
Verifying linearizability on TSO architectures

John Derrick1, Graeme Smith2, and Brijesh Dongol1

1Department of Computing, University of Sheffield, Sheffield, UK
2School of Information Technology and Electrical Engineering,

The University of Queensland, Australia

Abstract. Linearizability is the standard correctness criterion for fine-grained,
non-atomic concurrent algorithms, and a variety of methods for verifying lin-
earizability have been developed. However, most approaches assume a sequen-
tially consistent memory model, which is not always realised in practice. In this
paper we define linearizability on a weak memory model: the TSO (Total Store
Order) memory model, which is implemented in the x86 multicore architecture.
We also show how a simulation-based proof method can be adapted to verify
linearizability for algorithms running on TSO architectures. We demonstrate our
approach on a typical concurrent algorithm, spinlock, and prove it linearizable us-
ing our simulation-based approach. Previous approaches to proving linearizabilty
on TSO architectures have required a modification to the algorithm’s natural ab-
stract specification. Our proof method is the first, to our knowledge, for proving
correctness without the need for such modification.

1 Introduction

The correctness of concurrent algorithms has received considerable attention over the
last few years. For algorithms that have fine-grained concurrent implementations cor-
rectness has focussed on a condition called linearizability [12]. This requires that the
fine-grained operations (e.g., insertion or removal of an element of a data structure)
appear as though they take effect “instantaneously at some point in time within their
intervals of execution” [12], thereby achieving the same effect as an atomic operation.

Such fine-grained implementations are becoming increasingly commonplace, and
are now standard in libraries such as java.util.concurrent. To increase effi-
ciency, these algorithms dispense with locking, or only lock small parts of a shared data
structure. Therefore the shared data structure might be concurrently accessed by differ-
ent processors executing different operations. This complexity makes the correctness of
such algorithms, i.e., their proofs of linearizability, a key issue.

Because linearizability is such an important condition, there has been a large amount
of interest in proof methods for verifying whether an algorithm is linearizable. How-
ever, the vast majority of this work has assumed a particular memory model; in partic-
ular a sequentially consistent (SC) memory model, whereby program instructions are
executed by the hardware in the order specified by the program. This is in contrast to
multiprocessor architectures such as x86 [15], Power [1] or ARM [1] that only provide
weaker guarantees in order to allow efficient executions.

Processor cores within modern multicore systems often communicate via shared
memory and use (local) store buffers to improve performance. Whilst this does give

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/29140039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

W
rite b

u
ffer

read

flush

write

read

W
rite b

u
ffer

read

flush

write

read

Core 1 Core n

Shared memory

Fig. 1. The TSO architecture

greater scope for optimisation, the order in which instructions are executed by the hard-
ware is no longer the same as that specified by the program. In this paper we focus on
one such memory model, the TSO (Total Store Order) model which is implemented in
the x86 multicore processor architecture. Rather surprisingly given Intel’s and AMD’s
use of x86, and in contrast to the many different approaches and techniques for lineariz-
ability on sequentially consistent architectures, there have only been three approaches
to the question of linearizability on a TSO model: [4], [11] and [17].

The proof approaches in both [4] and [11], however, require the natural abstract
specification of a concurrent implementation to be modified. Burckhardt et al. [4] de-
fine so-called TSO-to-TSO linearizability, which as the name implies compares a con-
current implementation with an abstract specification that executes in TSO memory.
Their definition of linearizability thus compares two specifications with local buffers.
In our approach, we aim to compare the execution of an implementation in TSO against
its natural SC abstraction. In [11] Gotsman et al. define a more sophisticated mapping
between the TSO model and a sequentially consistent one (this is called TSO-to-SC lin-
earizability), but to verify the linearizability of an example like spinlock (our running
example) they weaken the abstract specification to allow non-deterministic behaviour
when one would not naturally expect it. The approach closest to ours is [17] which uses
the same principles that we discuss, but does not provide a proof method (rather they
use SPIN to model check particular runs of the algorithm, much like testing).

The purpose of this paper is to make two contributions: define linearizability of
concurrent algorithms on a TSO memory model which avoids the compromises of [4,
11], and define a proof method for verifying it. We begin in Section 2 by introducing
the TSO model as well as our running example, the spinlock algorithm. In Section 3 we
introduce linearizability and discuss how we adapt the definition to the TSO model. In
Section 4 we explain an existing simulation-based method for verifying linearizability
and show how we can adapt this to the TSO model. This method is then applied to the
spinlock example in Section 5 before we conclude in Section 6.

2 The TSO memory model

In the TSO (Total Store Order) architecture (see [16] for an introduction), each proces-
sor core uses a write buffer (as shown in Figure 1), which is a FIFO queue that stores
pending writes to memory. A processor core (from this point on referred to as a process)
performing a write to a memory location enqueues the write to the buffer and continues

word x=1;

void acquire()
{

1 while(1) {
2 lock;
3 if (x==1) {
4 x=0;
5 unlock;
6 return;

}
7 unlock;
8 while(x==0){};

}
}

void release()
{

1 x=1;
}

int tryacquire()
{

1 lock;
2 if (x==1) {
3 x=0;
4 unlock;
5 return 1;

}
6 unlock;
7 return 0;

}

Fig. 2. Spinlock implementation

computation without waiting for the write to be committed to memory. Pending writes
do not become visible to other processes until the buffer is flushed, which commits
(some or all) pending writes to memory.

