157 research outputs found

    Defining correctness conditions for concurrent objects in multicore architectures

    Get PDF
    Correctness of concurrent objects is defined in terms of conditions that determine allowable relationships between histories of a concurrent object and those of the corresponding sequential object. Numerous correctness conditions have been proposed over the years, and more have been proposed recently as the algorithms implementing concurrent objects have been adapted to cope with multicore processors with relaxed memory architectures. We present a formal framework for defining correctness conditions for multicore architectures, covering both standard conditions for totally ordered memory and newer conditions for relaxed memory, which allows them to be expressed in uniform manner, simplifying comparison. Our framework distinguishes between order and commitment properties, which in turn enables a hierarchy of correctness conditions to be established. We consider the Total Store Order (TSO) memory model in detail, formalise known conditions for TSO using our framework, and develop sequentially consistent variations of these. We present a work-stealing deque for TSO memory that is not linearizable, but is correct with respect to these new conditions. Using our framework, we identify a new non-blocking compositional condition, fence consistency, which lies between known conditions for TSO, and aims to capture the intention of a programmer-specified fence

    Verifying linearizability on TSO architectures

    Get PDF
    Linearizability is the standard correctness criterion for fine-grained, non-atomic concurrent algorithms, and a variety of methods for verifying linearizability have been developed. However, most approaches assume a sequentially consistent memory model, which is not always realised in practice. In this paper we define linearizability on a weak memory model: the TSO (Total Store Order) memory model, which is implemented in the x86 multicore architecture. We also show how a simulation-based proof method can be adapted to verify linearizability for algorithms running on TSO architectures. We demonstrate our approach on a typical concurrent algorithm, spinlock, and prove it linearizable using our simulation-based approach. Previous approaches to proving linearizabilty on TSO architectures have required a modification to the algorithm's natural abstract specification. Our proof method is the first, to our knowledge, for proving correctness without the need for such modification

    Linearizability and Causality

    Get PDF
    Most work on the verification of concurrent objects for shared memory assumes sequential consistency, but most multicore processors support only weak memory models that do not provide sequential consistency. Furthermore, most verification efforts focus on the linearizability of concurrent objects, but there are existing implementations optimized to run on weak memory models that are not linearizable. In this paper, we address these problems by introducing causal linearizability, a correctness condition for concurrent objects running on weak memory models. Like linearizability itself, causal linearizability enables concurrent objects to be composed, under weak constraints on the client’s behaviour. We specify these constraints by introducing a notion of operation-race freedom, where programs that satisfy this property are guaranteed to behave as if their shared objects were in fact linearizable. We apply these ideas to objects from the Linux kernel, optimized to run on TSO, the memory model of the x86 processor family

    The Path to Durable Linearizability

    Get PDF

    Using coarse-grained abstractions to verify linearizability on TSO architectures

    Get PDF
    Most approaches to verifying linearizability assume a sequentially consistent memory model, which is not always realised in practice. In this paper we study correctness on a weak memory model: the TSO (Total Store Order) memory model, which is implemented in x86 multicore architectures. Our central result is a proof method that simplifies proofs of linearizability on TSO. This is necessary since the use of local buffers in TSO adds considerably to the verification overhead on top of the already subtle linearizability proofs. The proof method involves constructing a coarse-grained abstraction as an intermediate layer between an abstract description and the concurrent algorithm. This allows the linearizability proof to be split into two smaller components, where the effect of the local buffers in TSO is dealt with at a higher level of abstraction than it would have been otherwise

    Linearizability with Ownership Transfer

    Full text link
    Linearizability is a commonly accepted notion of correctness for libraries of concurrent algorithms. Unfortunately, it assumes a complete isolation between a library and its client, with interactions limited to passing values of a given data type. This is inappropriate for common programming languages, where libraries and their clients can communicate via the heap, transferring the ownership of data structures, and can even run in a shared address space without any memory protection. In this paper, we present the first definition of linearizability that lifts this limitation and establish an Abstraction Theorem: while proving a property of a client of a concurrent library, we can soundly replace the library by its abstract implementation related to the original one by our generalisation of linearizability. This allows abstracting from the details of the library implementation while reasoning about the client. We also prove that linearizability with ownership transfer can be derived from the classical one if the library does not access some of data structures transferred to it by the client

    Finding linearization violations in lock-free concurrent data structures

    Get PDF
    Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (page 31).Finding bugs in lock-free concurrent programs is hard. This is due in part to the difficulty of reasoning about the correctness of concurrent algorithms and the timing-sensitive nature of concurrent programs. One of the most widely used tools for reasoning about the correctness of concurrent algorithms is the linearization property. This thesis presents a tool for automatic dynamic checking of concurrent programs under the Total-Store-Order (TSO) memory model and a methodology for finding linearization violations automatically with the tool.by Sebastien Alberto Dabdoub.M. Eng
    • …
    corecore