
On Computational Interpretations of the Modal Logic S4

I. Cut Elimination

Jean Goubault-Larrecq

Institut f�ur Logik, Komplexit�at und Deduktionssysteme

Universit�at Karlsruhe, Am Fasanengarten 5, D-76128 Karlsruhe�y

Jean.Goubault@pauillac.inria.fr, Jean.Goubault@ira.uka.de

August 29, 1996

Abstract

A language of constructions for minimal logic is the �-calculus, where cut-elimination is encoded as

�-reduction. We examine corresponding languages for the minimal version of the modal logic S4, with
notions of reduction that encodes cut-elimination for the corresponding sequent system. It turns out that

a natural interpretation of the latter constructions is a �-calculus extended by an idealized version of

Lisp's eval and quote constructs.
In this �rst part, we analyze how cut-elimination works in the standard sequent system for minimal

S4, and where problems arise. Bierman and De Paiva's proposal is a natural language of constructions

for this logic, but their calculus lacks a few rules that are essential to eliminate all cuts. The �S4-
calculus, namely Bierman and De Paiva's proposal extended with all needed rules, is conuent. There

is a polynomial-time algorithm to compute principal typings of given terms, or answer that the given

terms are not typable. The typed �S4-calculus terminates, and normal forms are exactly constructions
for cut-free proofs. Finally, modulo some notion � of equivalence, there is a natural Curry-Howard style

isomorphism between typed �S4-terms and natural deduction proofs in minimal S4.

However, the �S4-calculus has a non-operational avor, in that the extra rules include explicit garbage
collection, contraction and exchange rules. We shall propose another language of constructions to repair

this in Part II.

1 General Introduction

This paper presents an answer to two dual questions. The �rst is: what language do we need to get a proofs-

as-programs, formulas-as-types correspondence with the modal logic S4? As already noted by Davies and

Pfenning [DP95], the answer is a kind of �-calculus augmented with polished versions of Lisp's eval and quote

primitives. Our initial motivation for answering this question was intellectual curiosity: if intuitionistic and

minimal logics have it [How80], and now classical logic, too [Gri90], why not some modal logics? Moreover,

the current interest in linear logic, and the fact that the rules of sequent systems for linear logic look like

those for S4 a lot, have recently stimulated some researchers [BdP95] into exploring functional interpretations

for S4, in the hope of understanding linear logic better.

The second question is: what kind of type system can we impose on Lisp's eval and quote primitives that

would make them usable in an ML-like, strongly typed and polymorphic functional language? Or alternatively,

how can we make type-safe versions of these primitives in a way that would be most expressive? We show

that a good answer is given by augmenting ML's type system, which is basically intuitionistic logic, to the

intuitionistic version of the logic S4.

�Research partially funded by the HCM grant 7532.7-06 from the European Union. This work started in July 1994 while I

was at Bull, and was �nished while I was at the university of Karlsruhe.
yOn leave from Bull Corporate Research Center, rue Jean Jaur�es, F-78340 Les Clayes sous Bois.

1

The paper has four parts. Part I is a gentle introduction to the basic notions that we shall need later on:

what eval and quote are, what the modal logic S4 is, both from the semantic and the proof-theoretic point of

view, and what the notion of functional interpretation of proofs �a la Curry and Howard is. We then analyze

how cuts can be eliminated from sequent proofs, i.e. what the reduction rules for eval and quote should be

from purely logical principles. We show that a slight extension of Bierman and De Paiva's proposal [BdP95],

the �S4-calculus, is the right language to represent proofs and proof transformations. However, it is endowed

with very non-operational reduction rules, which make it a poor choice for a programming language. In fact,

it does not explain much how evaluation and quoting works.

Part II presents another solution, the �evQ-calculus. We show how we are naturally led to this language,

which is much more complicated than �S4 but also much more operational. In fact, it includes an in�nite

tower of interpreters, much as in Lisp, encoded by ��-calculi. This language reveals how evaluation and

quoting really work. Interestingly enough, such implementation details such as stacks arise naturally from

purely logical principles. The �evQ-calculus can also be seen as an extension of the �S4-calculus, in that

there is a translation from the latter to the former that preserves convertibility and reductibility.

In Part III, we prove that the typed �evQ-calculus is conuent, and that it is a conservative extension

of the �S4-calculus: two typed �S4-terms are interconvertible if and only if their translations to �evQ-terms

are, as well. The same properties hold with both calculi extended by �-like rules. However, the untyped

�evQ-calculus with �-like rules is not conuent; the status of the untyped �evQ-calculus without the �-like

rules is unknown, although we conjecture that it is conuent.

In Part IV, we examine the needed extensions to �S4 and �evQ that would make them suitable to interpret

proofs in the classical version of S4, where double negation elimination is allowed. As is now well-known,

integrating classical features allows one to represent control operators in the language of constructions, i.e.

exception handling. Building on Parigot's ��-calculus, we de�ne a classical version of �S4. However, there

seems to be no hope of making it conuent. On the other hand, the classical �evQ-calculus, an extension of

the �evQ-calculus with �-like rule based on Audebaud's ��env, seems to have no such problem.

1.1 Plan of Part I

The plan of this Part I is as follows. In Section 2, we recall what Lisp's eval and quote are, and argue that

they provide useful functionalities. We then proceed to study S4, both as a logic and then as a possible type

system for eval and quote. We give a short tour of the logic in Section 3, then examine the problems involved

when trying to eliminate cuts from proofs expressed in a sequent system for S4 in Section 4. Cut-elimination

is, by the Curry-Howard correspondence, the way we derive the fundamental execution mechanism of the

language. There are several pitfalls in doing this for S4, and we shall how these problems are solved in the

�S4-calculus. We then recapitulate related works in Section 6.

2 Eval and Quote in Lisp

2.1 Short Description

In Lisp, at least the very �rst implementations, programs and data structures were coded in memory in

the same format, by using so-called lists. Lisp Lists are either the empty list nil a.k.a. (), or cons-cells

(x : y), where x and y are lists or symbols. The list (x1 : (x2 : (: : : (xn : nil : : :))) is usually written

(x1 x2 : : : xn). This universal data structure is not only used to represent ordinary data structures, but

also programs: when x1 evaluates to a function, this list is the program that applies the value of x1 to

the values of x2, : : : , xn. Besides, the special lists of the form (lambda (x1 x2 : : : xn) t) evaluate to the

function that takes n arguments, binds them to the symbols x1, x2,: : : , xn (which act as program variables),

and returns the value of the program t in this environment. Because data and programs share a common

representation, Lisp is said to respect the programs=data equation.

This equation is somewhat exaggerated, as it is rather an isomorphism than a genuine equality. This

isomorphism is materialized by the pair of quasi-inverse functions eval and quote. The former takes a data

structure, and considers it as a program to execute (or equivalently, an expression to evaluate); that is, to

execute (eval x), Lisp �rst executes x to yield a data-structure, then eval views the latter as a program that

2

it executes again. On the other hand, quote takes an expression (representing a program) and turns it into

a data structure, i.e. a list, which can then be handled by regular list operations: (quote x), also abbreviated

as 0x, leaves x unexecuted, and immediately boxes it as a Lisp data structure, so that executing 0x yields x

itself, and (eval 0x) yields the result of the execution of x. (In short, (eval 0x) = x.)

Lisp also has a few other related constructs. The �rst is kwote, which takes an argument x, executes

it, and quotes the result. (Therefore, we also have (eval (kwote x)) = x.) This is useful to build quoted

data structures from other quoted data structures. Generalizing quote and kwote, we have the backquote

notation (called quasi-quote in Scheme, a modern variant of Lisp [CR91]): a backquote expression is an

expression of the form `x, where x is a list possibly containing comma expressions of the form ; y where y are

regular lists. (The comma is called unquote in Scheme.) Evaluating `x then constructs the data structure

x, where all comma expressions ; y are �rst replaced by the result of evaluating y. This way, `x is just the

same as 'x; `,x is the same as x, and for example `(a ,x) is the same as (list 'a x), where list is the

function that computes the list of values of its arguments. The function kwote is then operationally the same

as (lambda (x) `(quote ,x)), which turns an object into a quoted object.

2.2 What Good are Eval and Quote?

Let's examine the uses of eval and quote in Lisp code.

A typical use was to simulate higher-order computations, when Lisp did not have proper scoping rules yet

(before Scheme [CR91], essentially). The correct rule for evaluating a �-expression, as done in Scheme and

the languages of the ML family, is to build a closure, i.e. a functional value that embodies both the code of the

�-expression and the current environment of bindings between variables and values. This closure can then

be applied at a later time by reinstalling the stored environment and evaluating the body of the �-expression

in this environment.

In early Lisps like Lisp 1.5 [MCAE+62], this evaluation rule was not applied: the evaluation of lambda-

expressions was either illegal or just returned the lambda-expression itself. For example, consider the mapcar

function, which applies its �rst argument f (a function) to all elements x of the list l in second argument, and

returns the list of all f(x) in the same order. The only way to evaluate (mapcar (lambda (x) (+ x 1)) l)

was to write (mapcar '(lambda (x) (+ x 1)) l), that is, to pass not the function f , but the piece of syntax

that represented it. Then, these Lisp systems were doing an implicit call to eval on data in functional position,

so the code inside mapcar automatically evaluated these pieces of syntax when applied to an argument.

This kind of dirty trick was one of the main uses of eval and quote in early Lisps. Besides, the mere

presence of eval and quote as primitives enticed programmers into using this programming style; in turn,

this produced code that was unnecessarily unreadable and impossible to debug. These reasons are certainly

the main ones why the designers of the functional language Scheme [CR91], a cleaner version of Lisp, chose

to leave these operations out. It was then recognized that not having them was no obstacle to programming,

and later languages like ML dispensed with them altogether.

However, there are some cases where a quoting mechanism (building a syntactic representation of a pro-

gram) and an evaluation mechanism (executing the program given as syntax) are indispensable. The typical

case is that of a network of machines, where agents communicate with each other by sending out questions to

other agents and interpreting the answers they get. These agents communicate through protocols (X Window,

the Simple Network Management Protocol, sendmail are three examples of protocols). Protocols are basically

grammars for messages, i.e. they represent syntax of programming languages. These programming languages

are usually thought as being much simpler than general-purpose programming languages like Lisp or ML,

but it isn't necessarily so. The sendmail protocol, in particular, is a language based on rewrite rules, and

can simulate any Turing machine.

Communicating through a protocol means the following. The sender of a message �rst builds the message

using a few primitives (library functions, usually) that build up messages from basic information, and then

sends it. The receiver decodes the message, by doing a case analysis on all possible ways in which the message

was built, and loops: the receiver is an interpreter for the message it has received. While building a message

is quite similar to building a program in Lisp via backquote-expressions, decoding the message is analogous

to evaluting it. The only di�erence with eval and quote is that the language of messages (the protocol) does

not need to coincide with the programming language each party is programmed in.

3

Protocol interpreters are not hard to write usually, but take time. Moreover, protocols are usually

specialized, and in particular less expressive or less convenient than a general-purpose language like Lisp or

ML. A simple solution would then be to use Lisp itself as a protocol: building messages would be a matter of

using backquote-expressions, interpreting them would mean applying eval on them. This may be overgeneral

in some cases, but it solves the problem of extending the protocol trivially (just add new de�nitions to the

Lisp interpreter), it is easy to implement (just call eval), and in general provides some added comfort in

programming distributed agents.

For example, in the Magic Cap operating system (General Magic, Inc.), agents located on networked

appliances or computers are programmed in a special language named Telescript, and communicate by

sending Telescript scripts (programs) to each other. Although Telescript is not Lisp, messages really are

Telescript programs in some byte-code format, and are decoded by executing them on the receiving appliance.

This is a typical use of non-Lisp variants of eval and quote. (See [Rei94] for a description of Telescript, its

planned uses, and other projects in the same direction.)

To take another example, a variant of Lisp called Wool was chosen as implementation language for a

network management project at Bull, amongst other well-known languages like C++, because commands

could be issued to remote machines by just sending them a piece of Lisp code, that can then be interpreted

remotely by eval on the local agent running Wool. As the format of Lisp code does not change (a list,

printed as nested expressions delimited by parentheses and then transmitted as a sequence of characters),

these codes are always recognized by the receiving machine, whatever the version of the code.

The only problem is that, when we send a piece of code to call some function named f in the sending

machine's environment, we have no guarantee that the receiving machine will have a function named f as

well, and that it will execute as we expect it to. In general, security is a concern. Lisp was not designed

to enforce security in programming, but Telescript allows receiving machines to protect themselves against

ill-behaving incoming scripts, by setting a few limits on usable resources (cpu ticks, memory usage, and so

on), and the same can be done with Lisp (or Scheme [MIT95]). ML was designed to enforce some degree of

security through the use of a reasonably expressive type system; a type is a formula, or a speci�cation, and

a program of this type obeys the speci�cation. There are some security holes in the ML type system | for

example, recursion is allowed, so termination is not guaranteed | but it is balanced by the decidability of

type-checking. Trying to design a type system for eval and quote is, in our opinion, a laudable goal. We

can see this work as providing a logical basis for this endeavour.

3 The Logic S4

The logic notations we use are standard: ^ is conjunction, _ is disjunction,) is implication, ? is a special

constant denoting false; A, B, C, : : : are propositional variables, �, 	, : : : are propositional formulas.

We shall deal with various languages of terms. A term language is given by a set of operators with

speci�ed arities (nullary operators are called constants), and a set of binding constructs, like �. The terms

u, v, w, : : : in the language are the constants, the applications f(u1; : : : ; um) of m-ary operators f to a list

of m terms u1, : : : , um, or binding terms like �x � u, which bind the variable x in the term u. A substitution

� is any map from variables to terms. Applying a substitution � to a term u yields a new term u�, where

the substitution process renames bound variables to avoid variable capture [Bar84]. The composition ��0 of

two substitutions � and �0 is de�ned as the unique substitution such that (u�)�0 = u(��0) for every term u.

We shall often use rewrite systems. A rewrite system [DJ90] is a set R of rewrite rules of the form l ! r,

where l is a term called the left-hand side and t is a term called the right-hand side, with term meta-variables

u, v, w, : : : that are to be instantiated by arbitrary terms; such a rule is actually a scheme to denote all its

instances l� ! r�. We write u �! v or u
R
�!v when we wish to make clear which rewrite system we use, to

say that u contracts, or rewrites in exactly one step, to v; this means that v is obtained from u by replacing

a given occurrence of l by r, where l ! r is an instance of a rule in R. We write u �!� v or u
R
�!�v to say

that u rewrites in zero, one or more steps to v, and u �!+ v or u
R
�!+v to say that u rewrites in one or

more steps to v.

4

3.1 A Hilbert-Style System

We are interested in the modal logic S4. This is a propositional logic, with additional 2 and 3 operators:

if � is a formula, then 2� means \necessarily, �", or \in all possible futures, �"; and 3� means \possibly,

�", or \there is a future at which �". The interpretation in term of possible futures is what makes S4 more

speci�cally a temporal logic. The deduction rules of S4 are usually presented as a Hilbert system:

� Rules:

{ (MP) from � and �)	, infer 	;

{ (Nec) from �, infer 2�.

� Axioms:

{ All propositional tautologies; if we choose as basic set of connectives for propositional logic the set

f);?g, then it is enough to have:

(s) (�1)�2)�3)) (�1)�2)) (�1)�3);

(k) �1)�2)�3;

(c) ((�)?))?))�;

{ The modal axioms for S4:

(K) 2(�1)�2))2�1)2�2;

(T) 2�)�;

(4) 2�)22�.

where �, �1, �2, �3 range over all formulas. We can de�ne the other connectives as abbreviations: :� =

�)?, �1 _�2 = :�1)�2, �1 ^�2 = :(�1)�2)?), and 3� = :2:�.
This is classical S4. We could without doubt provide a functional interpretation for classical S4, but the

latter includes classical propositional logic, which has non-obvious functional interpretations by itself. We

shall therefore restrict ourselves to intuitionistic versions of S4. To achieve this goal, we don't consider axiom

(c) above, and get minimal S4. We cannot de�ne the other logical connectives in this system, so we have to

axiomatize them. In this paper, we won't care about _ or 3 (which is as hard to interpret functionally as

the existential quanti�er in �rst-order logic), and we won't care about ^ either. This leads us to not only an

intuitionistic but in fact a minimal version of S4.