The value of a memory location read by a process is the most recent in the proces-
sor’s local buffer. If there is no such value (e.g., initially or when all writes correspond-
ing to the location have been flushed), the value of the location is fetched from memory.
The use of local buffers allows a read by one process, occurring after a write by another,
to return an older value as if it occurred before the write.

In general, flushes are controlled by the CPU. However, a programmer may ex-
plicitly include a fence, or memory barrier, instruction in a program’s code to force a
flush to occur. Therefore, although TSO allows non-sequentially consistent executions,
it is used in many modern architectures on the basis that these can be prevented, where
necessary, by programmers using fence instructions.

A pair of lock and unlock commands in TSO allows a process to acquire sole access
to the memory. Both commands include a memory barrier which forces the store buffer
of that process to be flushed completely (via a sequence of atomic flushes).

2.1 Example - spinlock

Spinlock [3] is a locking mechanism designed to avoid operating system overhead as-
sociated with process scheduling and context switching. A typical implementation of
spinlock is shown in Fig. 2, where a global variable x represents the lock and is set
to 0 when the lock is held by a process, and 1 otherwise. A process trying to acquire
the lock x spins, i.e., waits in a loop and repeatedly checks the lock for availability. It
is particularly efficient when processes only spin for short periods of time and is often
used in operating system kernels.

The acquire operation only terminates if it successfully acquires the lock. It will
lock the global memory1 so that no other process can write to x. If, however, another

1 Locking the global memory using the TSO lock command should not be confused with
acquiring the lock of this case study by setting x to 0.

process has already acquired the lock (i.e., x==1) then it will unlock the global mem-
ory and spin, i.e., loop in the while-loop until it becomes free, before starting over.
Otherwise, it acquires the lock by setting x to 0.

The operation release releases the lock by setting x to 1. We assume that only a
process that has acquired the lock will call this operation. The operation tryacquire
differs from acquire in that it only makes one attempt to acquire the lock. If this is
successful it returns 1, otherwise it returns 0.

The lock and unlock commands act as memory barriers. Hence, writes to x by
the acquire and tryacquire operations are not delayed. For efficiency, however,
release does not have a memory barrier and so its write to x can be delayed until
a flush occurs. This leads to the possibility of a tryacquire operation of a process
q returning 0 after the lock has been released by another process p. For example, the
following concrete execution is possible, where we write (q,tryacquire(0)) to de-
note process q performing a tryacquire operation and returning 0, and flush(p)
to denote the CPU flushing a value from process p’s buffer:

〈(p,acquire), (p,release), (q,tryacquire(0)),flush(p)〉 (1)

Thus p performs an acquire, then a release and then q performs a tryacquire
that returns 0 even though it occurs immediately after the release. This is because
the flush(p), which sets the value of x in memory to 0 has not yet occurred.

At an abstract level, the operations are captured by the following Z specification,
which has parameterised operations Acquirep, Releasep and TryAcquirep, the parameter
p denoting the identifier of the process performing the operation.

AS
x : {0, 1}

Init
AS

x = 1

Acquirep

∆AS

x = 1
x′ = 0

Releasep

∆AS

x = 0
x′ = 1

TryAcquirep

∆AS
out! : {0, 1}

if x = 1
then x′ = 0 ∧ out! = 1
else x′ = x ∧ out! = 0

The question is now: “Is the behaviour of spinlock under TSO comparable to this ab-
stract specification?”. We answer this question in the subsequent sections by proving
that spinlock under TSO is actually linearizable with respect to the specification.

3 Linearizability on TSO

Linearizability [12] is the standard notion of correctness for concurrent algorithms, and
allows one to compare a fine-grained implementation against its abstract specification.

The comparison is made at the level of invocations and returns of operations as the
fine-grained nature of some operations means that an operation’s steps might be in-
terleaved with steps of another operation executed by another process. For example,
process p might start a release, but then process q invokes its tryacquire before
p’s release has returned. The key idea of linearizability is as follows.

Linearizability provides the illusion that each operation applied by concurrent
processes takes effect instantaneously at some point between its invocation and
its return. This point is known as the linearization point.

In other words, if two operations overlap, then they may take effect in any order from
an abstract perspective, but otherwise they must take effect in program order.

The original definition in [12] (for a formalisation, see [7]) is based on the concept
of possibilities, however there are now a number of different proof strategies which have
been applied to a number of algorithms. These range from using shape analysis [2, 5]
and separation logic [5] to rely-guarantee reasoning [18] and refinement-based simula-
tion methods [10, 14, 7]. The simulation-based methods, which we will adapt for use in
this paper, show that an abstraction (or simulation or refinement) relation exists between
the abstract specification of the data structure and its concurrent implementation.

We will return to the proof method in Section 4. In this section we address the ques-
tion: Is spinlock linearizable on TSO? The definition of linearizability is architecture-
neutral, so we should be able to answer the question on a TSO memory model. However,
the presence of local buffers, and operations under control of the CPU (i.e., the flushes)
complicate the answer.

