin International, Inc, Olathe, Kansas, GPS 18x Technical Specifications, 10

2011.

[47] P. Gainsford, Stainless Steel Temperature Probe. Vernier Software Technology,

Beaverton, Oregon, 2 2016.

[48] S. Karumanchi and K. Iagnemma, “Reactive control in environments with hard and

soft hazards,” in 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp. 2863–2868, Oct 2012.

[49] M. P. Fanti, S. Mininel, M. Nolich, G. Stecco, W. Ukovich, M. Bernabo, and G. Ser-

afino, “Flight path optimization for minimizing emissions and avoiding weather

hazard,” in 2014 American Control Conference, pp. 4567–4572, June 2014.

88

[50] V. Kashparov, S. Levchuk, M. Zhurba, V. Protsak, Y. Khomutinin, N. Beresford,

and J. Chaplow, “Spatial datasets of radionuclide contamination in the ukrainian

chernobyl exclusion zone,” 2017.

[51] H. Lin and H. J. Tzeng, “Search strategy of a mobile robot for radiation sources in

an unknown environment,” in 2014 International Conference on Advanced Robotics

and Intelligent Systems (ARIS), pp. 56–60, June 2014.

[52] M. Purkait, S. C. Jena, T. K. Bhaumik, K. Datta, B. Sarkar, C. Datta, D. Sarkar,

R. Ravishankar, S. K. Mishra, T. Bandyopadhyay, S. Sharma, V. Agashe, and P. K.

Pal, “Online radiation mapping of k-130 room temperature cyclotron using mobile

robot,” in 2011 2nd International Conference on Computer and Communication

Technology (ICCCT-2011), pp. 104–107, Sep. 2011.

[53] D. Kim, H. Woo, Y. Ji, Y. Tamura, A. Yamashita, and H. Asama, “3d radiation

imaging using mobile robot equipped with radiation detector,” in 2017 IEEE/SICE

International Symposium on System Integration (SII), pp. 444–449, Dec 2017.

[54] K. Hormann and A. Agathos, “The point in polygon problem for arbitrary poly-

gons,” Comput. Geom. Theory Appl., vol. 20, no. 3, pp. 131–144, 2001.

89

Appendix A: Supporting

Information for
Ridge/Trench/Saddle Navigation

Scalar Field Equations for Ridge/Trench/Saddle Test-

ing

The general equation for the scalar fields used is:

z =
h(xsy + 1 + yn1)(xs ∗ x+ 1)

(d/dhv)2) + 1

where h is the height of the scalar field at the origin, ys is the slope in the y direction,

yn1 is the nonlinearity in the y direction, xs is the slope in the x direction, d is the

minimum distance from a point (x, y) to the centerline of the feature, and dhv is half

the value distance for the feature (the distance from the feature’s centerline which cuts

the feature’s height in half).

All scalar fields were created in Matlab with a domain and range of ±2. The z values

were used to create greyscale ranging from 0 (black) to 1 (white). In order to reduce

Table 1: The parameters for the scalar field equations for each experiment.

Parameter Exp 1 Exp 2 Exp 3 Exp 4

h −8 −5 1 1

xs 0 0 −0.075 −0.075

xnl 0 0 0 (1− u(x− 1))(0.25)(x+ 1)2

ys −0.125 0.2 −0.075 −0.075

dhv 0.7 0.7 1.5 0.5

Line Eqn. x = −y x = −0.5y2 − y + 0.5 x = y3 x = y3

A1

Table 2: Greyscale ranges for the scalar fields.

Scalar Field Grey min Grey max Grey resolution

Exp 1 0.1 1 0.0001

Exp 2 0.2 0.95 0.001

Exp 3 0.05 1 0.0001

Exp 4 0.05 1 0.001

sensor saturation, the minimum and maximum grey values were sometimes limited,

as seen in the table below. Also in the table is the resolution used for the greyscale

colormap.

During the printing process the size of the fields were increased to approximately ±2.5

m.

Inverse Jacobian

The cluster pose vector, ~C, is given by Equation 1. The inverse Jacobian transform

matrix for the six robot cluster used in front navigation is given below in Equation

2, which when multiplied with ~̇C provides the robot space velocities. Note that sic

represents sin(βi + θc) and cic represents cos(βi + θc). Similarly sc and cc are equivalent

to sin(θc) and cos(θc) respectively.