This particular system of intuitionistic S4 with only connective) will simply be called S4 in the sequel.

Should we wish to the original logic, we would talk about classical S4.

3.2 A Functional Interpretation for S4

As in ordinary Hilbert-style presentations of intuitionistic logic, axioms (s) and (k) are interpreted as the

types of the two combinators S and K respectively, and rule (MP) is interpreted as typing the application

of one term to another. Then, we can view the SK calculus as being implemented through the following

reduction rules:

� Suvw �! uw(vw);

� Kuv �! u;

where u, v, w are terms, application is denoted by juxtaposition (i.e., uv means u applied to v) and application

is right-associative (so Suvw is really ((Su)v)w, uw(vw) is really (uw)(vw) and Kuv is really (Ku)v).

Typed terms are seen as constructions for a particular proof, (in short, term=proof), and the conclusion

of the proof is the type of the term (in short, type=proposition). This is the spirit of the Curry-Howard

functional interpretation for combinatory logic.

These reduction rules preserve the types, i.e. the theorems proved by a proof represented by Suvw are

also proved by the simpler proof uw(vw). However, it is not clear in which way reducing a term produces a

simpler term. It will be clearer on sequent systems (see Section 3.4).

5

It remains to interpret axioms (K), (T), (4) and rule (Nec). The basic idea of this work can be explained

as follows. If � is a type (a proposition), then 2� is a type of \boxes", containing an object of type �.

Axiom (K), now, can be seen as an application of (MP) inside boxes: if u has type 2(�1)�2) (u is a box

containing a function of type �1)�2), and v has type 2�1 (v is a box containing an argument of type �1),

then some term u ? v (where ? has axiom (K) as type, and is written in�x for convenience) has type 2�2.

That is, u ? v is a box that contains the application of u to v.

On the other hand, axiom (T) is interpreted as the type of an \unbox" operation ,, and rule (Nec)

as the typing rule for the converse operation `. We argue that , bears strong similarities to Lisp's eval

primitive, and ` looks a lot like Lisp's quote special form. Indeed, given a Lisp expression u, (quote u)

(often abbreviated 0u) is a (boxed) data structure that, when we apply eval on it, yields the value of u. This

data structure is built by list building operations, based on the cons couple-building primitive, analogous to

our ? operation. (But not quite the same, as Lisp does not represent applications uv as couples (u; v), but as

(u; (v; nil)); this is inessential.) This data structure can also contain boxed representations for �-expressions,

or functions, which we can recreate using combinators: for example, the Lisp expression '(lambda (x) x)

becomes `(SKK); we could also build it by hand as `S ? `K ? `K, and this would be similar to building

the Lisp list (lambda (x) x) explicitly, by executing the expression (list 'lambda (list 'x) 'x). This

suggests the following reduction rules:

� ,(`u) �! u;

� ,(u ? v) �! (,u)(,v);

� `(uv) �! (`u) ? (`v);

which indeed preserve the types, i.e. are valid proof transformation rules.

There is a dual interpretation of , and `. For example, `((,u)(,v)) reduces to uv, but Lisp's

'((eval u) (eval v)) does not reduce to anything. Another way of interpreting ` and , in this case is

by means of the backquote notation ` (Scheme's quasiquote special form [CR91]) and the comma notation ,

(Scheme's unquote special form). We can interpret `((,u)(,v)) as the analogue of `(; u ; v), which is precisely

equivalent to (u v). Then ` would be Lisp's , or Scheme's unquote, and , would be both eval and unquote.

This justi�es the following reduction rule, which again preserves the types:

� `(,u) �! u;

and which is the equivalent of the Lisp reduction `; u �! u. The fact that we confuse eval and unquote

cannot be considered a departure from the spirit of eval and quote. However, this kind of rule won't be

needed to interpret cut-elimination; at best, we can interpret this as an attempt to an �-like rule in the

calculus. (Another would be `(uv)! (`u) ? (`v).)

The only rule that remains to interpret is (4). The idea is that one major di�erence between our language

and Lisp is that Lisp is not statically typed; in particular, given any Lisp object, we can quote it on the

y. The operation that does this is called kwote in Lisp, and would have type �) 2�. Adding the latter

as an axiom would not only entail axiom (4), but it would essentially amount to reduce the logic to pure

intuitionistic logic (2� being always identical to �, we would not need 2 at all). As �)2� is in general

not provable in S4, we cannot quote any arbitrary object. In particular, the function that maps the variable

x to `x has no meaning; compare the problematic Lisp expression (lambda (x) (quote x)), where x inside

the quote expression is understood as not being in the scope of the header of the lambda-expression.

Axiom (4), on the other hand, expresses a way of relaxing the impossibility of quoting arbitrary objects:

we can quote quoted objects. The property of being quotable (at run-time) is a characteristic of the type

of the object: let's say that a type � is boxable if and only if �) 2� is provable, i.e. if there is a term

kwote� of type �) 2�. Axiom (4) says that all boxed types are boxable. There are many more boxable

types: if we add universal quanti�cations to S4 | i.e., if we consider second-order propositional intuitionistic

S4 | so as to be able to speak of data types, then Booleans, integers, products and sums of boxable types

are still boxable. But function types are in general not boxable: for example, A) B, where A and B are

propositional variables is not boxable.

Our interpretation of this phenomenon is the following. In Lisp, eval and quote mainly have one use that

is not subsumed by the use of higher-order functions and closures. This use is rei�cation, i.e. producing data

6

structures representing arbitrary programs, which can then be transmitted over through a network, or saved

on disk, and then be evaluated by a remote machine or reloaded from disk and evaluated. This can be done

in a portable manner on usual data structures, like Booleans, integers, products, sums, but not on functions

in general: there is no (simple, at least) way of transmitting a possibly compiled function over to a remote

machine of a possibly totally di�erent architecture, so that the function works as expected on the remote

machine. The restriction on boxable types imposed by S4 seems to stick well to this intuition, although the

reason why S4 looks like the right system for enforcing safety of Lisp's eval and quote completely eludes us

at the moment.

3.3 Semantics

The most well-known semantics of modal logics is the so-called Kripke semantics. It is based on the notion

of Kripke frames, which are triples (W;R; [[]]), where W is a non-empty set of so-called possible worlds w,

R is a binary relation between worlds called the accessibility relation (alternatively, (W;R) is an oriented

graph with W as set of vertices and R as set of edges), and [[]] is an interpretation, that is, a function

mapping propositional variables to the set of worlds where they hold. In the case of S4, it is enough to

consider reexive and transitive frames, i.e. frames where R is a preorder �. (This preorder is the \future

of" relation, in the temporal interpretation.)

The semantics of classical S4 is then given by the relation w j= � (� holds in world w), de�ned as follows:

� w j= A if and only if w 2 [[A]];

� w j= �1)�2 if and only if w j= �1 implies w j= �2;

� w j= 2� if and only if for every world w0 � w, w0 j= �.

We can therefore guess that a semantics for intuitionistic S4 would be similar, except that all conditions

above are to be considered as intuitionistically provable. In particular, w j= �1)�2 if and only if w j= �1

intuitionistically implies w j= �2. This, however, needs to be proved. ;We leave this to the �nal report.

3.4 A Sequent System

There are few interesting proof-theoretic results on Hilbert-style systems, and it is more fruitful to consider

natural deduction systems or sequent systems to this end. It is more customary to deal with natural deduction

proofs, and to translate these proofs as �-terms. However, the basic execution mechanism, which is the

elimination of detours in natural deduction proofs appears more clearly on Gentzen-style sequent systems,

where it corresponds to cut-elimination. Since we are looking for such an execution mechanism, we shall �rst

consider a sequent system for S4.

We claim that the sequent system LS4 shown in Figure 1 is a sequent system for S4, where a boxed context

� is a set of boxed formulas, that is, of formulas of the form 2	. The restriction that � be a boxed context

in rule (2R) is essential. The proof that this system really de�nes S4 is given in Appendix A.

We have already decorated sequents with terms, so as to reect the functional interpretation of Section 3.2.

As is customary, a sequent (a typing judgment) � ` u : � consists of a context �, which is now a map from

variable names x, y, z, : : : to formulas (types), and the right hand-side declares that � follows from the

assumptions �, and that the constructive content of the proof leading to this sequent is u (alternatively, the

term u is of type �). The language of constructions (of terms) is the �-calculus [Bar84], augmented with an
, operator, and more; in particular, we shall need additional operators to de�ne a reasonable construction u`

from a term u, but we refrain for now from simply using a ` operator and de�ning u` as `u. The reason of

this, and what the notation u` really means will be elucidated in Section 4.1.

We write u[v=x] the result of substituting v for the free occurrences of x in the term u, where free

occurrence assumes its usual meaning in the �-calculus. (� being the only variable-binding operator.) To

avoid problems, we adopt Barendregt's variable naming convention [Bar84] that no bound variable occurs

free in any �-term.

On the other hand, if contexts are maps from variables to types, then �;�0 cannot mean set union: we

de�ne it as the overriding of � by �0, i.e. the context that maps x to its type in �0 if it exists, and otherwise

7

(Ax)
�; x : � ` x : �

()L)

�; x : �2 ` u : �3

� ` v : �1

�; y : �1)�2 ` u[yv=x] : �3

()R)
�; x : �1 ` u : �2

� ` �x � u : �1)�2

(2L)
�; x : �1 ` u : �2

�; y : 2�1 ` u[,y=x] : �2

(2R)
� ` u : �

�;�0 ` u` : 2�

(� boxed)

(Cut)
� ` u : �1 �0; x : �1 ` v : �2

�;�0 ` v[u=x] : �2

Figure 1: System LS4

to its type in � if it exists. Doing so poses no problem whatsoever for all rules but (Cut). Hence, we also

adopt the following convention:

De�nition 3.1 (Naming Convention) Given a cut between two sequents �1 ` u1 : �1 and �2 ` u2 : �2,

we assume that no variable x occurs both in �1 and in �2.

Otherwise, we rename free variables in one of the sequent (and the proofs above). Observe that, if we

consider sequents as binding all variables on their left-hand sides, this is a variant of �-renaming. To tell it

with the vocabulary of linear logic [GLT89], we formulate all non-(Cut) rules as additive rules, but we are

forced to formulate (Cut) in an multiplicative fashion. This is essential to avoid problems in formulating

cut-elimination strategies.

We also make the following important remark. The weakening rule:

� ` u : �

(Weaken) �0;� ` u : �

where �0 is any additional set of typing assumptions xi : �i, 1 � i � n. That is, whenever we have a proof

(�) of � ` u : �, there is another proof �0; (�) of �0;� ` u : �. Just add �0 to the left of all sequents in (�)

from the bottom up, until we reach axioms (Ax) or instances of (2R). (We cannot go over to the premises

of (2R).)

4 Deriving a Language of Constructions

The sequent system of Section 3.4 includes the (Cut) rule. We wish to eliminate it for at least two distinct

reasons.

The �rst one is related to automated deduction: if we don't need (Cut), then the only thing to do to �nd

a proof of a given proposition is to try and construct a proof from the bottom up (from the proposition to

axioms (Ax)). In doing this, we are guided by the very structure of the formula to prove. Notice indeed that

the sequent system is designed so that, having chosen one formula from the goal sequent, there is at most one

rule that applies to get to a new sub-goal. It is a well-known fact, at least in the classical S4 case, that the

deduction system of Section 3.4 without (Cut) is sound and complete [Gor93]. We shall prove it syntactically

in the intuitionistic case.

The second reason why we want to eliminate cuts, that is to apply cut-elimination, not just to wish cuts

were not there, stems from the functional interpretation. In this interpretation, proofs (with or without (Cut))

are terms in a programming language, and cut-elimination is the very operational semantics of the language.

We shall therefore derive rewrite rules by examining how cut-elimination works.

8

4.1 Cut Elimination

The usual way of eliminating cuts is the following: given an arbitrary proof in a Gentzen system, we permute

rules so that instances of (Cut) bubble up the proof. When we reach instances of (Ax), a cut with such a

rule can be seen as yet another instance of (Ax), and the cut disappears. The only remaining di�culty is to

show that this process of bubbling up cuts terminates.

Bubbling up cuts in general changes the proofs, hence the constructions | or terms | that label the

formulas on the right-hand side of sequents. This corresponds to reduction rules of the term language, as we

now demonstrate. In any of the rules, let's call active formula the formula that the rule builds, either on the

left or on the right: � in (Ax), �1)�2 in ()L) and ()R), 2� in (2L) and (2R).

Given two sub-proofs (�1) and (�2), performing a cut on their end sequents yields a proof of the form:

(�1) (�2)
...

...

�1 ` u1 : 	1 �2; x1 : 	1 ` u2 : 	2

(Cut) �1;�2 ` u2[u1=x1] : 	2

There are several cases to permute (Cut) with the rules above it. All of them are well-known, except

possibly the last ones, which deal with the (2L) and (2R) rules.

Before we embark on describing how this is done, recall that weakenings are admissible: if (�) is a proof

of � ` u : �, then we write �0; (�) its weakening by �0.

We now proceed to permuting cuts up, and there are two cases.

4.1.1 Case 1: 	1 is active on both sides

In the �rst case, 	1 is active both on the right-hand side of �1 ` u1 : 	1 and on the left-hand side of

�2; x1 : 	1 ` u2 : 	2. We have the following cases, of which the �rst one is degenerate:

(Ax) �1 = �; x : �, u1 = x and 	1 = �; we tranform:

(�2)
...

(Ax) �; x : � ` x : � �2; x1 : � ` u2 : 	2

(Cut) �; x : �;�2 ` u2[x=x1] : 	2

into:
�; (�2)[x=x1]

...

�; x : �;�2 ` u2[x=x1] : 	2

where �; (�2)[x=x1] is the result of replacing x1 by x throughout (�2) | this e�ectively contracts two

assumptions for � into one | and then weakening (�2)[x=x1] by �.

Computationally, this reduction has no e�ect, as the end construction is u2[x=x1] in both cases.

()R)=()L) u1 = �x � u, 	1 = �1)�2, x1 = y, u2 = v[yw=z], 	2 = �3, and we transform:

(�01) (�02) (�002)
...

...
...

�1; x : �1 ` u : �2 �2; z : �2 ` v : �3 �2 ` w : �1

()R) �1 ` �x � u : �1)�2 ()L) �2; y : �1)�2 ` v[yw=z] : �3

(Cut) �1;�2 ` v[yw=z][�x � u=y] : �3

9

into:
(�01) (�02)
...

... (�002)

�1; x : �1 ` u : �2 �2; z : �2 ` v : �3

...

(Cut) �1; x : �1;�2 ` v[u=z] : �3 �2 ` w : �1

(Cut) �1;�2 ` v[u=z][w=x] : �3

Because of the variable naming convention, v[yw=z][�x � u=y] is in fact v[(�x � u)w=z], and v[u=z][w=x]

is v[u[w=x]=z], so cut-elimination here means transforming v[(�x � u)w=z] into v[u[w=x]=z], and this is

precisely the �-reduction rule.

(2R)=(2L) �1 = �;�0 where � is boxed, u1 = v`, 	1 = 2�, x1 = y, u2 = u[,y=x], 	2 = �2, and we transform:

(�01) (�02)
...