Consider the execution of spinlock in (1). Obviously, such an execution has no cor-
responding behaviour at the abstract level, since looking at the Z specification, the value
of x after Release is 1, thus TryAcquire returns 1. Hence standard approaches to proving
linearizability will fail. There are three alternative approaches to tackling the issue of
linearizability on TSO: [4], [11] and [17]. Of these, both [4] and[11] involve changes
to the natural abstract specification. For example, in [4] the abstract specification is de-
scribed with local buffers and flushes. Linearizability, as they define it, (which they call
TSO-to-TSO linearizability) then compares two specifications both with local buffers,
but this seems to miss the essential nature of the abstract to concrete transformation.
On the other hand in [11], Gotsman et al. weaken the abstract specification to allow
tryacquire to nondeterministically either fail or succeed when x is 1, i.e.,

TryAcquire2p

∆AS
out! : {0, 1}

if x = 1
then (x′ = 0 ∧ out! = 1) ∨ (x′ = x ∧ out! = 0)
else x′ = x ∧ out! = 0

The nondeterminism in the abstract operation models that introduced to the concrete
system by hardware-controlled flushes. Since the abstract specification does not have
local buffers in it, the authors call it TSO-to-SC linearizability. Again, changing the

abstract specification seems to weaken what one has achieved with the proof. The ap-
proach closest to ours is [17] which uses the same principles that we use here, but uses
model checking to test linearizability. Our aim is to formalise this intuition and provide
a refinement-based proof method for it.

Although at first sight it would seem that linearizability simply fails without chang-
ing the abstract specification, one needs to take into account the role of the local buffers.
Since the flush of a process’s buffer is sometimes the point that the effect of an oper-
ation’s changes to memory become globally visible, the flush can be viewed as being
the final part of the operation. For example, the flush of a variable, such as x, after an
operation, such as release, can be taken as the return of that operation. Under this
interpretation, the release operation extends from its invocation to the flush which
writes its change to x to the global memory. The key point is the following principle:

The return point of an operation on a TSO architecture is not necessarily the
point where the operation ceases execution, but can be any point up to the last
flush of the variables written by that operation.

Formalisation: We now formalise this intuition. In the standard definition of lin-
earizability, histories are sequences of events which can be invocations or returns of
operations from a set I and performed by a particular process from a set P. Invocations
have an associated input from domain In, and returns an output from domain Out (we
assume both domains contain an element ⊥ denoting no input or output, respectively).
On TSO, we generalise events so that they can also be flushes which are performed by
the CPU and operate on a particular process’s buffer:

Event ::= inv〈〈P× I × In〉〉 | ret〈〈P× I × Out〉〉 | flush〈〈P〉〉
History == seq Event

The TSO history corresponding to the execution (1) is2:

〈inv(p,acquire,), ret(p,acquire,), inv(p,release,), ret(p,release,)

inv(q,tryaquire,), ret(q,tryacquire, 0), flush(p)〉 (2)

To prove linearizability on a TSO architecture we transform this history to one
where the flush on p is the return of the release, since in TSO it is the flush that
makes the effect visible. The original return of the release in the history above is
removed. That is, the above history is transformed to:

〈inv(p,acquire,), ret(p,acquire,), inv(p,release,),

inv(q,tryaquire,), ret(q,tryacquire, 0), ret(p,release),)〉 (3)

In general, we need to transform a history h consisting of invocations, returns and
flushes to a history Trans(h) which replaces flushes by the appropriate returns whilst
removing all other flushes and returns that are no longer required. The transformation
Trans(h) is formalised below. This new history consists just of invocations and returns,
the latter indicating when the effect of an operation is made visible globally.

2 We omit ⊥ in the events of this and subsequent histories in this section, e.g., inv(p,acquire,)
denotes inv(p,acquire,⊥).

3.1 Defining the transformation

We first present a number of preliminary definitions that enable the transformation to
be carried out deterministically. Let mp(p,m, n, h) denote matching pairs of invocations
and returns by process p in history h as in [7]. Its definition requires that h(m) and h(n)
are executed by the same process p and are an invocation and return event, respectively,
of the same operation. Additionally, it requires that for all k between m and n, h(k) is
not an invocation or return event of p. That is, given inv?(e) and ret?(e) denote that the
event e is an invocation and return event, respectively, e.π denotes the process executing
e, and e.i the operation being executed, mp(p,m, n, h) holds iff

0 < m < n ≤ #h ∧
inv?(h(m)) ∧ ret?(h(n)) ∧ h(m).π = h(n).π = p ∧ h(m).i = h(n).i ∧
∀ k • m < k < n⇒ h(k).π 6= p

Let bs(p,m, h) denote the size of process p’s buffer at point m in the history h, and
nf (p,m, n, h) denote the number of flushes of process p’s buffer between points m and
n in h. The number of new items in process p’s buffer between two points m and n in a
history h is given by

bi(p,m, n, h) =̂ bs(p, n, h) + nf (p,m, n, h)− bs(p,m, h)

We use the function mpf below to find indices m, n and l in h such that (m, n) is a
matching pair and l corresponds to the point to which the return of the matching pair
must be moved.

mpf (p,m, n, l, h) =̂ mp(p,m, n, h) ∧ n ≤ l ∧
if bi(p,m, n, h) = 0 then l = n
else h(l) = flush(p) ∧

nf (p,m, l, h) = bs(p,m, h) + bi(p, n,m, h)

The first part of the if states that l = n if no items are put on the buffer by the
operation invoked at point m. The second states that l corresponds to a flush of p’s
buffer and the number of flushes between m and l is precisely the number required to
flush the contents of the buffer at m and any items added to the buffer between m and n.

