3 research outputs found

    On computational interpretations of the modal logic S4. I. Cut elimination

    Get PDF
    A language of constructions for minimal logic is the λ\lambda-calculus, where cut-elimination is encoded as β\beta-reduction. We examine corresponding languages for the minimal version of the modal logic S4, with notions of reduction that encodes cut-elimination for the corresponding sequent system. It turns out that a natural interpretation of the latter constructions is a λ\lambda-calculus extended by an idealized version of Lisp\u27s \verb/eval/ and \verb/quote/ constructs. In this first part, we analyze how cut-elimination works in the standard sequent system for minimal S4, and where problems arise. Bierman and De Paiva\u27s proposal is a natural language of constructions for this logic, but their calculus lacks a few rules that are essential to eliminate all cuts. The λS4{\lambda_{\rm S4}}-calculus, namelyBierman and De Paiva\u27s proposal extended with all needed rules, is confluent. There is a polynomial-time algorithm to compute principal typings of given terms, or answer that the given terms are not typable. The typed λS4{\lambda_{\rm S4}}-calculus terminates, and normal forms are exactly constructions for cut-free proofs. Finally, modulo some notion \sqeq of equivalence, there is a natural Curry-Howard style isomorphism between typed λS4{\lambda_{\rm S4}}-terms and natural deduction proofs in minimal S4. However, the λS4{\lambda_{\rm S4}}-calculus has a non-operational flavor, in that the extra rules include explicit garbage collection, contraction and exchange rules. We shall propose another language of constructions to repair this in Part II

    Subtree replacement systems

    Get PDF
    Theory and computer applications of subtree replacement system

    On the Formalisation of the Metatheory of the Lambda Calculus and Languages with Binders

    Get PDF
    Este trabajo trata sobre el razonamiento formal veri cado por computadora involucrando lenguajes con operadores de ligadura. Comenzamos presentando el Cálculo Lambda, para el cual utilizamos la sintaxis histórica, esto es, sintaxis de primer orden con sólo un tipo de nombres para las variables ligadas y libres. Primeramente trabajamos con términos concretos, utilizando la operación de sustitución múltiple de nida por Stoughton como la operación fundamental sobre la cual se de nen las conversiones alfa y beta. Utilizando esta sintaxis desarrollamos los principales resultados metateóricos del cálculo: los lemas de sustitución, el teorema de Church-Rosser y el teorema de preservación de tipo (Subject Reduction) para el sistema de asignación de tipos simples. En una segunda formalización reproducimos los mismos resultados, esta vez basando la conversion alfa sobre una operación más sencilla, que es la de permutación de nombres. Utilizando este mecanismo, derivamos principios de inducción y recursión que permiten trabajar identificando términos alfa equivalentes, de modo tal de reproducir la llamada convención de variables de Barendregt. De este modo, podemos imitar las demostraciones al estilo lápiz y papel dentro del riguroso entorno formal de un asistente de demostración. Como una generalización de este último enfoque, concluimos utilizando técnicas de programación genérica para definir una base para razonar sobre estructuras genéricas con operadores de ligadura. Definimos un universo de tipos de datos regulares con información de variables y operadores de ligadura, y sobre éstos definimos operadores genéricos de formación, eliminación e inducción. También introducimos una relación de alfa equivalencia basada en la operación de permutación y derivamos un principio de iteración/inducción que captura la convención de variables anteriormente mencionada. A modo de ejemplo, mostramos cómo definir el Cálculo Lambda y el sistema F en nuestro universo, ilustrando no sólo la reutilización de las pruebas genéricas, sino también cuán sencillo es el desarrollo de nuevas pruebas en estos casos. Todas las formalizaciones de esta tesis fueron realizadas en Teoría Constructiva de Tipos y verificadas utilizando el asistente de pruebas AgdaThis work is about formal, machine-checked reasoning on languages with name binders. We start by considering the ʎ-calculus using the historical ( rst order) syntax with only one sort of names for both bound and free variables. We rst work on the concrete terms taking Stoughton's multiple substitution operation as the fundamental operation upon which the ά and ß-conversion are de ned. Using this syntax we reach well-known meta-theoretical results, namely the Substitution lemmas, the Church-Rosser theorem and the Subject Reduction theorem for the system of assignment of simple types. In a second formalisation we reproduce the same results, this time using an approach in which -conversion is de ned using the simpler operation of name permutation. Using this we derive induction and recursion principles that allow us to work by identifying terms up to -conversion and to reproduce the so-called Barendregt's variable convention [4]. Thus, we are able to mimic pencil and paper proofs inside the rigorous formal setting of a proof assistant. As a generalisation of the latter, we conclude by using generic programming techniques to de ne a framework for reasoning over generic structures with binders. We de ne a universe of regular datatypes with variables and binders information, and over these we de ne generic formation, elimination, and induction operations. We also introduce an ά equivalence relation based on the swapping operation, and are able to derive an -iteration/induction principle that captures Barendregt's variable convention. As an example, we show how to de ne the ʎ calculus and System F in our universe, and thereby we are able to illustrate not only the reuse of the generic proofs but also how simple the development of new proofs becomes in these instances. All formalisations in this thesis have been made in Constructive Type Theory and completely checked using the Agda proof assistan
    corecore