...

� ` v : � �2; x : � ` u : �2

�;�0 ` v` : 2� �2; y : 2� ` u[,y=x] : �2

(Cut) �;�0;�2 ` u[,y=x][v`=y] : �2

into:
�0; (�01) (�02)

...
...

�;�0 ` v : � �2; x : � ` u : �2

(Cut) �;�0;�2 ` u[v=x] : �2

Here, the cut bubbles up more easily than in the previous cases. Its computational interpretation is that

u[,v`=x] rewrites to u[v=x], or that ,v` rewrites to v. This suggest that we de�ne v` as `v and use the

reduction ,(`v)! v. But we won't be able to do this, for reasons we explain at the end of the section.

4.1.2 Case 2: 	1 is inactive on some side

In the second case, 	1 is not active on the right-hand side of �1 ` u1 : 	1 (then (�1) ends with a rule acting

on the left or with (Cut)) or 	1 is not active on the left-hand side of �2; x1 : 	1 ` u2 : 	2. What happens

here is that we can always permute (Cut) with the rule above it where 	1 is not active, at least when this

rule is not (2R) with �1 on the left-hand side of the sequent. (The only nasty case, which we shall examine

in detail shortly.)

For example, in the case of ()L) on the left, we have �1 = �; y : �1)�2, u1 = u[yv=x], 	1 = �3, and

we transform:
(�01) (�001)
...

... (�2)

�; x : �2 ` u : �3 � ` v : �1

...

()L) �; y : �1)�2 ` u[yv=x] : �3 �2; x1 : �3 ` u2 : 	2

(Cut) �; y : �1)�2;�2 ` u2[u[yv=x]=x1] : 	2

into:
(�0

1
) (�2)

...
... �2; (�

00
1)

�; x : �2 ` u : �3 �2; x1 : �3 ` u2 : 	2

...

(Cut) �; x : �2;�2 ` u2[u=x1] : 	2 �;�2 ` v : �1

()L) �; y : �1)�2;�2 ` u2[u=x1][yv=x] : 	2

Computationally speaking, this rewrites u2[u[yv=x]=x1] into u2[u=x1][yv=x], which is not only valid, but in

fact vacuously so. Indeed, these terms are already equal, by the variable naming convention. In fact, none

10

of these transformations do anything on the term level. (They would if we had chosen a calculus of explicit

substitutions [ACCL90].)

The only problem occurs when the last rule of (�2) is (2R)|in particular, 	1 is inactive on the left-hand

side of �2; x1 : 	1 ` u2 : 	2. The cut then looks like:

(�02)

(�1)
...

... � ` u : �

�1 ` u1 : 	1 (2R) �;�0; x : 	1 ` u` : 2�

(Cut) �1;�;�
0 ` u`[u1=x] : 2�

where � is boxed, and (unless �1 is boxed) we cannot transform this into the following:

(�1) x : 	1; (�
0
2)

...
...

�1 ` u1 : 	1 �; x : 	1 ` u : �

(Cut) �;�1 ` u[u1=x] : �

(2R) �;�1;�
0 ` (u[u1=x])` : 2�

which is indeed not a proof at all if �1 is not boxed.

So, we have to �nd another way, and examine the last rule we used in (�1). There are several cases and

subcases:

� Either 	1 is inactive on the right of the rule, and we just bubble the (Cut) up inside (�1). This has no

e�ect on the resulting construction: for example, if the last rule of (�1) is ()L), then u1 has the form

v1[yv2=z], so the construction before the cut is pushed upwards is u`[v1[yv2=z]=x], and the construction

afterwards is u`[v1=x][yv2=z], which is the same, because of the variable naming convention. Note that

if the last rule of (�1) is another (Cut), pushing the lower cut upwards does not change the construction

either.

� Or 	1 is active on the right of the rule, and we again have two cases, according to whether 	1 is a

boxed formula or not:

{ Case (a) if 	1 is not a boxed formula, then x cannot occur free in u, since the assumption x : 	1

cannot be used to type u in (�0
2
). We can therefore transform the proof into:

(�0
2
)

...

� ` u : �

(2R) �1;�;�
0 ` u` : 2�

This suggests the identity u`[u1=x] = u` when x is not free in u. That is, if x is not free in u, then

it should not be free in u`.

{ if 	1 is a boxed formula 2�1, we can assume that the end sequent of (�02) contains an assumption

of the form x : 2�1 on its left-hand side, and we can therefore bubble up the (Cut) above the

(2R) rule on the right. Notice that the only ways that 2�1 can be active on the right-hand side

of the end sequent of (�1) are that the last rule of (�1) be either (Ax) or (2R). This yields two

sub-cases:

Case (b) The last rule of (�1) is (Ax), and the proof looks like:

(�02)
...

�; x : 2�1 ` u : �

(Ax) �1; y : 2�1 ` y : 2�1 (2R) �;�0; x : 2�1 ` u` : 2�

(Cut) �1;�;�
0; y : 2�1 ` u`[y=x] : 2�

11

(Ax)
�; x : � ` x : �

()I)
�; x : �1 ` u : �2

� ` �x � u : �1)�2

()E)

� ` u : �1)�2

� ` v : �1

� ` uv : �2

(2I)
� ` u : �

�;�0 ` u` : 2�
(2E)

� ` u : 2�

� ` ,u : �

(� boxed)

Figure 2: Natural Deduction for S4

and we transform it into:

(�02)[y=x]
...

�; y : 2�1 ` u[y=x] : �

(2R) �1;�;�
0; y : 2�1 ` (u[y=x])` : 2�

This suggests that the free variables of u` should in fact be the same as those of u.

Case (c) The last rule of (�1) is (2R), and the proof looks like:

(�01) (�02)
...

...

�01 ` v1 : �1 �; x : 2�1 ` u : �

(2R) �1 ` v`
1
: 2�1 (2R) �;�0; x : 2�1 ` u` : 2�

(Cut) �1;�;�
0 ` u`[v`

1
=x] : 2�

where �01 is a boxed context included in �1, and u1 = v`
1
. We can transform this by bubbling

(Cut) on the right-hand sequent, yielding:

(�01)
... (�0

2
)

�01 ` v1 : �1

...

(2R) �01 ` v`
1
: 2�1 �; x : 2�1 ` u : �

(Cut) �01;� ` u[v`
1
=x] : �

(2R) �1;�;�
0 ` (u[v`

1
=x])

`
: 2�

Should we choose u` = `u as a de�nition, this would be automatically satis�ed.

In short, cut-elimination works (although we still have to prove termination of the process), but the (2R)

rule blocks some cuts going up | at least temporarily.

4.2 A First Try

Let's develop the �rst, na��ve way of eliminating cuts, and ignore the proviso that some cuts cannot be pushed

up (2R) right away:

Theorem 4.1 Let the �,`-calculus be the �-calculus with operations ,, `, with the following reduction rules:

12

� (�x � u)v ! u[v=x]

� ,(`u)! u

Consider the typing rules of Figure 2. Then:

� The reduction rules have the Church-Rosser property.

� All typed terms are strongly normalizing.

� Typable normal forms are constructions for cut-free LS4 proofs.

� Type-checking and type inferencing is decidable in polynomial time, and every typable term has a most

general type.

� Subject reduction fails, i.e. there is a typable term u such that u! v, but v is not typable.

Proof: See Appendix B for the proofs of all but the last claim.

We show that subject reduction fails. Consider �x � �y � (�z � `z)(xy), where z : 2A, x : B)2A, y : B.

Its most general type is (B)2A))B)22A, but it reduces to �x � �y � `(xy), which is not typable under

the assumptions x : B) 2A and y : B. In fact, this term, which is the normal form, is not typable at all,

since to be typable x and y have to be of a boxed type (because otherwise they won't be visible from inside

the `), but then xy cannot be typed. 2

The termination proof extends to any type system for the pure �-calculus such that typable terms are

strongly normalizing. This includes Girard's System F [Gir71, GLT89], Krivine and Leivant's AF2 [Kri92],

or Huet and Coquand's calculus of constructions [CH87]. On the other hand, the decidability of type-checking

is the same as the decidability of the type-checking problem for the pure �-calculus fragment of the typed

language; this is because the typing theory for the �,`-calculus is a conservative extension of that for the pure

�-calculus.

Notice that the typing rules of Figure 2 are nothing but a reformulation of LS4 in natural deduction

style. The introduction rules ()I) and (2I) are directly the right rules ()R) and (2R) respectively. The

elimination rules ()E) and (2E) are obtained from the respective left rules ()L) and (2L) by means of

(Cut). Hence, any construction in LS4 is a typable �,`-term.

Because of the failure of subject reduction, we cannot conclude directly that the cut-elimination process

terminates; indeed, reduction may terminate on an untypable term. This is paradoxical, because not only

does cut-elimination terminate, but in fact the �,`-reduction rules go too far, in that they end up producing

terms that are the constructions of no LS4 proof at all! This is why we shall now investigate more complicated

but more meaningful ways of de�ning u` for any given u.

4.3 A Solution Based on Bierman and de Paiva's Proposal

This morale of Section 4.1 is the following: u` should behave as `u, in as much as ,u` must rewrite to u, but

it cannot be built from u by just applying some operators to u. In fact, it appears that ` should operate much

like a barrier, preventing all substitutions that we want to apply to u` to be propagated to u itself. Parts of

these substitutions may be kosher, though | they might introduce variables that are of boxed types only |

, and we can allow these substitutions, but not the others, to continue their route down the term.

We can now understand u` as being not `u, but something like `[x1:=x1;:::;xn:=xn]u, where x1, : : : , xn
are the free variables of u. The explicit substitution [x1 := x1; : : : ; xn := xn] �rst binds all free vari-

ables of u (as left-hand sides of :=), and then binds them to terms that happen to be x1, : : : , xn. This

way, the only place where we can substitute terms for free variables is in the explicit substitution part of

`[x1 :=x1;:::;xn:=xn]u, therefore blocking substitutions from a�ecting u itself. Indeed, u`[u1=xi] now means

`[x1 :=x1;:::;xi�1:=xi�1 ;xi:=u1;xi+1 :=xi+1;:::;xn:=xn]u, which is di�erent from (u[u1=x])`.

This is the solution of Bierman and de Paiva [BdP95] (except that they also consider sums, i.e. disjunc-

tions). Their notation for `[x1 :=v1;:::;xn:=vn]u is box u with v1; : : : ; vn for x1; : : : ; xn, where the variables after

13

the for keyword are considered bound, and ,u is written unbox u, with the following sole rewrite rule on

box/unbox :

unbox (box u with v1; : : : ; vn for x1; : : : ; xn)! u[v1=x1; : : : ; vn=xn]

To respect Barendregt's naming convention, u` is in fact encoded as follows (we make this a de�nition,

since we shall use it in the rest of this section):

De�nition 4.1 For any term u, with free variables x1, : : : , xn, we de�ne u` as:

box u[y1=x1; : : : ; yn=xn] with x1; : : : ; xn for y1; : : : ; yn

where y1, : : : , yn are n pairwise distinct fresh variables.

The variables yi, 1 � i � n, are the bound variables of the construct, and are subject to �-renaming (outside

fv(u)). Notice that the general form:

box u with v1; : : : ; vn for x1; : : : ; xn

then encodes u`[v1=x1; : : : ; vn=xn].

However, this calculus is not satisfactory. Indeed, the latter rule deals with the case of a cut-elimination in

the (2R)=(2L) case, with the cut formula active on both sides (see Section 4.1.1). But other cut-eliminations

are not handled. Then, we have two solutions.

Either we trade the (2R) rule, as Bierman and de Paiva do, for the following compound rule (2I) :

� ` v1 : 2�1 : : : � ` vn : 2�n x1 : 2�1; : : : ; xn : 2�n ` u : �

� ` box u with v1; : : : ; vn for x1; : : : ; xn : 2�

but this rule does not respect the subformula property, therefore it is not acceptable as a non-cut rule in a

sequent calculus. (It is �ne for natural deduction, though.) To put it another way, normal proofs in their

system are only normal in a weak sense, and may still contain hidden cuts; this makes the system unsuitable

for, say, automated deduction, where the subformula property is crucial.

We are forced to admit that the previous rule is just the following special combination of (2R) and (Cut) :

x1 : 2�1; : : : ; xn : 2�n ` u : �

� ` vn : 2�n (2R) x1 : 2�1; : : : ; xn : 2�n ` u` : 2�

(Cut) x1 : 2�1; : : : ; xn�1 : 2�n�1u`[vn=xn] : 2�
...

� ` v1 : 2�1

(Cut) � ` u`[v1=x1; : : : ; vn=xn] : 2�

and then Bierman and de Paiva's rule is not enough to eliminate all cuts, since for example (2R)=(2R) cuts

(case (c) in Section 4.1.2) are not eliminated: the prototypical example is box x with (box u with � for �) for x

(where we write � for the empty list of terms or of variables), which is normal in their calculus, but can only

be the construction for a proof containing a (2R)=(2R) cut.

To repair this, we are led to add the following rewrite rule:

box u with v1; : : : ; vn for x1; : : : ; xn

! box u[v0i
`=xi] with v1; : : : ; vi�1; w1; : : : ; wm; vi+1; : : : ; vn for x1; : : : ; xi�1; y1; : : : ; ym; xi+1; : : : ; xn

when vi has the form box v0i with w1; : : : ; wm for y1; : : : ; ym (we say that vi is a box-term).

But cases (a) and (b) also pose problems of their own. Case (a) demands that all the free variables of u`

are free in u, or at least that u` rewrites to some term having no more free variables than u. This suggests

adding a garbage collection rule:

box u with v1; : : : ; vn for x1; : : : ; xn
! box u with v1; : : : ; vi�1; vi+1; : : : ; vn for x1; : : : ; xi�1; xi+1; : : : ; xn

14

(�) (�x � u)v ! u[v=x]

(unbox) unbox (box u with v1; : : : ; vn for x1; : : : ; xn)! u[v1=x1; : : : ; vn=xn]

(box) box u with v1; : : : ; vn for x1; : : : ; xn

! box u[v0i
`=xi] with v1; : : : ; vi�1; w1; : : : ; wm; vi+1; : : : ; vn

for x1; : : : ; xi�1; y1; : : : ; ym; xi+1; : : : ; xn
if vi = box v0i with w1; : : : ; wm for y1; : : : ; ym

(gc) box u with v1; : : : ; vn for x1; : : : ; xn
! box u with v1; : : : ; vi�1; vi+1; : : : ; vn for x1; : : : ; xi�1; xi+1; : : : ; xn
if xi is not free in u

(ctract) box u with v1; : : : ; vi; : : : ; vj; : : : ; vn for x1; : : : ; xi; : : : ; xj; : : : ; xn
! box u[xi=xj] with v1; : : : ; vi; : : : ; vj�1; vj+1; : : : ; vn for x1; : : : ; xi; : : : ; xj�1; xj+1; : : : ; xn
if i 6= j; vi = vj

Commuting conversion:

box u with v1; : : : ; vn for x1; : : : ; xn � box u with v�(1); : : : ; v�(n) for x�(1); : : : ; x�(n)

for any permutation � of f1; : : : ; ng

Figure 3: Reduction in the �S4-Calculus

where xi is not free in u. (This is the same rule as the above, except the side-condition is on xi and u instead

of on vi.)

Case (b) demands that all the free variables of u are also free in u`. This places the restriction on terms of

the form box u with v1; : : : ; vn for x1; : : : ; xn that any free variable of u is some xi, 1 � i � n. This restriction

is then preserved by the rewrite rules.