To transform a history h, we do the following two steps.

Step 1. Given mpf (p,m, n, l, h) holds for some p:
if n 6= l
then h(l) becomes h(n) and h(n) becomes a dummy event δ
else we do nothing because the return should not be moved.

This results in a history h′ ∈ seq(Event ∪ {δ}), where all returns have been moved to
the return positions of their corresponding flushes.

Step 2. The second step is straightforward: all δ and flushes are removed.
The algorithm described above is deterministic; we let Trans(h) be the function

that returns a transformed history by applying the algorithm to history h. For example,
history (2) is transformed to the following via Step 1

〈inv(p,acquire,), ret(p,acquire,), inv(p,release,), δ,
inv(q,tryaquire,), ret(q,tryacquire, 0), ret(p,release,)〉

which in turn is transformed to history (3) by Step 2.

3.2 TSO linearizability

A formal definition of linearizability is given in [7]. We adapt this definition as follows.
An incomplete history h is extended with a sequence h0 of return and flush events,
then matched to a sequential history hs by removing the remaining pending invocations
using a function complete, i.e., complete(h) is a subhistory of h formed by removing
all pending invocations from h. We say a history h is legal iff for each n : 1..#h such
that ret?(h(n)), there exists an earlier m : 1..n− 1 such that mp(p,m, n, h), and for each
n : 1..#h such that h(n) = flush(p), bs(p, n, h) > 0.

A key part of adapting the standard definition to TSO is what we mean by a match-
ing pair of invocations and returns. The formal definition of the function mp in [7]
(defined above) requires that for all k between m and n, h(k) is not an invocation or
return event of p. This is not true for our transformed histories on TSO since operations
by the same process may overlap. Therefore, we will use a new version of matching
pairs mpTSO defined as follows.

mpTSO(p,m, n, h) iff mpf (p, x, z, y, h)
where m = x−

∑
p:P

nf (p, 1, x, h) and n = y−
∑
p:P

nf (p, 1, y, h) and x < z ≤ y

Given RF is the set of all return and flush events, we define TSO linearizability as
follows.

Definition 1 (TSO linearizability). A history h : History is TSO linearizable with
respect to some sequential history hs iff lin(h, hs) holds, where

lin(h, hs) =̂ ∃ h0 : seq RF • legal(ha h0) ∧ linrel(Trans(complete(ha h0)), hs)

where

linrel(h, hs) =̂ ∃ f : 1..#h�→ 1..#hs • (∀ n : 1..#h • h(n) = hs(f (n)))∧
(∀ p : P; m, n : 1..#h • m < n ∧ mpTSO(p,m, n, h)⇒ f (n) = f (m) + 1) ∧
(∀ p, q : P; m, n,m′, n′ : 1..#h •

n < m′ ∧ mpTSO(p,m, n, h) ∧ mpTSO(q,m′, n′, h)⇒ f (n) < f (m′)) 2

That is, operations in hs do not overlap (each invocation is followed immediately by its
matching return) and the order of non-overlapping operations in h is preserved in hs.

Note that history (2) is a complete legal history, and that Trans applied to this his-
tory gives us history (3). Since release and tryacquire now overlap in the trans-
formed history (3), a potential linearization in terms of the abstract specification is

〈inv(p,Acquire,), ret(p,Acquire,), inv(q,TryAcquire,), ret(q,TryAcquire, 0),
inv(p,Release,), ret(p,Release,)〉

Thus, spinlock is TSO linearizable with respect to the abstract specification.

4 A proof method for linearizability on TSO

We do not work directly with this definition of linearizability, but rather use a refinement-
based proof method for verifying linearizability as defined in [6–8, 14]. This approach
defines simulation rules that form a sound (and complete) proof method for verify-
ing linearizability. Different classes of algorithm use slightly different rules, where the
difference depends on how easy it is to identify the linearization points — in some algo-
rithms these can’t be identified directly, and depend on the behaviour of other processes
[8]. However, for the example in this paper we can use the simplest set of rules found
in [7] and described below.

General approach. The approach is based on proving a concrete specification that
has one operation for each line of code is a non-atomic refinement [9] of the abstract
specification capturing the code’s intent. Each allowable sequence of concrete steps
must simulate a sequence of abstract operations despite the interleaving of concrete
steps performed by different processes3.

Let P be the set of processes. Let our abstract and concrete specifications be given
as A = (AState,AInit, (AOPp,i)p∈P,i∈I) and C = (CState,CInit, (COPp,j)p∈P,j∈J) where
the sets I and J are used to index the abstract operations and concrete steps, respectively.
The function abs : J → I maps each concrete step to the abstract operation it (together
with other steps) implements. We assume the concrete state space CState is composed of
a global state GS (the shared memory) and the local state LS of one process (the program
counter, local variables and, on TSO, the local buffer). Following [7], linearizability is
then shown by:

1. Defining a status function that identifies the linearization points of operations.
Let STATUS ::= IDLE | IN〈〈In〉〉 | OUT〈〈Out〉〉 where In and Out are the domains
of inputs and outputs, respectively, as defined in Section 3. We define a function
status : GS× LS→ STATUS such that the following hold.
If a process has no pending operation then the status of the process is IDLE. If it is
executing an operation and has not passed the linearization point, then the status of
the process is IN(in) where in is the input of the operation, if any, and⊥ otherwise.
If it is executing an operation and has passed the linearization point, the status is
OUT(out) where out is the output of the operation if any, and ⊥ otherwise.