A2

~C =

xc

yc

θc

φ1

d2

φ2

d3

φ3

β3

d4

φ4

β4

d5

φ5

β5

(1)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 −d2cc 0 −sc 0 0 0 0 0 0 0 0 0 0

0 1 −d2sc 0 cc 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

1 0 d3c3c 0 0 0 s3c 0 d3c3c 0 0 0 0 0 0

0 1 d3s3c 0 0 0 −c3c 0 d3s3c 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

1 0 −d4s4c − d2cc 0 −sc 0 0 0 0 c4c 0 −d4 ∗ s4c 0 0 0

0 1 d4c4c − d2sc 0 cc 0 0 0 0 s4c 0 d4c4c 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

1 0 d3c3c − d5s5c 0 0 0 s3c 0 d3c3c 0 0 0 c5c 0 −d5s5c
0 1 d5c5c + d3s3c 0 0 0 −c3c 0 d3s3c 0 0 0 s5c 0 d5c5c

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

(2)

A3

Appendix B: Supporting

Information for Front Navigation

Formation Performance

Table 3: Cluster parameter RMS errors for the front tests presented in Figs. 4.9, 4.14,
and 4.17.

Straight Sinusoidal Changing Width

d1 (m) 0.0044 0.0060 0.0073

d2 (m) 0.0062 0.0075 0.0063

d5 (m) 0.0142 0.0099 0.0855

d6 (m) 0.0108 0.0078 0.0356

β1 (rad) 0.0269 0.0298 0.1039

β2 (rad) 0.0431 0.0541 0.0731

β5 (rad) 0.0280 0.0258 0.1484

β6 (rad) 0.0233 0.0204 0.2435

Inverse Jacobian

The cluster pose vector, ~C, is given by Equation 3. The inverse Jacobian transform

matrix for the six robot cluster used in front navigation is given below in Equation

4, which when multiplied with ~̇C provides the robot space velocities. Note that sic

represents sin(θi + θc) and cic represents cos(θi + θc). Similarly sc and cc are equivalent

to sin(θc) and cos(θc) respectively.

B1

~C =

xc

yc

θc

d

d1

θ1

d2

θ2

d3

θ3

d4

θ4

φ1

φ2

φ3

φ4

φ5

φ6

(3)

B2

1
0

d
1 c

1
c

+
d
c
c

s
c

s
1
c

d
1 c

1
c

0
0

0
0

0
0

0
0

0
0

0
0

0
1

d
1 s

1
c

+
d
s
c
−
c
c
−
c
1
c

d
1 s

1
c

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

1
0

d
c
c −

d
1 c

1
c

s
c
−
s
1
c
−
d
1 c

1
c

0
0

0
0

0
0

0
0

0
0

0
0

0
1

d
s
c −

d
1 s

1
c
−
c
c

c
1
c
−
d
1 s

1
c

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

1
0

d
2 c

2
c −

d
c
c
−
s
c

0
0

s
2
c

d
2 c

2
c

0
0

0
0

0
0

0
0

0
0

0
1

d
2 s

2
c −

d
s
c

c
c

0
0

−
c
2
c

d
2 s

2
c

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
1

0
0

0
0

0
0

1
0

0
0

1
0
−
d
2 c

2
c −

d
c
c
−
s
c

0
0

−
s
2
c
−
d
2 c

2
c

0
0

0
0

0
0

0
0

0
0

0
1
−
d
2 s

2
c −

d
s
c

c
c

0
0

c
2
c
−
d
2 s

2
c

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
0

−
d
3 s

3
c

0
0

0
0

0
c
3
c
−
d
3 s

3
c

0
0

0
0

0
0

0
0

0
1

d
3 c

3
c

0
0

0
0

0
s
3
c

d
3 c

3
c

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

1
0

d
4 s

4
c

0
0

0
0

0
0

0
−
c
4
c

d
4 s

4
c

0
0

0
0

0
0

0
1

−
d
4 c

4
c

0
0

0
0

0
0

0
−
s
4
c
−
d
4 c

4
c

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

(4)

B3

	Mission-Oriented Multirobot Adaptive Navigation of Scalar Fields
	tmp.1591988811.pdf.YkAfx