Because box encodes a substitution inside the language itself, as an association between the terms after

with and the variables after for, we also expect a few other properties of substitutions to hold of box. The �rst

one, which we need for proving that every normal form of the calculus represents some cut-free LS4 proof,

is related to the contraction rule in sequent calculus:

box u with v1; : : : ; vi; : : : ; vj; : : : ; vn for x1; : : : ; xi; : : : ; xj; : : : ; xn
! box u[xi=xj] with v1; : : : ; vi; : : : ; vj�1; vj+1; : : : ; vn for x1; : : : ; xi; : : : ; xj�1; xj+1; : : : ; xn

whenever i 6= j and vi = vj .

Another symmetry that is present in substitutions gives rise to so-called commuting conversions, which

represent on the level of terms the fact that we can always permute cuts with each other on the level of proofs.

In natural deduction, this means that we can permute all minor premises (of (2I), here) without changing
the proof. That is, for any permutation � of f1; : : : ; ng, the substitution [v1=x1; : : : ; vn=xn] is identical to

[v�(1)=x�(1); : : : ; v�(n)=x�(n)]. This transposes to considering the terms:

box u with v1; : : : ; vn for x1; : : : ; xn

and

box u with v�(1); : : : ; v�(n) for x�(1); : : : ; x�(n)

as being equivalent. This is consistent with the previous rewrite rules.

To recap, we de�ne:

De�nition 4.2 (�S4) The �S4-calculus is de�ned by the following syntax, where x, y, z, : : : denote variables

taken from an in�nite set V. Terms s, t, u, v, w, : : : are elements of the language T de�ned by:

T ::= V j �V � T j TT
j unbox T j box T with T; : : : ; T for V; : : : ;V

15

(Ax)
�; x : � ` x : �

()I)
�; x : �1 ` u : �2

� ` �x � u : �1)�2

()E)

� ` u : �1)�2

� ` v : �1

� ` uv : �2

(2I)
� ` v1 : 2�1 : : : � ` vn : 2�n

x1 : 2�1; : : : ; xn : 2�n ` u : �

� ` box u with v1; : : : ; vn for x1; : : : ; xn : 2�

(2E)
� ` u : 2�

� ` unbox u : �

Figure 4: Typing Rules for the �S4-Calculus

where the with part of a box term must have exactly as many terms as the for part has variables, and all

variables in the for part are pairwise distinct. Moreover, we require that any term

box u with v1; : : : ; vn for x1; : : : ; xn

is such that fv(u) � fx1; : : : ; xng, and fv(vi) \ fx1; : : : ; xng = ; for every i, 1 � i � n.

The rewrite rules are given in Figure 3. The relation � is de�ned as the smallest congruence relation

verifying the commuting conversion equation in Figure 3 and such that if u and v are �-convertible, then

u � v. Unless stated otherwise, we always consider �S4-terms modulo �.
The typing rules are given in Figure 4.

We shall sometimes write box u with � instead of the more cumbersome box u with v1; : : : ; vn for x1; : : : ; xn,

where � = [v1=x1; : : : ; vn=xn].

The rewrite rules are precisely the above, namely those of Bierman and de Paiva, plus the ones necessary

to model cut-elimination fully. The typing rules, which can also be read as a natural deduction system for

S4, are exactly those given in [BdP95]; we have included them here for completeness.

Notice that the rewrite rules preserve the well-formedness constraints on terms and are consistent with

the equivalence � on terms (�-conversion and commuting conversion), so the calculus is well-de�ned.

5 Properties of the �S4-Calculus

The �S4-calculus is then (almost) perfect. We prove the following in Section 5.1:

Theorem 5.1 The properties of the �S4-calculus are:

� The rewrite rules have the Church-Rosser property.

� Subject reduction holds.

� All typed terms are strongly normalizing.

� Typable normal forms are constructions for cut-free LS4 proofs.

� Type-checking and type inferencing are decidable in polynomial time, and every typable term has a most

general type.

In Section 5.2, we shall discuss why the �S4-calculus is, in fact, not quite satisfactory.

16

5.1 Proofs of the Properties

The most natural way to prove that the �S4-calculus is conuent is to �rst prove the �niteness of developments,

as in [Bar84], 11.2, for the case of the pure �-calculus.

De�nition 5.1 (�S4
0) We de�ne the �S4

0-calculus as follows.

The terms u, v, w, : : : are variables x, y, z, : : : , applications uv, abstractions �x �u and primed redexes

(�0x � u)v (we then consider all free occurrences of x in u as bound), evaluations unbox u and quotations

box u with v1; : : : ; vn for x1; : : : ; xn (then, all free occurrences of xi, 1 � i � n, are considered bound in the

quotation). These terms are subject to the same provisos (see De�nition 4.2) and variable naming convention

than �S4-terms.

Reduction in the �S4
0-calculus is de�ned as in �S4, except that (�) is replaced by:

(�0) (�0x � u)v ! u[v=x]

The erasing transformation E from �S4
0 to �S4 consists in erasing all prime symbols from �0-redexes (i.e.,

E((�0x � u)v) = (�x �E(u))E(v), in particular.)

Notice that primed redexes are not considered as applications, but rather as entirely new expressions; think

of (�0x � u)v as another notation for, say, let x = v in u.

Our aim is to show that the �S4
0-calculus terminates. To do so, we de�ne an appropriate notion of

weighting of variables and terms:

De�nition 5.2 We de�ne the �S4
0�-calculus as the following extension of the �S4

0-calculus.

The terms are as in the �S4
0-calculus, except that each variable can be either a weighted variable xk,

where k is a positive integer, or a proxy variable x̂, ŷ, : : :

More precisely, the �S4
0�-terms u, v, w, : : : are proxy variables x̂, ŷ, : : : , weighted variables xk, yk, zk, : : :

(k > 0), applications uv, abstractions �x�u and primed redexes (�0x�u)v (we then consider all free occurrences

of xk, for any k > 0, in u as bound), evaluations unbox u and quotations box u with v1; : : : ; vn for x1; : : : ; xn
(then, for each i, all free occurrences of xki , for any k > 0, or of x̂ in u are considered bound in the box-term.)

These terms are subject to the same provisos and variable naming convention than �S4-terms. Moreover, we

impose that no variable x occurs both as a proxy x̂ and as a weighted variable xk.

Well-formed �S4
0�-terms are those �S4

0�-terms such that every occurrence of a proxy variable is bound by

some box-expression.

Substitution in the �S4
0�-calculus is de�ned so that weights and proxy status are ignored (i.e., in particular

xk[u=x] = x̂[u=x] = u, xk[u=y] = xk and x̂[u=y] = x̂ if x 6= y).

We also de�ne a related notion of weight-preserving renaming ufx=yg, so that ykfx=yg = xk, ŷfx=yg =
x̂, and zkfx=yg = zk, ẑfx=yg = ẑ if z 6= y.

Reduction in the �S4
0�-calculus is then de�ned as in �S4', except for the change of meaning of substitution,

and for the following reformulation of the rules (box) and (ctract):

(box0) box u with v1; : : : ; vi; : : : ; vn for x1; : : : ; xi; : : : ; xn
! box u[box v with ẑ1; : : : ; ẑm for y1; : : : ; ym=xi]

with v1; : : : ; vi�1; w1; : : : ; wm; vi+1; : : : ; vn
for x1; : : : ; xi�1; z1; : : : ; zm; xi+1; : : : ; xn

if vi = box v with w1; : : : ; wm for y1; : : : ; ym, and where z1, : : : , zm are m fresh pairwise distinct proxy

variables,

(ctract0) box u with : : : ; vi; : : : ; vj; : : : for : : : ; xi; : : : ; xj; : : :

! box ufxi=xjg with : : : ; vi; : : : ; vj�1; vj+1; : : : for : : : ; xi; : : : ; xj�1; xj+1; : : :

if vi = vj, i 6= j.

The erasing transformation E0 from �S4
0� to �S4' consists in erasing all weights and proxy statuses (i.e.,

in particular E0(x
k) = E0(x̂) = x).

17

Given a term u, if x only occurs as a proxy x̂ in u, then we shall say that x itself is a proxy variable; otherwise,

by our conventions x can only occur weighted in u, and we shall say that x itself is a weighted variable.

Notice that the formulation of rule (box0) above is equivalent to that in Figure 3, modulo �-renaming (and

E0-erasing). The idea in using proxy variables is that in the formulation for rule (box0) above, the proxies ẑj,

1 � j � m, are not meant to have weights of their own, but rather to represent wj, to which they are bound

by the outer box term.

We de�ne the weight of a well-formed �S4
0�-term as the sum of the weights of variables occurring (free or

bound) in it, where the weight of xk is k, and the weight of x̂ is recursively de�ned as the weight of the term

for which it is a proxy. Formally:

De�nition 5.3 For every �S4
0�-term u, for every function ! mapping proxy variables to positive integers,

de�ne the weight W (u; !) by structural induction as follows:

� W (xk; !) = k;

� W (x̂; !) = !(x);

� W (uv; !) = W ((�0x � u)v; !) = W (u; !) +W (v; !);

� W (�x � u; !) = W (unbox u; !) =W (u; !);

� W (box u with v1; : : : ; vn for x1; : : : ; xn) = W (u; !0) +
Pn

i=1
W (vi; !), where !

0 maps every proxy vari-

able x to !(x), except if x = xi for some i, 1 � i � n, in which case !0(x) = W (vi; !).

It is easy to see that the weight of a well-formed �S4
0�-term u is independent of the particular function ! that

we choose; we shall write it W (u). De�nition 5.3 then also de�nes the weight of every sub-term v of a given

well-formed �S4
0�-term u relatively to u, which we shall write Wu(v).

Notice also that, because addition is associative and commutative, De�nition 5.3 makes sense modulo the

commutative conversion �.
As in [Bar84], we can see �S4

0�-terms as �S4
0-terms, plus an additional mapping from occurrences of

variables to either a positive integer k (to represent xk) or to a special proxy token (to represent x̂). Such a

mapping is called a weighting ; terms that have the same E0-erasure only di�er by their weightings.

De�nition 5.4 We say that the weighting of a well-formed �S4
0�-term t is decreasing if and only if:

� for every subterm of t of the form (�0x � u)v, for every free occurrence xk of x in u, k > Wt(v);

� and for every subterm of t of the form:

box u with v1; : : : ; vn for x1; : : : ; xn

for every free occurrence xki of the non-proxy variable xi in u, where 1 � i � n, k > Wt(vi).

Lemma 5.2 For every �S4
0-term u0, u0 admits a decreasing weighting; that is, there is a well-formed �S4

0�-

term u such that E0(u) = u0, and such that the weighting of u is decreasing.

Proof: Number the occurrences of variables in u0 from right to left, giving the nth occurrence the weight

2n, so that for every occurrence xk of a variable x, k is greater than the sum of all weights of occurrences of

variables occurring to its right. As u has no proxy variables, the weight Wu(v) of any subterm v of u is just

the sum of the weights k of variable occurrences xk in v, and the result is clear. (This is as in [Bar84].) 2

Lemma 5.3 Let u and v be two �S4
0�-terms, such that u is well-formed, the weighting of u is decreasing,

and u reduces to v in one step. Then:

(i) v is well-formed.

(ii) W (u) � W (v), and W (u) > W (v) unless the contracted redex is of the form

unbox (box s with t1; : : : ; tn for z1; : : : ; zn)

where every zi, 1 � i � n, is a proxy variable.

18

(iii) The weighting of v is decreasing.

Proof: Let �1 be the contracted redex in u.

(i) is clear; observe that all the fresh proxy variables z1, : : : , zm in rule (box0) are indeed bound by the

outer box-term.

(ii) If �1 is a (�
0) redex (�0x � s)t, then zero, one or more occurrences xk of one variable x in s are replaced

by a term t of strictly smaller weight. (Because u is well-formed, the �0-bound variable x is not a

proxy.) Even when x has no occurrence in s, the weight still decreases strictly, because the vanishing

term t has strictly positive weight.

If �1 is an (unbox) redex:

unbox (box s with t1; : : : ; tn for x1; : : : ; xn)

then zero, one or more occurrences of zero, one or more variables x1, : : : , xn are replaced by terms

v1, : : : , vn of no greater weights. So the weight is non-increasing in this case. Moreover, if some xi,

1 � i � n, is a non-proxy variable, then by the same argument as for (�0)-redexes, the weight decreases

strictly.

If �1 is a (box
0) redex:

box s with t1; : : : ; ti; : : : ; tn for x1; : : : ; xi; : : : ; xn

with ti = box t with w1; : : : ; wm for y1; : : : ; ym, then we have two cases.

{ Either xi is a weighted variable, and:

� on the one hand, zero, one or more occurrences of xi in s are replaced by

box t with ẑ1; : : : ; ẑm for y1; : : : ; ym

whose weight in u (or v) is exactly the same as that of ti, i.e. is strictly less than the weight

of any replaced occurrence of xi. So, the weight of

s[box t with ẑ1; : : : ; ẑm for y1; : : : ; ym=xi]

in v is at most that of s in u.

� On the other hand, ti is replaced by w1, : : : , wm in the with part of �1, but by de�nition of

ti, the weight of ti is strictly greater than the sum of the weights of w1, : : : , wm.

So W (u) > W (v).

{ Or xi is a proxy, and on the one hand the weight of s[box t with ẑ1; : : : ; ẑm for y1; : : : ; ym=xi] in v

is exactly the same as that of s in u; and on the other hand, ti is replaced by w1, : : : , wm in the

with part of �1, so that again the weight decreases strictly.

If �1 is a (gc) redex, then the weight decreases strictly, because one term of positive weight vanishes.

If �1 is a (ctract
0) redex box u with v1; : : : ; vi; : : : ; vj ; : : : ; vn for x1; : : : ; xi; : : : ; xj; : : : ; xn, with vi = vj,

then contracting it means replacing u by ufxi=xjg, whose weight does not change, and deleting vj,

which makes the overall weight decrease.

(iii) Let �0 be a �
0-redex or a box term occurring in v. �0 is the residual of some �0-redex (resp. of some

box term) �2 in u. We prove the claim by case analysis on the respective positions of �1 and �2 in u.

The only non-trivial cases are:

{ If �2 is (�0x � u0)v0 (resp. box u0 with v1; : : : ; vn for x1; : : : ; xn, with x = xi being a non-proxy

variable for some arbitrary i, 1 � i � n, in which case we let v0 = vi) and �1 lies inside v
0, then

by (i) �1 is contracted to a term with weight at most that of �1; therefore v
0 reduces during this

contraction to a term with at most the same weight, and every occurrence xk of x of u0 remains

of greater weight than that of the contracted v0.

19

{ If �1 is (�0x � u0)v0 (resp. box u0 with v1; : : : ; vn for x1; : : : ; xn, with x = xi a non-proxy variable

for some arbitrary i, 1 � i � n, in which case we let v0 = vi) and �2 lies inside u0. Let �2

be (�0x0 � u00)v00 (or resp. box u00 with v01; : : : ; v
0
n for x01; : : : ; x

0
n, with x0 = x0j and v00 = v0j for

some arbitrary j, 1 � j � n). Then contracting �1 replaces �2 by (�0x0 � u00[v0=x])(v00[v0=x])
(resp. box u00 with v01[v

0=x]; : : : ; v0n[v
0=x] for x01; : : : ; x

0
n).

If x is a proxy (meaning that �1 must be a box-term), then Wv(v
00[v0=x]) = Wu(v

00) by de�nition

of the weight (the weight of the proxy is the weight of the term which is subtituted for it). If x is

a weighted variable, then because the weighting of u is decreasing, all the occurrences of x have

lesser weight than v0, so W (v00[v0=x]) � W (v00). In any case, W (v00[v0=x]) � W (v00), and because

the weighting of u is decreasing, for every occurrence x0
k
of x0 in u00[v0=x] (equivalently, in u00),

k > W (v00) � W (v00[v0=x]), so the weighting of v remains decreasing.

2

Lemma 5.4 In �S4
0, every sequence of (unbox) steps is �nite.