2. Showing individual concrete runs of a process correctly implement the abstract
operations using non-atomic refinement.
We find a forward simulation R relating the global state and the local state of a
process to the abstract state, i.e., R ⊆ AState× (GS × LS), and a set of simulation
rules which additionally update the status function appropriately as shown in the
example in Fig. 3. In this example, the input in of an invocation step INVOP(in)
is used to establish a status of IN(in). After the invocation an internal operation
implements skip and leave the status unchanged. Then the linearization point that
implements AOp(in, out) is passed and the status changes to OUT(out). Finally the
status is used to compute the output of a return step RETOP(out) and the status
returns to IDLE.

3 We use the term steps in this section to distinguish the concrete operations of the specification
from the operations of the code (such as acquire in our example).

status=IDLE status=IN(in)

COp COp RETOP(out)

status=OUT(out)

COpINVOP(in)

status=IDLE

AOp(in,out)

Fig. 3. The status information for non-atomic refinement

There are 5 different simulation rules depending on whether the particular concrete
step being considered is an invocation step, a return step, or an internal step before
linearization, after linearization or at the linearization point. As an example, the
simulation rule for a concrete invocation step is4:

∀ as : AState; gs, gs′ : GS; ls, ls′ : LS; in : In •
R(as, gs, ls) ∧ status(gs, ls) = IDLE ∧ INVOPj(in, gs, ls, gs′, ls′)
⇒ (status(gs′, ls′) = IN(in) ∧ R(as, gs′, ls′))
∨ (∃ as′ : AState; out : Out •

AOPabs(j)(in, as, as′, out) ∧ status(gs′, ls′) = OUT(out) ∧
R(as′, gs′, ls′))

where the first and second disjuncts in the consequent capture invocations that do
and do not correspond to a linearization, respectively.

3. Showing interference freedom, i.e., that other processes running in parallel do not
destroy this non-atomic refinement.
To ensure steps of other processes preserve the local simulation relation R, we de-
fine R(as, gs, ls) =̂ ABS(as, gs) ∧ INV(gs, ls) where ABS(as, gs) captures how the
abstract state is represented by the global state, and INV(gs, ls) provides further
constraints between the global and local variables. ABS(as, gs) is preserved by all
steps of all processes. Hence it is sufficient to prove that INV(gs, ls) is preserved
by other processes. The interference freedom condition is:

∀ as : AState; gs, gs′ : GS; ls, ls′, lsq : LS •
ABS(as, gs) ∧ INV(gs, ls) ∧ INV(gs, lsq) ∧ D(ls, lsq) ∧ COPj(gs, ls, gs′, ls′)
⇒ INV(gs′, lsq) ∧ D(ls′, lsq) ∧ status(gs′, lsq) = status(gs, lsq)

where a symmetric predicate D ⊆ LS × LS is used to constrain the relationship
between the local states of any two processes. This predicate must also be preserved
by the steps of all processes.

4. Showing the concrete initialisation satisfies the abstract initialisation.

∀ gs : GSInit • ∃ as : AInit •
ABS(as, gs) ∧ (∀ ls : LSInit • INV(gs, ls)) ∧ (∀ ls, lsq : LSInit • D(ls, lsq))

4 In this paper, we use R(x, y) and R(x, y, z) as shorthands for (x, y) ∈ R and (x, (y, z)) ∈ R,
respectively, for all relations R.

where GSInit and LSInit are the initial states of the global and local state spaces,
respectively. 2

The status function captures the status of a single pending operation. Under TSO,
however, we may have several pending operations: that operation currently being exe-
cuted by the process, if any, and those that have completed apart from the flushing of
their writes to memory. In our extension to the above approach, we let status capture
the status of the operation which the process is currently executing. If there is no such
process, the status is IDLE. All other pending operations, i.e., those completed apart
from flushes, will necessarily be before their linearization points.

The other role of the status function is to carry the inputs of the operation until they
are needed at the linearization point where they, along with the operation’s outputs,
must match those of the associated abstract operation. To adapt the approach to TSO,
we need to be able to keep track of the inputs of completed, but pending, operations.
We also need to keep track of the abstract operation associated with each completed,
but pending, operation and the completed operation’s outputs (since the operation has
already completed, its outputs will have already occurred).

To do this we add four auxiliary variables to the local concrete state space LS. The
first of these lin : seq((I ∪ {null}) × In × Out) records, for each buffer entry, the
abstract operation for which its flush is a linearization point (null indicates its flush is
not a linearization point), the abstract operation’s input, and the abstract operation’s
output. When a flush occurs the values corresponding to the flushed entry are read into
the other three auxiliary variables op : I ∪ {null}, in : In and out : Out.