Proof: De�ne the following translation from �S4
0 (without the commutative conversion rule) to the �0-

calculus, that is, the language built on variables, applications, �-abstractions and �0-redexes, with (�0) as

sole reduction rule:

� I(x) = x;

� I(uv) = I(u)I(v), I(�x � u) = �x � I(u), I((�0x � u)v) = (�0x � I(u))I(v);

� I(unbox u) = (�0x � x)I(u);

� I(box u with v1; : : : ; vn for x1; : : : ; xn) = (�0x1 � : : :�
0xn � I(u))I(v1) : : : I(vn).

If u ! v by application of the (unbox) rule, then I(u) !+ I(v) in �0 (by n + 1 applications of rule (�0)).

As all developments in the �-calculus are �nite, all reductions in �0 are terminating, so every sequence of

(unbox) steps in �S4
0 (without the commutative conversion rule) must be �nite.

If u1 � u01 ! u2 � u02 ! : : : ! uk is any sequence of (unbox) steps in �S4
0 (with the commutative

conversion rule), notice that we can always postpone the application of the commutative conversion steps,

so as to obtain a reduction sequence u001 ! u002 ! : : :! u00k of the same length, where for each i, 1 � i � k,

u00i � ui (and in fact u00
1
= u1). The latter is a sequence of (unbox) steps in the calculus without the

commutative conversion rules, so its length is bounded by some function k(u1). This bound is therefore also

a bound on the initial sequence from u1 to uk: the claim is proved. 2

It follows that all developments in �S4 are �nite, that is:

Theorem 5.5 The notion of reduction in �S4
0 is strongly normalizing.

Proof: Let u0 be a �S4
0-term. By Lemma5.2, there is a �S4

0�-term u such that E0(u) = u0 and the weighting

of u is decreasing. Consider an arbitrary reduction in �S4
0 starting from u0, and lift it to a corresponding

reduction in �S4
0� starting from u (replacing rules (box) and (ctract) by (box0) and (ctract0) respectively).

For each term v in the sequence, let W 0(v) be the couple (W (v); �(v)), where �(v) is the greatest length of a

sequence of (unbox) steps that can be applied from E0(v) (which is �nite by Lemma 5.4). By Lemma 5.3,

W 0(v) decreases strictly in the lexicographic ordering on IN�IN, which is well-founded; therefore the reduction
must be �nite. 2

Lemma 5.6 The �S4
0-calculus is conuent.

Proof: By Theorem 5.5, it is enough to prove that it is locally conuent. The critical pairs are as follows

(we won't mention the variable naming convention again):

20

� Between (unbox) and (box): assume that vi = box v with w1; : : : ; wm for y1; : : : ; ym, then:

unbox (box u with v1; : : : ; vn for x1; : : : ; xn)

reduces in one step to:

u[v1=x1; : : : ; vn=xn]

by (unbox), but also to:

unbox (box u[(box v with z1; : : : ; zm for y1; : : : ; ym)=xi]

with v1; : : : ; vi�1; w1; : : : ; wm; vi+1; : : : ; vn
for x1; : : : ; xi�1; y1; : : : ; ym; xi+1; : : : ; xn)

by (box). By one application of (unbox), the latter reduces to the former, so the conuence diagram

closes.

� Between (unbox) and (gc): assume that xi is not free in u, then:

unbox (box u with v1; : : : ; vn for x1; : : : ; xn)

reduces in one step to:

u[v1=x1; : : : ; vn=xn]

by (unbox), but also to:

unbox (box u with v1; : : : ; vi�1; vi+1; : : : ; vn for x1; : : : ; xi�1; xi+1; : : : ; xn)

by (gc). But the latter reduces in one step to:

u[v1=x1; : : : ; vi�1=xi�1; vi+1=xi+1; : : : ; vn=xn]

which is equal to the former, since xi is not free in u.

� Between (unbox) and (ctract): when vi = vj for i 6= j,

unbox (box u with : : : ; vi; : : : ; vj; : : : for : : : ; xi; : : : ; xj; : : :)

reduces in one step either to:

u[: : : ; vi=xi; : : : ; vj=xj; : : :]

or to:

unbox (box u[xi=xj] with : : : ; vi; : : : ; : : : for : : : ; xi; : : : ; : : :)

But the latter reduces in one step by (unbox) to u[xi=xj][: : : ; vi=xi; : : : ; : : :], which is exactly the former

since vi = vj .

� Between (box) and itself. If i 6= j and:

vi = box v0 with w01; : : : ; w
0
m0 for x01; : : : ; x

0
m0

and

vj = box v00 with w001 ; : : : ; w
00
m00 for x001 ; : : : ; x

00
m00

then

box u with : : : ; vi; : : : ; vj; : : : for : : : ; xi; : : : ; xj; : : :

reduces in one step either to:

box u[(box v0 with z01; : : : ; z
0
m0 for x01; : : : ; x

0
m0)=xi]

with : : : ; w01; : : : ; w
0
m0 ; : : : ; vj; : : :

for : : : ; z01; : : : ; z
0
m0 ; : : : ; xj; : : :

21

or to:
box u[(box v00 with z001 ; : : : ; z

00
m00 for x001 ; : : : ; x

00
m00)=xj]

with : : : ; vi; : : : ; w
00
1
; : : : ; w00m00 ; : : :

for : : : ; xi; : : : ; z
00
1 ; : : : ; z

00
m00 ; : : :

Both reduce by one application of box to:

box u[(box v0 with z01; : : : ; z
0
m0 for x01; : : : ; x

0
m0)=xi; (box v

00 with z001 ; : : : ; z
00
m00 for x001 ; : : : ; x

00
m00)=xj]

with : : : ; w0
1
; : : : ; w0m0 ; : : : ; w001 ; : : : ; w

00
m00 ; : : :

for : : : ; z0
1
; : : : ; z0m0 ; : : : ; z001 ; : : : ; z

00
m00 ; : : :

� Between (box) and (gc). If i 6= j,

vi = box v with w1; : : : ; wm for x1; : : : ; xm

and xj is not free in u, then:

box u with : : : ; vi; : : : ; vj; : : : for : : : ; xi; : : : ; xj; : : :

reduces in one (box) step either to:

box u[(box v with z1; : : : ; zm for x1; : : : ; xm)=xi]

with : : : ; w1; : : : ; wm; : : : ; vj; : : :

for : : : ; z1; : : : ; zm; : : : ; xj; : : :

or to:

box u with : : : ; vi; : : : ; : : : for : : : ; xi; : : : ; : : :

by (gc). By applying (gc) to the former and (box) to the latter, we get the same term:

box u[(box v with z1; : : : ; zm for x1; : : : ; xm)=xi]

with : : : ; w1; : : : ; wm; : : : ; : : :

for : : : ; z1; : : : ; zm; : : : ; : : :

� Between (box) and (ctract). Consider a term:

box u with v1; : : : ; vn for x1; : : : ; xn

where vk is a box-term, and vi = vj, with i 6= j. There are three cases: k = i, k = j, or k 62 fi; jg. The
latter case is easy, since the two rules in fact apply in parallel (much like the previous critical pairs).

The case k = j is the same as the case k = i by permutation of indexes (commutative conversion) and

�-renaming. In the last case (k = i), the term above:

box u with : : : ; vi; : : : ; vj; : : : for : : : ; xi; : : : ; xj; : : :

where:

vi = vj = box v with w1; : : : ; wm for x1; : : : ; xm

contracts either to:
box u[(box v with z1; : : : ; zm for x1; : : : ; xm)=xi]

with : : : ; w1; : : : ; wm; : : : ; vj; : : :

for : : : ; z1; : : : ; zm; : : : ; xj; : : :

by (box) or to:

box u[xi=xj] with : : : ; vi; : : : ; : : : for : : : ; xi; : : : ; : : :

by (ctract).

22

The former reduces by (box) (vj being a box-term) to:

box u[(box v with z1; : : : ; zm for x1; : : : ; xm)=xi; (box v with z01; : : : ; z
0
m for x1; : : : ; xm)=xj]

with : : : ; w1; : : : ; wm; : : : ; w1; : : : ; wm; : : :

for : : : ; z1; : : : ; zm; : : : ; z
0
1; : : : ; z

0
m; : : :

then by m applications of (ctract) to:

box u[(box v with z1; : : : ; zm for x1; : : : ; xm)=xi; (box v with z1; : : : ; zm for x1; : : : ; xm)=xj]

with : : : ; w1; : : : ; wm; : : : ; : : :

for : : : ; z1; : : : ; zm; : : : ; : : :

which is also what we get by applying rule (box) to the other term of the critical pair on vi.

� Between (gc) and itself. If i 6= j, and neither xi not xj is free in u, then:

box u with : : : ; vi; : : : ; vj; : : : for : : : ; xi; : : : ; xj; : : :

reduces in one step either to:

box u with : : : ; : : : ; vj; : : : for : : : ; : : : ; xj; : : :

or to:

box u with : : : ; vi; : : : ; : : : for : : : ; xi; : : : ; : : :

which both reduce by (gc) to:

box u with : : : ; : : : ; : : : for : : : ; : : : ; : : :

� Between (gc) and (ctract): when vi = vj and xi is not free in u,

box u with : : : ; vi; : : : ; vj; : : : for : : : ; xi; : : : ; xj; : : :

reduces in one (gc) step to:

box u with : : : ; : : : ; vj; : : : for : : : ; : : : ; xj; : : :

or to:

box u[xi=xj] with : : : ; vi; : : : ; : : : for : : : ; xi; : : : ; : : :

Now, since xi is not free in u, the latter is an �-renamed version of:

box u with : : : ; vi; : : : ; : : : for : : : ; xj; : : : ; : : :

This, in turn, is just:

box u with : : : ; vj; : : : ; : : : for : : : ; xj; : : : ; : : :

since vi = vj , so it is �-equivalent to:

box u with : : : ; : : : ; vj; : : : for : : : ; : : : ; xj; : : :

by the commuting conversion. This closes the conuence diagram.

The case where xj instead of xi is not free in u is similar.

� Between (ctract) and itself: given vi = vj and vk = vl, with i 6= j, k 6= l and (i; j) 6= (k; l),

box u with v1; : : : ; vn for x1; : : : ; xn

reduces in one step either to the box of u[xi=xj] with all bindings but the jth, or to the box of u[xk=xl]

with all bindings but the lth.

If j = l, then i 6= k by assumption, and vj = vl, so that these two terms are in fact �-equivalent.

If j 6= l, then the former reduces by (ctract) to the box of u[xi=xj][xk=xl] with all bindings but the jth

and the lth, and the latter reduces by (ctract) to the box of u[xk=xl][xi=xj] with all bindings but the

jth and the lth. Since j 6= l, these are the same terms.

23

2

Theorem 5.7 The �S4-calculus is conuent.

Proof: Let
1
�! be the relation de�ned as: u

1
�!v if and only if there is a �S4

0-term u0 such that u0 �!� v

in �S4
0, and E(u0) = u.

We claim that
1
�! is conuent. Indeed, let u

1
�!u1 and u

1
�!u2. Then, by de�nition, there are two terms

u01 and u
0
2, which we obtain from u by adding primes on some �-redexes (i.e., such that E(u01) = E(u02) = u),

such that u0
1
�!� u1 and u0

2
�!� u2 in �S4

0. Build u0 from u by adding primes on �'s at those positions

where u01 or u02 has a prime; then again E(u0) = u, since all these positions are positions of �-redexes. By

an easy induction on the length of derivations, u01 �!
� u001 and u02 �!

� u002 in �S4
0, where E(u001) = u1 and

E(u002) = u2. By Theorem 5.5, u001 and u002 have �S4
0-normal forms; by Lemma 5.6, these normal forms are

the same, call them v. Because v is normal, E(v) = v, that is, v is in fact a �S4-term, and clearly the

reductions from u00
1
and u00

2
to v translate to �S4-reductions, by erasing all primes from redexes and replacing

(�0), (box0) and (ctract0)-contractions by (�), (box) and (ctract)-contractions respectively. Therefore, u1
1
�!v

and u2
1
�!v.

Then, we claim that the reexive transitive closure �!� of the one-step �S4-reduction �! is equal to

the reexive transitive closure
1
�!� of

1
�!. Indeed,

1
�! is a sub-relation of �!�; and conversely, �! is a

sub-relation of
1
�!: if u �! v by some rule other than (�), this is trivial, otherwise just add a prime on the

�-redex that is contracted and (�0)-contract.

Conuence of �!� then follows from the conuence of
1
�!�. 2

Theorem 5.8 Subject reduction holds in �S4.

Proof: By case analysis on the reduction rules. The only di�culty is with the (box), (gc) and (ctract) rules.

The result then follows, as in the (�) case, from the fact that if �; x : � ` u : �0 and � ` v : � are derivable

in the system of Figure 4, then � ` u[v=x] : �0 is derivable, too. This, in turn, follows from an easy induction

on u (and the fact that, when u is a box-term, we can only substitute in its with part).

The deep reason why this works is that reduction rules in the typed fragment of �S4 are really proof

transformations, and that proofness is typedness. Since we have in fact derived the reduction rules from

allowed proof transformations, we won't bother the reader by translating all this work into yet another

language. 2

Theorem 5.9 All typed �S4-terms are strongly normalizing.

Proof: De�ne the following erasing transformation by structural induction on the terms:

D(box u with v1; : : : ; vn for x1; : : : ; xn)=D(u)[D(v1)=x1; : : : ; D(vn)=xn]

D(unbox u)=D(u)

and D does nothing on other constructions | i.e., D(x) = x, D(�x � u) = �x �D(u), D(uv) = D(u)D(v),

Notice that this transformation is compatible with the equivalence �.
De�ne also the erasing transformation D(�) on formulas �, by erasing all boxes 2, and similarly on

contexts �. An easy structural induction on typing derivations shows that if � ` u : � in S4, then D(�) `
D(u) : D(�) in the simply-typed �-calculus.

Now, let u1 �! u2 �! : : : �! ui �! : : : be a reduction starting from the well-typed �S4-term u1. Then

D(u1)
=
�!D(u2)

=
�! : : :

=
�!D(ui)

=
�! : : : in the simply-typed �-calculus, where

=
�! is the reexive closure of

reduction in this calculus; indeed, every contraction by (�) translates by D into a contraction by the same

rule, and if ui �! ui+1 by some other rule, then D(ui) = D(ui+1).

Since the simply-typed �-calculus is strongly normalizing, there are only �nitely many
=
�! steps that

are not equalities in the above reduction. On the other hand, those steps that are equalities are erasings of

(unbox), (box), (gc) or (ctract) steps, which are in fact steps in �S4
0; by Theorem 5.5, there can be only

�nitely many consecutive
=
�! steps that are equalities. Therefore the original �S4-reduction is �nite. 2

24

De�nition 5.5 We say that a �S4-term is an elimination if and only if it is of the form vw or unbox v.

Let u be a �S4-term, and let (ui)i�0
be the sequence of (occurrences of) terms de�ned as follows: u0 = u,

and for each i � 0, if ui is an elimination vw or unbox v, then ui+1 = v; otherwise the sequence stops at

index i.

When the sequence stops at n > 0, we de�ne d1(u) as un�1, and d2(u; y) as u where the occurrence of

un�1 has been replaced by the variable y.

For the following lemma, recall that the size of a term is the number of distinct occurrences in it, i.e. the

size of a variable is 1, the size of an application vw is the sum of those of v and w plus 1, etc.

Lemma 5.10 For every elimination u, d1(u) is de�ned.

Moreover, for every variable y that is not free in u, d2(u; y) is de�ned, has a strictly smaller size as u,

and u = d2(u; y)[d1(u)=y].

Proof: The �rst claim follows from the fact that the sequence (ui)i�0 always stops (the size of ui is strictly

decreasing), and that u1 is de�ned since u is an elimination. So it stops at some index n � 1, hence d1(u) is

de�ned.

The second claim follows by an easy induction on the index n at which the sequence (ui)i�0 stops. 2

Lemma 5.11 Let u be a well-typed normal elimination. Then d1(u) is de�ned, and is of the form xw or

unbox x for some variable x.

Proof: As for Lemma 5.11, de�ne the sequence (ui)i�0 as in De�nition 5.5, and let n � 1 be the index at

which it stops. Then un is not an elimination, and the only change is when un�1 is an evaluation unbox un.

Then, un cannot be an abstraction, by typing, or a quotation box with for by normality (rule (unbox)

does not apply). So un must be a variable x. 2

Theorem 5.12 Every typable normal �S4-term labels the end sequent of some cut-free LS4 proof.

Proof: Typable terms are constructions for some LS4 proofs. Then, this follows from the same argument

as in the proof of Theorem B.5, de�ning �(u) by induction on the size of u.

In case u is an elimination, the argument is the same as in Theorem B.5, using Lemmas 5.10 and 5.11.

When u is a �-abstraction, we complete the proofs obtained by induction hypothesis by ()R).

The only di�cult case is when u is a quotation box u0 with v1; : : : ; vn for x1; : : : ; xn: because u is normal,

the xi's are exactly the free variables of u0 (rule (gc) does not apply), and no vi is a quotation (rule (box)

does not apply); because u is typable, each vi must be a variable or an elimination.

If some vi is an elimination, then let u0 be box u0 with v1; : : : ; vi�1; d2(vi; y); vi+1; : : : ; vn for x1; : : : ; xn.

The size of u0 is strictly less than that of u, so that �(u0) is de�ned by induction hypothesis, and we complete

it at the bottom by ()L) or (2L), as in the case of eliminations.

So, the only remaining case is when u is box u0 with v1; : : : ; vn for x1; : : : ; xn, where the xi's are the free

variables of u, and v1, : : : , vn are variables. Because u is normal, it is not a (ctract) redex, so the variables v1,

: : : , vn are pairwise distinct. By induction hypothesis, u0[v1=x1; : : : ; vn=xn] (which is strictly smaller than u)

is a construction for some cut-free proof �(u0[v1=x1; : : : ; vn=xn]), which we complete by adding (2R) below,

as follows:
�(u0[v1=x1; : : : ; vn=xn])

...

v1 : 2�1; : : : ; vn : 2�n ` u0[v1=x1; : : : ; vn=xn] : �

(2R) v1 : 2�1; : : : ; vn : 2�n ` u : 2�

Indeed, because u is typable, the vi's must be given boxed types. 2

Theorem 5.13 Every typable �S4-term has a most general type. Moreover, deciding whether a term is

typable and, if so, computing its most general type can be done in polynomial time.

25

Proof: As in Theorem B.6, by a modi�cation of Hindley's type inferencing algorithm. Typing unbox u is

done as we were typing ,u, and computing T (�; box u with v1; : : : ; vn for x1; : : : ; xn) follows the same lines

as for `u: compute (�1;�1) = T (�; v1), (�2;�2) = T (��1; v2), : : : , (�n;�n) = T (��1 : : : �n�1; v2); let �
0
1 be

�1�2�3 : : : �n, �
0
2 be �2�3 : : : �n, : : : , �

0
n be �n; create n fresh type variables �1, : : : , �n, and compute the

most general common substitution � of �0i with 2�i, 1 � i � n; then return T ((x1 : 2�1; : : : ; xn : 2�n)�; u).

(If any operation fails, we fail.) The theorem follows from the same arguments as in Theorem B.6. 2

5.2 Why �S4 is Not Satisfactory

We have said that this system was almost perfect. Unfortunately, it has the following defect. The commuting

conversion above amount to considering the with/for part of a box operator as a multiset fxi 7! vi j 1 � i � ng
of bindings, not just an ordered list of bindings x1 := v1, : : : , xn := vn. And the commuting conversion

is necessary to equate proofs that are in fact the same, although it is not needed to show that any typable

normal term is a construction for some cut-free proof. But rule (ctract) is needed to this purpose, and this

forces us to understand the with/for parts as sets of bindings (in fact, as maps).

We cannot dispense with rule (ctract), indeed, because without it box �u � uyz with x; x for y; z would be

normal. But then, there would be no reasonable cut-free proof corresponding to this term. With rule (ctract),

this rewrites to box �u � uzz with x for z, which corresponds to the following cut-free proof:

(Ax) x : 2�; x0 : 	 ` x0 : 	 (Ax) x : 2� ` x : 2�

()L) x : 2�; x1 : 2�)	 ` x1x : 	 (Ax) x : 2� ` x : 2�

()L) x : 2�; u : 2�)2�)	 ` uxx : 	

()R) x : 2� ` �u � uxx : (2�)2�)))	

(2R) x : 2� ` box �u � uzz with x for z : 2((2�)2�))))

We cannot dispense with the commuting conversion either, otherwise we would lose conuence. For

example, when v2 = v4 is not boxed, (writing (u; v) instead of the more cumbersome �z � zuv),

box ((x1; x3); (x4; x5)) with v1; v2; v3; v4; v5 for x1; x2; x3; x4; x5

rewrites by rule (gc) to

box ((x1; x3); (x4; x5)) with v1; v3; v4; v5 for x1; x3; x4; x5

and by rule (ctract) to

box ((x1; x3); (x2; x5)) with v1; v2; v3; v5 for x1; x2; x3; x5

If v1, v2, v3 and v5 are distinct variables, then these two terms are normal and not �-convertible, and there

is no way to close the conuence diagram | except by permuting the second and third bindings.

So it seems that we are forced to have terms in the calculus that behave as sets, not lists, of bindings. This

interpretation is therefore questionable from a computational point of view, where unordered structures like

�nite maps or sets are not considered basic enough. Alternatively, the �S4-calculus is not a computationally

adequate formalism for describing how cut-elimination works in S4. This is a hint that instead of explaining

the computation contents of cut-elimination, �S4 in fact hides it under the carpet.

Another problem in the �S4-calculus is related to the rules (gc) and (ctract). They really represent

particular cases where the implicit weakening and contraction rules of the logic have to be stated explicitly.

They do not contribute to the computational meaning of the calculus. From the standpoint of the sequent

system, we had therefore rather have these two rules changed into equalities, that is, new clauses in the

de�nition of the commuting conversion relation �. On the other hand, it is more natural to see them as

rewrite rules from a computational viewpoint; this is a slight, but annoying mismatch. To balance this, we

de�ne:

De�nition 5.6 (��
S4
) The ��

S4
-calculus is de�ned as follows.

The ��
S4
-terms are all equivalence classes of �S4-terms modulo �, where � is the smallest congruence

containing �, (gc) and (ctract). (That is, such that whenever u � v, or u ! v by the latter rules, then

u � v.)

26

The rewrite rules are rules (�), (unbox) and (box).

The typing rules are those of Figure 4, plus the following:

u � v � ` u : �

� ` v : �

We need the additional typing rule, because rule (2I) is not invariant under �. This has the unfortunate

consequence that a term might be typable but still have untypable subterms (consider box x with u; v for x; y,

with u typable but v untypable). The typed calculus also exhibits non-terminating behaviours: consider for

example box x with u;
 for x; y, where
 is an (untypable) term with an in�nite rewrite
 !
1 !
2 !
: : :, then box x with u;
 for x; y ! box x with u;
1 for x; y ! box x with u;
2 for x; y ! : : : is an in�nite

rewrite derivation (of �-equivalent terms).

We repair this, and at the same time provide a Curry-Howard isomorphism for S4, by considering typed

terms, that is, terms where variables are annotated with their types, �a la Church:

De�nition 5.7 The set of typed �S4 pre-terms is described by the same grammar as that of the �S4-terms,

except that each variable has a given type �. If the type of x is �, we sometimes stress this fact by writing

it x : �.

The typing rules of typed pre-terms are given in Figure 4, where contexts are constrained so that in any

assumption x : �, � is the type of x.

The typed �S4-terms are all typable pre-terms. The ��
S4
-terms are all classes of typed �S4-terms modulo

�.

Then, every sequence of rewriting steps of typed �S4-terms terminates, but there are still in�nite rewriting

sequences in ��
S4
. A sequence of rewriting steps in ��

S4
is indeed a sequence of terms such that u0 �

u0
0
�! u1 � u0

1
�! : : : �! un � u0n : : :. We then have, for instance, the looping rewriting sequence

box x with y for x � box x with y; (�z � z)u for x; x0 �! box x with y; u for x; x0 � box x with y for x, which

can be repeated in�nitely many times.

Moreover, every �S4-term (resp. ��
S4
-term) has a unique type. In fact, there is unique typing derivation

for any �S4-term (provided that we agree on the context �, say by taking � to be the set of all assumptions

x : �, where � is the type of x). This shows that typed �S4-terms embed in the set of natural deduction

proofs in the system of Figure 4.

We still have a dilemma with (gc) and (ctract). The natural notion of proof in S4 is given by free-form

natural deductions, i.e. proofs as trees of formulas (some of them being discharged assumptions) [GLT89]. In

this case, it is natural to identify proofs modulo (gc) (we are only interested in the part of the proof that is

connected in some way to its conclusion), and modulo (ctract) (identical proofs can be used as many times as

we wish, without having to duplicate them and use them under two di�erent variable names). We can take this

into account by considering not equivalence classes modulo �, but rather equivalence classes of (gc); (ctract)-
normal terms modulo �. Although this forces a particular rewriting strategy on us, it enables us to state a

version of the Curry-Howard isomorphism for S4, where typable ��
S4
-terms (equivalently, (gc); (ctract)-normal

�S4-terms, which are unique representatives of ��
S4
-terms) are in bijection with free-form natural deduction

proofs (equivalently, natural deduction proofs in sequent form, modulo weakenings), and where derivations

following the above strategy are in bijection with eliminations of detours (of cuts). This leads us to the

following de�nition:

De�nition 5.8 (S4) The upper (resp. lower) category of derivations S4 (resp. S4) is de�ned as follows.

The objects are all typed ��
S4
-terms. The morphisms are all derivations between ��

S4
-terms (resp. all

derivations u0 � u00 �! u1 � u01 �! : : : �! un � u0n, where each �!-step is a (�), (unbox) or (box) step,

and where for each i, 0 � i � n, u0i is the (gc); (ctract)-normal form of ui).

The lower category S4 is the real category of S4 proofs, in the same sense as the category of derivations of

the simply-typed �-calculus is the real category of proofs in minimal logic [GLT89]. On the other hand, S4

is a more natural category than S4.

Both S4 and S4 have the same problem as the �S4-calculus: the equivalence relation � is not operational.

We shall develop a calculus that is free of this defect in the next sections | although it will have some others,

27

namely its complexity | , giving us new insights into the computational contents of cut-elimination in LS4.

Rather surprisingly, it will be quite di�erent from �S4: we take it as an indication that a lot was hidden in

the rules of �S4.

6 Related Works

The search for functional interpretations of modal logics was initiated by Dov Gabbay and Ruy de Queiroz

[GdQ90], who were interested in various non-classical logics. Their interpretation of modal logics (not only

S4) is a direct recoding of the notion of Kripke models inside the proof structure. (See pp.38{39, op.cit.)

They introduce world variablesw, write 8w ��(w) instead of 2�, and provide proof rules that are copied from
the usual proof rules of the universal quanti�er (we change their notations to match ours) in Hilbert-style:

notably, if under the assumption w :W (w is a world in the chosen universe W), we can derive u(w) : �(w),

then we can discharge the assumption w : W and derive �w � u(w) : 2�. (Discharging the assumption, a

typical operation of natural deduction, is only allowed for world assumptions.)

This attempt brings rather little intuition as to what the proof structure in S4 or any other modal logic

really looks like. In particular, we have seen that interpreting a Hilbert-style system for S4 was not particularly

hard. Finding the correct reduction rules is trickier, and Gabbay and de Queiroz don't address the problem.

The main point in Curry-Howard interpretations is that the reduction rules should represent a process of

cut-elimination in a corresponding formulation of the logic. A much more promising attempt in this direction

is due to the linear logic community, as far as S4 is concerned. It is indeed remarkable that the rules for

propositional linear logic [GLT89] are quite similar to those for S4. Indeed, rewrite the S4 2 into the linear !

modality (\of course"); then (2I) is promotion, (2E) is dereliction, and all other rules of linear logic can be

proved from the rules of S4, if we overlook the fact that linear sequents use sequences of formulas, not sets

of formulas, as contexts.

This led Gavin Bierman and Valeria de Paiva to adapt a functional interpretation of intuitionistic linear

logic to S4 [BdP92, BdP95]. They inferred that the right categories of natural deduction S4 proofs were the

cartesian closed categories with coproducts and a monoidal comonad. The notion of reduction they propose

is however incomplete, in so far as there may remain cuts in proofs corresponding to normal terms, i.e.

execution of a program may deadlock before reaching a value. We have corrected this in Section 4.3, but the

resulting calculus is not quite satisfactory, as we have seen in Section 5.2.

Frank Pfenning and Hao-ChiWong [PW95] have tackled the problem from the opposite viewpoint: namely,

to try to understand how S4 works, in the hope of understanding more about linear logic. They de�ne a

calculus, named �!2, of constructions for S4. They try to solve the problem of the (2R) rule by using

sequents of the form �1; �2; : : : ; �n ` �, where �1; �2; : : : ; �n is a context stack , i.e. a list of contexts �i,

1 � i � n. This is a good start, because the main problem in the (2R) rule is that, when going from

the conclusions to the premises, we lose all unboxed formulas on the left-hand side (in �0), which in turn

prevents cuts from being pushed upwards. Instead of dropping �0, they push it on the context stack, and

provide another rule to get back what they have pushed in a consistent manner. Therefore, they replace (2R)

by the following two rules:

�1; : : : ; �n; � ` u : � �1; : : : ; �n; �n+1 ` u : 2�

2I �1; : : : ; �n ` `u : 2� pop �1; : : : ; �n ` u : 2�

where � is the empty context, and where the authors use the word \box" instead of `, and \unbox" instead

of ,. This system is already closer to the one that we shall develop in Part II, in that we can interpret their

sequents �1; : : : ; �n ` u : � as the internalized and curri�ed version �1 ` 	2

2

) : : :	n
2

) �, where for each

i, 2 � i � n, 	i is de�ned as 	1
i � : : :�	mi

i �> if �i is 	
1
i ; : : : ;	

mi

i . And conversely, there is a sublanguage

of our formulas that we can interpret as sequents with context stacks.

Their system, however, has several defects. First, although typing is decidable, it is an NP-complete

problem. This is due to the fact that pop is a parasitic rule, which we can guess from the fact that it has

no computational e�ect at all. This was corrected in [DP95], where the authors also note that the box and

unbox operators naturally represent an eval/quote-like mechanism.

Second, and more seriously, they de�ne reduction rules that do not cover all cases of cut-elimination: they

have to restrict themselves to a reduction strategy that they know is safe. To be harsh, they do not propose

28

a calculus, but only a safe strategy. De�ning such a safe strategy (for cut-elimination) is easy in LS4: just

delay the elimination of cuts between (2R) on a formula on its left-hand side and some other subproof, until

this subproof is cut-free. Formulating this strategy is trickier at the level of �-terms, and it seems to have

been their motive. The �S4-calculus, as well as the �evQ-calculus of Part II, does not have to be restricted

to special strategies.

As a �nal reference, let's mention the work done in the Scheme community to make better macro packages.

As Davies and Pfenning have shown [DP95], quote delays some computation, and eval requests the value

of the delayed computation. Macros are just programs that should be evaluated by the compiler front-end

to produce new programs. There is a similarity there with programs which would compute at level 0 and

return a piece of code at level 1 to interpret later on. It is no surprise that early macro packages in Lisp

were implemented using eval in the macro-expander, and macros were basically returned quoted programs.