We also need to introduce two new simulation rules. The first corresponds to a
process with status IN returning to IDLE without linearizing. This would be the case
where the operation is to be linearized by a flush which is yet to occur.

Return without Lin.
∀ as : AState; gs, gs′ : GS; ls, ls′ : LS; in : In •

R(as, gs, ls) ∧ status(gs, ls) = IN(in) ∧ RETOPj(gs, ls, gs′, ls′, out)⇒
status(gs′, ls′) = IDLE ∧ R(as, gs′, ls′)

The second corresponds to the occurrence of a flush. A flush acts as either an internal
step or a linearizing step as shown in cases (a) and (b) of Fig. 4, respectively. Case (a)
can occur when the process has any status and its status is not changed. When the status
is IN or OUT the internal step may be of the pending operations, and for any status it
may be of an operation which has previously completed.

Case (b) also occurs from any status and when the status is IDLE or OUT it remains
unchanged. Such a flush in these statuses corresponds to the linearization of an opera-
tion which has already completed. When the status is IN the flush may also be lineariz-
ing an operation which has already completed, in which case the status is unchanged,
or it may be linearizing the pending operation, in which case the status becomes OUT .

The rule refers to the post-states of the auxiliary variables op, in and out via ls′.op,
ls′.in and ls′.out, respectively.

(a)

Flush

StatusA StatusA

Flush

StatusB StatusC

AOp(in,out)(b)

Fig. 4. Simulation rules for flush

Flush.
∀ as : AState; gs, gs′ : GS; ls, ls′ : LS; in : In •

R(as, gs, ls) ∧ Flush(gs, ls, gs′, ls′)⇒
(ls′.op = null⇒ R(as, gs′, ls′) ∧ status(gs′, ls′) = status(gs, ls)) ∧
(ls′.op 6= null⇒

(∃ as′ : AState • AOPls′.op(ls′.in, as, as′, ls′.out) ∧ R(as′, gs′, ls′)) ∧
(status(gs′, ls′) = status(gs, ls)
∨ (status(gs, ls) = IN(ls′.in) ∧ status(gs′, ls′) = OUT(ls′.out)))

5 Spinlock is linearizable on TSO

To show that spinlock is linearizable using the approach described in Section 4, we
produce a concrete specification of the algorithm. Given P is the set of all process iden-
tifiers, the global state of the concrete specification includes the value of the shared
variable x which is initially 1, and a variable lock denoting which process, if any, cur-
rently has the global memory locked.

GS
x : {0, 1}
lock : PP

#lock ≤ 1

GSInit
GS

x = 1
lock = ∅

The local state of a given process is specified in terms of its process identifier from
P, a program counter indicating which operation (i.e., line of code) can next be per-
formed, and the process’s buffer.

Let PC ::= 1 | 2 | a1 | . . . | a8 | ta1 | . . . | ta7 | r1 where the value 1 denotes the
process is idle when it has not acquired the spinlock, the value 2 denotes the process is
idle when it has acquired the spinlock, the values ai, for i ∈ 1 . . 8, denote the process is
ready to perform the ith line of code of acquire, the values tai, for i ∈ 1 . . 7, denote
the process is ready to perform the ith line of code of tryacquire, and the value r1
denotes the process is ready to perform the first line of release.

LS0
id : P
pc : PC
buffer : seq{0, 1}

As detailed in Section 4, we add auxiliary variables to our local state to keep track of
information required at linearization points corresponding to a flush. Let I == {1, 2, 3}
be the indices of the abstract operations such that 1 denotes Acquire, 2 denotes Release
and 3 denotes TryAcquire. Let In == {⊥} be the set of input values of operations, and
Out == {0, 1,⊥} be the set of output values.

LS
LS0
op : I ∪ {null}
in : In
out : Out
lin : seq((I ∪ {null})× In× Out)

#lin = #buffer

LSInit
LS

pc = 1
buffer = 〈 〉

Given this specification, the lines of code are formalised as Z operations5. For ex-
ample, for the acquire operation we have an operation A0 corresponding to the invo-
cation of the operation, an operation A1 corresponding to the line of code while(1),
and an operation A2 corresponding to the line of code lock.

A0
ΞGS
∆LS

pc = 1
pc′ = a1

A1
ΞGS
∆LS

pc = a1
pc′ = a2

A2
∆GS
∆LS

lock = ∅ ∧ pc = a2
lock′ = {id} ∧ pc′ = a3

To model the fact that A2 also results in all entries of the process’s buffer being
flushed, the operation A3 corresponding to the following line of code, x=1, is not en-
abled unless buffer = 〈 〉. It will become enabled after the required number of Flush
operations have occurred. These remove an entry from the buffer and update the aux-
iliary variables op, in and out according to the information in lin. This information is
added to lin when the buffer entries are added. For example, the operation A4, corre-
sponding to the line x=0, updates lin to indicate that the flush of this value will not be
a linearization point.