It is therefore no surprise either that proper scoping rules for so-called hygienic macro systems had to be

precisely stated. One of the main results in this area is the invention of syntactic closures [BR88] to solve

the scoping problem. Let us just note that box terms in �S4 are precisely that: closures.

Acknowledgements

Many thanks to Ian Mackie and to Anselm Baird-Smith for many fruitful discussions, to Pierre Boury for his

early help, to Eric Goubault for discussions on relations between logic and category theory, to Alain Deutsch

for pointing out to me Frank Pfenning and Hao-Chi Wong's paper, to Gilles Dowek for telling me about

explicit substitutions and to Th�er�ese Hardin for discussing about them.

29

A Equivalence of Hilbert and Gentzen Styles

Let's write � ` � if � can be deduced from the set of assumptions � in the Hilbert-style system, and ` � ` �

if the sequent � ` � is deductible in the Gentzen-style sequent system.

We prove the following:

Theorem A.1 � ` � if and only if ` 2� ` �.

where 2� is the result of boxing all formulas in �.

A.1 ` Implies `

We show how to transform a Hilbert-style proof of � ` � into a sequent proof of 2� ` �. Instead of just

producing a proof, actually, we shall leave the constructions in, so as to help visualize the kind of terms that

they produce.

The construction is by induction on the length of the Hilbert-style proof. The base cases are:

� if � is a member of �, then we translate this to the following proof:

(Ax) 2�; x0 : � ` x0 : �

(2L) 2�; x : 2� ` ,x : �

� if � is an instance of one of the axiom schemas:

(s) then we produce the following proof:

(Ax) �0; x3 : �3; (Ax) �0;

x2 : �2; x2 : �2;

z : �1 z : �1

` x3 : �3 ` x2 : �2

()L) �0; x1 : �2) �3; (Ax) �0;

x2 : �2; z : �1 x2 : �2;

` x1x2 : �3 z : �1

` z : �1

()L) �0; x : �1) �2) �3; (Ax) �0;

x2 : �2; z : �1 x : �1) �2) �3;

` xzx2 : �3 z : �1

` z : �1

()L) �0; x : �1) �2) �3; y : �1) �2; z : �1

` xz(yz) : �3

()R) �0; x : �1) �2) �3; y : �1)�2

` �z � xz(yz) : �1) �3

()R) �0; x : �1) �2) �3

` �y � �z � xz(yz) : (�1) �2)) (�1) �3)

()R) �0
` �x � �y � �z � xz(yz) : (�1) �2) �3)) (�1) �2)) (�1) �3)

where �0 is any context, for example 2�.

(k) then we build:

(Ax) �0; x : �1; y : �2 ` x : �1

()R) �0; x : �1 ` �y � x : �2)�1

()R) �0;` �x � �y � x : �1)�2)�1

where �0 = 2�.

(K) (now we come to the modal part):

(Ax) x2 : �2; x1 : �1 ` x2 : �2 (Ax) x1 : �1 ` x1 : �1

()L) x3 : �1) �2; x1 : �1 ` x3x1 : �2

(2L) x : 2(�1) �2); x1 : �1 ` (,x)x1 : �2

(2L) x : 2(�1)�2); y : 2�1 ` (,x)(,y) : �2

(2R) 2�; x : 2(�1) �2); y : 2�1 ` ((,x)(,y))` : 2�2

()R) 2�; x : 2(�1) �2) ` �y � ((,x)(,y))` : 2�1) 2�2

()R) 2� ` �x � �y � ((,x)(,y))` : 2(�1) �2)) 2�1) 2�2

30

Notice that it is now essential that 2� be boxed, so that we can apply rule (2R).

(T)

(Ax) �0; x0 : � ` x0 : �

(2L) �0; x : 2� ` ,x : �

()R) �0 ` �x � ,x : 2�)�

where �0 is 2�.

(4) , produce:

(Ax) 2�; x : 2� ` x : 2�

(2R) 2�; x : 2� ` x` : 22�

()R) 2� ` �x � x` : 2�)22�

Notice again that it is essential that 2� be boxed, so that we can apply rule (2R).

Now, assume that we have a Hilbert-style proof of � ` �, and that all Hilbert-style proofs of strictly

shorter length translate to sequent proofs. We prove that the same happens with � ` �:

� if � was obtained by modus ponens (rule (MP)), i.e. we have strictly shorter proofs of � ` �1)� and
of � ` �1, then we get derivations (�) of �0 ` u : �1) � and (�0) of �0 ` v : �1 (where �0 = 2�).
Therefore, the following:

(�) (Ax) �0; x2 : �; x1 : �1 (Ax) �0; x1 : �1

... ` x2 : � ` x1 : �1 (�0)

�0
` u : �1) � ()L) �0; x3 : �1) �; x1 : �1 ` x3x1 : �

...

(Cut) �0; x1 : �1 ` ux1 : � �0
` v : �1

(Cut) �0
` uv : �

is a proof of �0 ` �. Notice that this is the only case where we need to use the (Cut) rule.

� if � is obtained by the necessitation rule (Nec), then � is of the form 2�0, where � ` �0 has a stricly

shorter proof. The latter translates to a derivation (�) of 2� ` u : �0. Then:

(�)
...

2� ` u : �0

(2R) 2� ` u` : 2�0

is a derivation of 2� ` �. Notice that we need 2� to be boxed so that (2R) is applicable.

QED.

A.2 ` implies `

We now show that if 2� ` � is derivable in the sequent system, then � ` � in the Hilbert-style deduction

system.

The main di�culty in translating proofs to Hilbert style is the translation of the ()R) rule. Indeed, we

need to transform proofs of sequents of the form �;�1 ` �2 into proofs of � ` 2�1)�2.

Lemma A.2 In the non-modal fragment (s), (k), �;�1 ` �2 is provable if and only if � ` �1) �2 is

provable.

Proof: If �1)�2 is provable from �, then �1)�2 is also provable from �;�1. Moreover, �1 is provable

from �;�1, and by modus ponens, �2 is provable from �;�1.

Conversely, assume that �2 is provable from �;�1. We build a proof of � ` �1)�2 by induction on the

length of the proof of �;�1 ` �2:

31

� if �2 is �1, we build a proof of �1) �1: we can �rst prove (�1) (�2)�1)) �1)) (�1) �2)
�1)) (�1) �1) by instantiating (s) (replace �3 by �1, and �2 by �2) �1); then, we can prove

(�1) (�2) �1)) �1) by instantiating (k) (replace �2 by �2) �1). By modus ponens, we infer

(�1)�2)�1)) (�1)�1). But then (�1)�2)�1) is another instance of (k), so by modus ponens

again, we infer �1)�1, i.e. �1)�2. (Notice the analogy with the translation from the �-term �x � x
to the combinatory term SKK.)

� if �2 is a formula in �, then we can �rst prove �2)�1)�2, which is an instance of (k), then apply

modus ponens on this and �2 to get �1)�2. (Notice the analogy with the translation from �x � y to

Ky.)

� if �2 was deduced by modus ponens, i.e. there is a formula �3 which is provable from �;�1, and such

that �3)�2 is provable from �;�1. Then by induction hypothesis, �1)�3)�2 and �1)�3 are

provable from �. Then, we produce (�1)�3)�2)) (�1)�3)) (�1)�2), which is an instance

of (s) and apply modus ponens twice to get �1) �2. (Notice the analogy with the translation from

�x � tt0 to S(�x � t)(�x � t0).)

� if �2 was an instance of (s) or (k), then we produce �2)�1)�2, which is an instance of (k), then

we apply modus ponens to get �1)�2.

2

Lemma A.3 �;�1 ` �2 if and only if � ` 2�1)�2.

Proof: If 2�1) �2 is provable from �, then 2�1) �2 is also provable from �;�1. Moreover, 2�1 is

provable from �;�1 by necessitation, then by modus ponens, �2 is provable from �;�1.

Converserly, assume that �2 is provable from �;�1. We build a proof of � ` 2�1) �2 by induction

on the length of the proof of �;�1 ` �2, as in the proof of Lemma A.2. In all cases of the latter lemma,

then we notice that �;2�1 ` �2 was also provable by using (T) and modus ponens, and then we replace all

uses of �1 by 2�1 in the latter proof. This handles the case where �2 was obtained by any rule other than

necessitation or by instantiating the non-modal axioms.

If �2 was obtained by necessitation, i.e. �2 is 2�3, where �;�1 ` �3 is provable, then by induction

hypothesis we can deduce 2�1) �3 from �. Then, by necessitation, we infer 2(2�1) �3). Then, we

produce 2(2�1)�3))22�1)2�3, which is an instance of (K). By modus ponens, we get 22�1)2�3.

Produce (22�1)2�3))2�1)(22�1)2�3), which is an instance of (k), and infer 2�1)22�1)2�3

by modus ponens. Now, produce (2�1) 22�1) 2�3)) (2�1) 22�1)) (2�1) 2�3), which is an

instance of (s), and infer (2�1)22�1))(2�1)2�3) by modus ponens. But 2�1)22�1 is an instance

of (4), from which we deduce 2�1)2�3, i.e. 2�1)�2, by modus ponens.

If �2 was an instance of (K), (T), or (4), then produce �2)2�1)�2, which is an instance of (k), and

apply modus ponens to get a proof of 2�1)�2. 2

Lemma A.4 Assume that � ` �1)�2 and � ` �2)�3. Then � ` �1)�3.

Proof: By modus ponens between (k) and �2)�3, we get �1)�2)�3, then by modus ponens with (s)

we get (�1)�2)) (�1)�3), then modus ponens with �1)�2 proves �1)�3. (Notice how similar this

is to the construction of the combinator B such that Bxyz = x(yz) as Bxy = S(Kx)y.) 2

Lemma A.5 If � ` �, then � ` �1)�2) : : :)�n)�, for any formulas �1, �2, : : : , �n.

Proof: If n = 0, this is trivial. Now, assume the property true for n, so �2) : : :)�n+1)� is provable

from �, and prove it for n + 1: produce (�2) : : :)�n+1)�))�1) (�2) : : :)�n+1)�), which is

an instance of (k), and by modus ponens, infer �1) �2) : : :) �n+1) �. (Notice that this is the same

as translating the �-term �x1 � �x2 � : : : �xn � x, where x is not one of the xis into the combinatory term

K(K(: : :K| {z }
n times

x : : :)).) 2

Lemma A.6 For any formulas �1, �2, : : : , �n, and 1 � i � n, we have � ` �1)�2) : : :)�n)�i.

32

Proof: Without loss of generality, we can assume i = 1: if i > 1, we construct a proof of � ` �i) : : :)
�n)�i, from which we deduce a proof of � ` �1)�2) : : :)�n)�i by Lemma A.5.

If n = 1, then �n)�n is provable by modus ponens with (s), (k) and (k) as in the �rst case of the proof

of Lemma A.2. Then, by Lemma A.5, � ` �1)�2) : : :)�n)�n.

Assume that �1) �2) : : :) �n) �1 is provable from � for all formulas �1, �2, : : : , �n; we show

that this holds, too, when n is replaced by n + 1. So, take n + 1 formulas �1, �2, : : : , �n+1. Then

�1)�3)�4) : : :)�n+1)�1 is provable. Let's name 	 the formula �3)�4) : : :)�n+1)�1, so

that �1)	 is provable.

We produce ()�2)))�1) ()�2)), which is an instance of (k), and)�2)	, which is

another instance of (k); applying modus ponens on these two, we infer �1))�2)	. Now, we produce

(�1))�2)))(�1)))(�1)�2)), which is an instance of (s), and we apply modus ponens with

the latter formula to get (�1)))(�1)�2)). Now, we can apply modus ponens on the formula �1)	,

which was assumed provable at the beginning, and get �1)�2)	, i.e. �1)�2): : :)�n+1)�1. (Notice

that this corresponds to the translation of �x1 ��x2 � : : :�xn �x1 into S(KK)(S(KK)(: : : S(KK)| {z }
n�1 times

(SKK) : : :)).)

2

Lemma A.7 If � ` �1) �2) : : :) �n)) 	0 and � ` �1) �2) : : :) �n) 	, then � `
�1)�2) : : :)�n)	0.

Proof: By induction on n. If n = 0, this is modus ponens. Otherwise, assume this works for all sequences

�1, �2, : : : , �n of n formulas, we show it works for n+1. Assume that � ` �1)�2): : :)�n)�n+1))	0

and � ` �1)�2) : : :)�n)�n+1)	. But (�n+1))	0)) (�n+1))) (�n+1)	0) is an instance

of (s), so by Lemma A.5, � ` �1) �2) : : :) �n) (�n+1)) 	0)) (�n+1))) (�n+1) 	0).

Then, apply the induction hypothesis to this and � ` �1) �2) : : :) �n) �n+1)) 	0, to get

� ` �1) �2) : : :)�n) (�n+1))) (�n+1)	0). Apply the induction hypothesis again to this and

� ` �1)�2) : : :)�n)�n+1)	, to get � ` �1)�2) : : :)�n)�n+1)	0, which is the desired

conclusion. 2

Lemma A.7 says that we have modus ponens under a pre�x �1)�2) : : :)�n). By Lemma A.5, we also

have all tautologies under this pre�x (those deducible from (s) and (k)).

Lemma A.8 Assume that � ` �1)�2) : : :)�n)	1)	2 and � ` �1)�2) : : :)�n)	2)	3.

Then � ` �1)�2) : : :)�n)	1)	3.

Proof: Same proof as Lemma A.4, using Lemma A.7 instead of modus ponens. 2

We now have all we need to prove that if 2� ` � is derivable in the sequent system, then � is provable

from � in the Hilbert-style system. More generally, we prove that if 2�;�1;�2; : : : ;�n ` � is derivable, then

� ` �1)�2) : : :) �n) � holds in the Hilbert-style system. We do this by induction on the number of

steps in a sequent derivation of 2�;�1;�2; : : : ;�n ` �.

(Ax) If 2�;�1;�2; : : : ;�n ` � is derived by (Ax), then either � = �i for some i, and we conclude by

LemmaA.6; or � has the form �0;�0, and � is2�0: a derivation of2�0;2�0 ` 2�0 by (Ax) yields a proof
of �0;�0 ` 2�0 by necessitation on the assumption �0, and then a proof of � ` �1)�2) : : :)�n)�

by Lemma A.5.

()L) If 2�;�1;�2; : : : ;�n ` � is derived by ()L), then some �i has the form) 	0 (without loss of

generality, let it be �n), and by induction hypothesis � ` �1)�2) : : :) �n�1)	0) � and � `
�1)�2): : :)�n�1)	. By using (k), LemmaA.5, and LemmaA.7, we transform the latter two into

� ` �1)�2): : :)�n�1)�n)	0)� (statement 1) and � ` �1)�2): : :)�n�1)�n)	 (statement

2) respectively. By applying LemmaA.7 on statement 2 and � ` �1)�2): : :)�n�1)�n))	0 (an

instance of Lemma A.6, since �n =)	0), we get � ` �1)�2) : : :)�n�1)�n)	0. Reapplying

Lemma A.7 between the latter and statement 1, we get � ` �1)�2) : : :)�n�1)�n)�.

()R) If 2�;�1;�2; : : : ;�n ` � is derived by ()R), then � is) 	0, and 2�;�1;�2; : : : ;�n;	 ` 	0 is

derivable. By induction hypothesis, 2� ` �1)�2) : : :�n))	0, i.e. 2� ` �1)�2) : : :�n)�.

33

(Cut) If 2�;�1;�2; : : : ;�n ` � is derived by (Cut), then by induction hypothesis � ` �1)�2): : :)�n)	

and � ` �1)�2) : : :)�n))�, for some formula �. We then conclude by applying Lemma A.7.

(2L) If 2�;�1;�2; : : : ;�n ` � is derived by (2L), then we can assume that � = �0;�0, and that by induction

hypothesis �0 ` �0) �1) �2) : : :)�n)�. In particular, � ` �0) �1) �2) : : :)�n)�.

But � ` �0 by assumption, so by modus ponens � ` �1)�2) : : :)�n)�.

(2R) If 2�;�1;�2; : : : ;�n ` � is derived by (2R), then � is 2	, and 2�;�0 ` 	 is derivable, where �0 is

the subset �01; : : : ;�
0
m, m � n, of formulas in �1; : : : ;�n that are boxed. The (2R) rule then infers

2�;�00;�0 ` �, where �00 is the set �001 ; : : : ;�
00
n�m of non boxed formulas in �1; : : : ;�n. By induction

hypothesis, � ` �0
1
): : :)�0m)	 is provable, and we want to show that � ` �1)�2) : : :)�n)2	

is provable, i.e. � ` �00
1
) : : :)�00n�m)�0

1
) : : :)�0m)2	 is provable.

First, we prove by necessitation � ` 2(�01): : :)�0m)), then we use modus ponens with (K) m times

to prove � ` 2�0
1
) : : :)2�0m)2	. We now prove that � ` �0

1
) : : :�0i�1)2�

0
i) : : :2�0m)2	 by

induction on i. If i = 0, this is the result above. So assume that � ` �0
1
): : :�0i�1)2�

0
i): : :2�0m)2	

is provable. Then, �0i) 2�0i is provable by (4) because �0i is boxed. By Lemma A.8, we get � `
�01) : : :�0i�1

)�0i)2�0i+1
) : : :2�0m)2	.

So, now in particular we can prove � ` �0
1
) : : :�0m) 2	, and by Lemma A.5, the desired result

� ` �001) : : :)�00n�m)�01) : : :)�0m)2	.

QED.

34

B Properties of the �,`-Calculus

Theorem B.1 The �,`-calculus is conuent.

Proof: Consider the reduction R de�ned by all rules but (�). (�) is itself conuent.

R is de�ned by a �rst-order term rewriting system that has no non-trivial critical pairs, hence R is locally

conuent. Moreover, the size of each left-hand side is strictly greater than the right-hand side, so that R

terminates. Therefore, R is conuent.

We now show that the reexive transitive closures
�
�!� and

R
�!� of (�) and R commute, which will

entail the conuence of the calculus by Hindley-Rosen's Lemma (Proposition 3.3.5 in [Bar84]). Consider

three terms u, v, v0 such that u
�
�!v and u

R
�!v0. The redex r that is contracted to get v is disjoint from the

redex r0 that is contracted to get v0: therefore, we get the same term w by contracting the residual of r in v0

(if there is still one, otherwise let w be v0) or contracting all residuals of r0 in v. So v reduces to w, and v0

reduces in at most one step to w. So
�
�!� and

R
�!� (this is proposition 3.3.6 in [Bar84]). 2

Theorem B.2 All typed �,`-terms are strongly normalizing.

Proof: We shall use the fact that simply-typed �-terms are strongly normalizing, and translate �,`-terms

of the form ,u and `u to (�x � x)u. Typable �,`-terms of some type then translate to typable �-terms of the

same type, where all 2 symbols have been erased.

Let's write û the translation of u. Given a reduction sequence u1 ! u2 ! : : :! un ! : : :, we interpret

reduction steps ui ! ui+1 that rewrite a �-redex as the same reduction steps again ûi ! ûi+1; and we rewrite
,` reduction steps (where ,(`u) rewrites to u) as two �-reduction steps (�x � x)(�x � x)û ! (�x � x)û ! û.

As any typable term in the source language translates to a typable term, the translated sequence terminates

[Bar84]. But the length of the translated sequence is at least that of the original, hence it terminates, too. 2

De�nition B.1 We say that a �,`-term is an elimination if and only if it is of the form vw or ,v.

Let u be a �,`-term, and let (ui)i�0
be the sequence of (occurrences of) terms de�ned as follows: u0 = u,

and for each i � 0, if ui is an elimination vw or ,v, then ui+1 = v; otherwise the sequence stops at index i.

When the sequence stops at n > 0, we de�ne d1(u) as un�1, and d2(u; y) as u where the occurrence of

un�1 has been replaced by the variable y.

For the following lemma, recall that the size of a term is the number of distinct occurrences in it, i.e. the

size of a variable is 1, the size of an application vw is the sum of those of v and w plus 1, etc.

Lemma B.3 For every elimination u, d1(u) is de�ned.

Moreover, for every variable y that is not free in u, d2(u; y) is de�ned, has a strictly smaller size as u,

and u = d2(u; y)[d1(u)=y].

Proof: The �rst claim follows from the fact that the sequence (ui)i�0 always stops (the size of ui is strictly

decreasing), and that u1 is de�ned since u is an elimination. So it stops at some index n � 1, hence d1(u) is

de�ned.

The second claim follows by an easy induction on the index n at which the sequence (ui)i�0 stops. 2

Lemma B.4 Let u be a well-typed normal elimination. Then d1(u) is de�ned, and is of the form xw or ,x

for some variable x.

Proof: De�ne the sequence (ui)i�0
as in De�nition B.1, and let n � 1 be the index at which it stops. Then

un is not an elimination.

If un�1 is an application unw, un cannot be a quotation `v because un�1 is well-typed; it cannot be a

�-abstraction because un�1 is normal. So un must be a variable x and d1(u) = un�1 = xw.

If un�1 is an evaluation ,un, then un cannot be an abstraction by typing, or a quotation by normality.

So, in both cases, un must be a variable x.

Finally, un�1 is always an elimination by de�nition of the sequence, so there are no other cases. 2

Theorem B.5 Every typable normal �,`-term labels the end sequent of some cut-free LS4 proof.

35

Proof: We build this cut-free proof �(u) by induction on the size of the normal term u, using the previous

Lemmas.

If u is a variable x, then �(x) is an instance of (Ax).

If u is an abstraction �x � v, then �(u) is �(v) completed with an instance of ()R) at the bottom. The

process is similar if u is a quotation, using (2R).

If u is an elimination, then choose a fresh variable y. By Lemma B.3, d1(u) and d2(u; y) are de�ned and

u = d2(u; y)[d1(u)=y]. By Lemma B.4, we have two subcases:

� d1(u) = xv for some variable x and some well-typed normal term v. Recall that the size of d2(u; y) is

strictly less than that of u; also, v is stricly smaller than u, too, so we can apply the induction hypothesis

and build �(u) as:

�(d2(u; y)) �(v)
...

...

�; y : �0 ` d2(u; y) : � � ` v : �00

()L) �; x : �00)�0 ` d2(u; y)[xv=y] : �
0

� or d1(u) = ,x for some variable x. We then de�ne �(u) as :

�(d2(u; y))
...

�; y : �0 ` d2(u; y) : �

(2L) �; x : 2�0 ` d2(u; y)[,x=y] : �

2

Theorem B.6 Every typable �,`-term has a most general type. Moreover, deciding whether a term is typable

and, if so, computing its most general type can be done in polynomial time.

Proof: By a slight modi�cation of Hindley's type reconstruction algorithm [Hin69]. (This is the basis of

Milner's algorithm for ML [Mil78], without the notion of generalization of type variables.)

We extend the algebra of formulas (types) with type meta-variables �, �, : : : , and consider substitutions �

from type meta-variables to types. For any type �, �� denotes the result of applying the substitution � to �.

We assume that, if � is a context x1 : �1; : : : ; xm : �m, then �� denotes the context x1 : �1�; : : : ; xm : �m�.

��0 denotes the composition of � and �0, de�ned as the substitution such that �(��0) = (��)�0 for any �. A

substitution or type T is more general than T 0 if and only if T 0 can be expressed as T�00 for some substitution

�00. We extend the notion to couples of such objects in the obvious way.

We de�ne a type inferencing algorithm T (�; u) that returns a most general couple (�;�) such that �� ` u :

� is derivable, or fails if there is no couple (�;�) making �� ` u : �� derivable. It works by reconstructing

a natural deduction proof from the bottom up by structural induction on u, guessing the formulas in the

premises that do not appear in the conclusion of the rules by generating fresh type variables, and solving

equality constraints between types by uni�cation.

To infer the most general substitution and type of u under �, we compute (�;�) = T (�; u) if the com-

putation succeeds, or fail. T (�; u) is de�ned as usual for all constructions of the �-calculus; only the ` and ,

constructions need some additional de�nitions:

� (Ax) if x is a variable, and � contains an assumption x : �, then T (�; x) = ([];�), where [] is the empty

substitution; otherwise, T (�; x) fails;

� ()E) to compute T (�; uv), we compute (�1;�1) = T (�; v) (and we fail if this fails), then we compute

(�2;�2) = T (��1; u) (and fail if this fails), then let � be a fresh type variable, and �3 be the most

general uni�er of �1�2) � and �2 (we fail if they are not uni�able), then we return (�1�2�3; ��3);

� ()I) to compute T (�; �x � u), we compute (�;�) = T ((�; x : �); u), where � is a fresh type variable,

and fail it it fails; otherwise we return (�; ��)�);

36

� (2E) to compute T (�; ,u), we compute (�1;�1) = T (�; u) (and fail if it fails), then we let �2 be the

most general uni�er of �1 and 2�, where � is a fresh type variable (we fail if this fails), and return

(�1�2; ��2);

� (2I) to compute T (�; `u) is more complicated. First, notice that a sequent �0 ` u0 : �0 is derivable only

when, for all free (term) variables x in u0, there is an assumption x : 	 in �0 (this is an easy structural

induction on the derivation). In particular, in the case of a term `u, �� ` `u : 2� can only be derivable

if, for every free term variable xi, 1 � i � n, in u, there is an assumption of the form xi : 2	i in �,

and x1 : 2	1�; : : : ; xn : 2	n� ` u : � is derivable.

Therefore, to compute T (�; `u), we �rst check that all the free variables x1, : : : , xn of u have assumptions

xi : 	
0
i, 1 � i � n, in �. We then compute the most general simultaneous uni�er �1 of 	

0
1 with 2�1, : : : ,

	0n with 2�n, where �1, : : : , �n are fresh type variables, and compute (�2;�) = T ((x1 : 	
0
1
�1; : : : ; xn :

	0n�1); u). If any operation fails, we fail; otherwise, we return (�1�2;2�).

The correctness of the algorithm depends on the fact that if � ` u : � is derivable, then �� ` u : �� is

derivable for any substitution �: this follows from an easy induction on the derivation.

Its completeness follows from classical arguments, and from the remarks of the (2I) case.

That it takes polynomial time follows from the fact that we can compute uni�ers of � and �0 in linear

time, and represent them as triangular forms of size at most the sum of the sizes of � and �0 [MM82]. 2

37

References

[ACCL90] Mart��n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques L�evy. Explicit substi-

tutions. In Proceedings of the 17th Annual ACM Symposium on Principles of Programming

Languages, pages 31{46, San Francisco, California 1990. January.

[Bar84] Henk Barendregt. The Lambda Calculus, Its Syntax and Semantics, volume 103 of Studies in

Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam,

1984.

[BdP92] Gavin Bierman and Valeria de Paiva. Intuitionistic necessity revisited. In Logic at Work,

Amsterdam, the Netherlands, 1992.

[BdP95] Gavin Bierman and Valeria de Paiva. Intuitionistic necessity revisited. Journal of Symbolic

Logic, 1995. submitted.

[BR88] Alan Bawden and Jonathan Rees. Syntactic closures. In 1988 ACM Conference on Lisp and

Functional Programming, pages 86{95, 1988.

[CH87] Thierry Coquand and G�erard P. Huet. Concepts math�ematiques et informatiques formalis�es

dans le calcul des constructions. In The Paris Logic Group, editor, Logic Colloquium '85, pages

123{146. North-Holland Publishing Company, 1987.

[CR91] William Clinger and Jonathan Rees. The revised
4
report on the algorithmic language Scheme.

LISP Pointers, 4(3):1{55, 1991.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van Leeuwen, ed-

itor, Handbook of Theoretical Computer Science, chapter 6, pages 243{320. Elsevier Science

Publishers b.v., 1990.

[DP95] Rowan Davies and Frank Pfenning. A modal analysis of staged computations. In Workshop on

Types for Program Analysis, Aarhus, Denmark, May 1995.

[GdQ90] Dov M. Gabbay and Ruy J.G.B. de Queiroz. Extending the Curry-Howard interpretation to

linear, relevance and other resource logics. In Logic Colloquium'90, Helsinki, July 1990. also as

preprint of a full paper to appear in the Journal of Symbol Logic, available at the Department

of Computing, Imperial College, 44 pp., or by ftp at the ftp archive at theory.doc.ic.ac.uk/.

[Gir71] Jean-Yves Girard. Une extension de l'interpr�etation de G�odel �a l'analyse, et son application

�a l'�elimination des coupures dans l'analyse et la th�eorie des types. In J.E. Fenstad, editor,

Proceedings of the 2nd Scandinavian Logic Symposium, pages 63{92. North-Holland Publishing

Company, 1971.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

[Gor93] Rajeev Gor�e. Semi-analytic tableaux for propositional modal logics of nonmonotonicity. In

David Basin, Reiner H�ahnle, Bertram Fronh�ofer, Joachim Posegga, and Camilla Schwind, edit-

ors, Workshop on Theorem Proving with Analytic Tableaux and Related Methods, pages 89{100,

Marseille, France, April 1993. Technical Report MPI-I-93-213, Max-Planck-Iinstitut f�ur Inform-

atik, Saarbr�ucken, Germany.

[Gri90] Timothy G. Gri�n. A formulas-as-types notion of control. In Proceedings of the 17th An-

nual ACM Symposium on Principles of Programming Languages, pages 47{58, San Francisco,

California, January 1990.

[Hin69] J. R. Hindley. The principal type scheme of an object in combinatory logic. Transations of the

American Mathematical Society, 146:29{60, 1969.

38

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. R. Hindley and J. P. Seldin,

editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages

479{490. Academic Press, 1980.

[Kri92] Jean-Louis Krivine. Lambda-calcul, types et mod�eles. Masson, 1992.

[MCAE+62] John Mac Carthy, P.W. Abrahams, D.J. Edwards, T.P. Hart, and M.I. Levin. LISP 1.5 Pro-

grammer's Manual. MIT Press, 1962.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and

System Sciences, 17:348{375, 1978.

[MIT95] MIT Arti�cal Intelligence

Lab. Html page at http://www.ai.mit.edu/projects/su/web-projects.html. Contents:

\Suppose World-Wide Web servers had Scheme interpreters linked in with their executables.

Then small Scheme programs could transfer themselves across the network from server to server

to carry out tasks for their masters, perhaps coming back to a home machine to report on their

results in the end. Scheme is a good choice for such a language because Scheme implementations

are \safe"|it is easy to guarantee that an arbitrary Scheme program received by a server can't

damage the server or compromise its security. With proper cryptographic authentication, an

agent can access or commit the user's resources: buy movie tickets, check his bank account,

and so forth.", 1995.

[MM82] A. Martelli and Ugo Montanari. An e�cient uni�cation algorithm. ACM Transactions on

Programming Languages and Systems, 4(2):258{282, 1982.

[PW95] Frank Pfenning and Hao-Chi Wong. On a modal �-calculus for S4. In 11th Conference on

Mathematical Foundations of Programming Semantics, 1995. Extended Abstract.

[Rei94] Andy Reinhardt. The network with smarts|new agent-based WANs presage the future of

connected computing. BYTE, October 1994. On Telescript, IBM's planned Intelligent Com-

munications Service, with a sidebar about related Internet developments: Secure-HTTP and

Safe-Tcl.

39