A3
ΞGS
∆LS

buffer = 〈 〉
pc = a3
if x = 1
then pc′ = a4
else pc′ = a7

Flush
∆GS
∆LS

lock = ∅ ∨ lock = {id}
buffer 6= 〈 〉
x′ = head buffer
buffer′ = tail buffer
head lin = (op′, in′, out′)
lin′ = tail lin

A4
ΞGS
∆LS

pc = a4
buffer′ = buffer a 〈0〉
pc′ = a5
lin′ = lina 〈(null,⊥,⊥)〉

5 To simplify the presentation we adopt the convention that the values of variables that are not
explicitly changed by an operation remain unchanged.

The other concrete operations are modelled similarly. The operations corresponding
to the unlock statements are only enabled when buffer = 〈 〉modelling that the buffer
must be completely flushed before the memory is unlocked.

Such a concrete specification is well-formed only if any sequence of operations
corresponding to an abstract operation has exactly one linearization point. It is impor-
tant, therefore, when modelling operations which change lin (i.e., those that write to the
buffer) to ensure this. If a buffer entry is marked as a linearization point, the sequence
of operations in which it occurs should not be linearized by a change in status from IN
to OUT , nor by any other buffer entry.

Linearization can now be proved by defining the function status so that the lineariza-
tion points of Acquire and TryAcquire are the operations which release the memory lock,
and the linearization point of Release is the flush that commits the associated value of
1 to the global variable x.

The required relations ABS, INV and D are as follows.

ABS : AS↔ GS

∀ as : AS; gs : GS | ABS(as, gs) •
(gs.lock = ∅⇒ gs.x = as.x) ∧ (gs.lock 6= ∅ ∧ gs.x = 1⇒ as.x = 1)

INV : GS↔ LS

∀ gs : GS; ls : LS | INV(gs, ls) •
(ls.pc = {1, a1, a2, a3, ta1, ta2} ∧ ls.buffer 6= 〈 〉 ⇒ gs.x = 0) ∧
(ls.pc ∈ {a4, ta3} ⇒ gs.x = 1) ∧
(ls.pc ∈ {a5, ta4} ∧ ls.buffer = 〈 〉 ⇒ gs.x = 0) ∧
(ls.pc ∈ {a5, ta4} ∧ ls.buffer 6= 〈 〉 ⇒

gs.x = 1 ∧ ls.buffer = 〈0〉 ∧ (head ls.lin).1 = null) ∧
(ls.pc ∈ {2, a6, ta3, ta6, r1} ⇒ gs.x = 0) ∧
(ls.pc 6∈ {a6, ta6} ∧ ls.buffer 6= 〈 〉 ⇒

ls.buffer = 〈1〉 ∧ (head ls.lin).1 = 2) ∧
(ls.pc ∈ {2, a4, a6, a7, a8, ta3, ta5, ta6, ta7, r1} ⇒ ls.buffer = 〈 〉) ∧
(ls.pc ∈ {a3, a4, ta2, ta3} ⇒ gs.lock = {ls.id}) ∧
(gs.x = 1 ∧ ls.buffer 6= 〈 〉 ⇒ gs.lock = {ls.id})

D : LS↔ LS

∀ ls, lsq : LS | D(ls, lsq) •
ls.buffer 6= 〈 〉 ⇒ lsq.buffer = 〈 〉 ∧
lsq.buffer 6= 〈 〉 ⇒ ls.buffer = 〈 〉 ∧
ls.pc ∈ {2, a4, a6, ta3, ta5, r1} ⇒ ls.buffer = lsq.buffer = 〈 〉 ∧
lsq.pc ∈ {2, a4, a6, ta3, ta5, r1} ⇒ ls.buffer = lsq.buffer = 〈 〉 ∧
ls.pc ∈ {a5, ta4} ⇒ lsq.buffer = 〈 〉 ∧
lsq.pc ∈ {a5, ta4} ⇒ ls.buffer = 〈 〉

For example, consider a Flush operation occurring when pc = a5. For the op-
eration to occur, buffer 6= 〈 〉. Hence, by INV(gs, ls), gs.x = 1, ls.buffer = 〈0〉,
(head ls.lin).1 = null and gs.lock = {ls.id}.

Consider the Flush rule of Section 4. Since ls′.op = (head ls.lin).1 = null and
status(gs, ls) = IN(⊥), this will hold if both ABS(as, gs′) and INV(gs′, ls′) hold and
status(gs′, ls′) = IN(⊥). The latter follows since the operation does not change ls.pc.
ABS(as, gs′) also holds since the operation does not change gs.lock (i.e., gs′.lock 6= ∅)
and sets gs′.x = 0. INV(gs′, ls′) holds since in addition to setting gs′.x = 0 the Flush
operation sets ls′.buffer = tail ls.buffer = 〈 〉.

We also need to prove non-interference for this operation. Let ls denote the state
of the process on whose buffer the flush is performed. Since ls.buffer 6= 〈 〉, when
D(ls, lsq) holds for all lsq 6= ls, all other process buffers are empty. Since the other
process’s buffers are not changed by the operation, DS(ls′, lsq) holds. Although the
operation changes the value of the global variable gs.x to 0, INV(gs′, lsq) will remain
true since it can only be affected by this change when lsq.pc ∈ {a4, ta3, a5, ta4} and in
each of these cases ls.buffer would be equal to 〈 〉 by D(ls, lsq), i.e., the Flush operation
would not be enabled.

Since similar proofs can be carried out for each concrete operation, and the initial-
isation condition holds (since as.x = gs.x = 1 implies ABS(as, gs), ls.pc = 1 and
ls.buffer = 〈 〉 implies INV(gs, ls), and ls.buffer = lsq.buffer = 〈 〉 implies D(ls, lsq)),
spinlock is linearizable on TSO.

6 Conclusions

This paper has presented a definition and simulation-based proof method for lineariz-
ability on the TSO memory model. The key to our definition is the treatment of flushes
of local buffer entries as part of the operation which made the entries. This enables a
proof method which, unlike existing methods, can be used to show implementations
of algorithms are linearizable with respect to their natural abstract specifications. This
work has applied state-based methods to program verification, and is part of a larger ef-
fort on the verification of linearizability on sequentially consistent architectures as well
as weaker memory models. This larger effort mechanises the proofs of linearizability
by integrating the state-based reasoning into the KIV theorem prover, see [6–8], and in
[14] we prove (and mechanise the proof) that our approach is complete, in that all lin-
earizable algorithms can be verified by such simulation-based methods. Given we are
using the same simulation-based approach, mechanisation and integration into KIV of
the theory in this paper will be relatively straightforward.

One interesting consequence of our approach is that operations on a single pro-
cess may overlap and hence be reordered under linearizability. This is in contrast to
earlier work on sequentially consistent architectures where linearizability implies the
additional correctness criterion of sequential consistency [13], i.e., that operations on a
single process occur in the order that they are called. Sequential consistency will only
hold on TSO when, in addition to linearizability, memory barriers are included in all
operations which (a) do not write to memory, but (b) occur in a process with other
operations which do write to memory. This can be checked by inspection of the code.

Investigating alternative definitions of linearizability on TSO which maintain se-
quential consistency is an area of future work. Other areas of future work include the
reducing the effort needed to apply the proof method. For example, the use of a coarse-

grained abstraction as an intermediate layer between the concrete and abstract specifi-
cations, and a means to automatically generate the required invariants.

References
1. J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F.Z. Nardelli. The

Semantics of Power and ARM Multiprocessor Machine Code. In L. Petersen and M.M.T.
Chakravarty, editors, DAMP ’09, pages 13–24. ACM, 2008.

2. D. Amit, N. Rinetzky, T.W. Reps, M. Sagiv, and E. Yahav. Comparison under abstraction for
verifying linearizability. In W. Damm and H. Hermanns, editors, CAV 2007, volume 4590 of
LNCS, pages 477–490. Springer, 2007.

3. D. Bovet and M. Cesati. Understanding the Linux Kernel. OReilly, 3rd edition, 2005.
4. S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang. Concurrent library correctness

on the TSO memory model. In H. Seidl, editor, ESOP 2012, volume 7211 of LNCS, pages
87–107. Springer, 2012.

5. C. Calcagno, M. Parkinson, and V. Vafeiadis. Modular safety checking for fine-grained
concurrency. In H.R. Nielson and G. Filé, editors, SAS 2007, volume 4634 of LNCS, pages
233–238. Springer, 2007.

6. J. Derrick, G. Schellhorn, and H. Wehrheim. Proving linearizability via non-atomic refine-
ment. In J. Davies and J. Gibbons, editors, IFM 2007, volume 4591 of LNCS, pages 195–214.
Springer, 2007.

7. J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically verified proof obligations for
linearizability. ACM Trans. Program. Lang. Syst., 33(1):4, 2011.

8. J. Derrick, G. Schellhorn, and H. Wehrheim. Verifying linearisabilty with potential lineari-
sation points. In M. Butler and W. Schulte, editors, FM 2011, volume 6664 of LNCS, pages
323–337. Springer, 2011.

9. J. Derrick and H. Wehrheim. Non-atomic refinement in Z and CSP. In ZB2005, LNCS.
Springer, 2005.

10. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verification of a practical lock-
free queue algorithm. In D. de Frutos-Escrig and M. Nunez, editors, FORTE 2004, volume
3235 of LNCS, pages 97–114. Springer, 2004.

11. A. Gotsman, M. Musuvathi, and H. Yang. Show no weakness: Sequentially consistent spec-
ifications of TSO libraries. In M. Aguilera, editor, DISC 2012, volume 7611 of LNCS, pages
31–45. Springer, 2012.

12. M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

13. L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Computers, 28(9):690–691, 1979.

14. G. Schellhorn, H. Wehrheim, and J. Derrick. How to prove algorithms linearisable. In
P. Madhusudan and S.A. Seshia, editors, CAV 2012, volume 7358 of LNCS, pages 243–259.
Springer, 2012.

15. P. Sewell, S. Sarkar, S. Owens, F.Z. Nardelli, and M.O. Myreen. x86-TSO: a rigorous and
usable programmer’s model for x86 multiprocessors. Commun. ACM, 53(7):89–97, 2010.

16. D.J. Sorin, M.D. Hill, and D.A. Wood. A Primer on Memory Consistency and Cache Coher-
ence. Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers, 2011.

17. O. Travkin, A. Mütze, and H. Wehrheim. SPIN as a linearizability checker under weak
memory models. In V. Bertacco and A. Legay, editors, HVC’13, volume 8244 of LNCS,
pages 311–326. Springer, 2013.

18. V. Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of Cam-
bridge, 2007.

