7,920 research outputs found

    Decision support for build-to-order supply chain management through multiobjective optimization

    Get PDF
    This is the post-print version of the final paper published in International Journal of Production Economics. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.This paper aims to identify the gaps in decision-making support based on multiobjective optimization (MOO) for build-to-order supply chain management (BTO-SCM). To this end, it reviews the literature available on modelling build-to-order supply chains (BTO-SC) with the focus on adopting MOO techniques as a decision support tool. The literature has been classified based on the nature of the decisions in different part of the supply chain, and the key decision areas across a typical BTO-SC are discussed in detail. Available software packages suitable for supporting decision making in BTO supply chains are also identified and their related solutions are outlined. The gap between the modelling and optimization techniques developed in the literature and the decision support needed in practice are highlighted. Future research directions to better exploit the decision support capabilities of MOO are proposed. These include: reformulation of the extant optimization models with a MOO perspective, development of decision supports for interfaces not involving manufacturers, development of scenarios around service-based objectives, development of efficient solution tools, considering the interests of each supply chain party as a separate objective to account for fair treatment of their requirements, and applying the existing methodologies on real-life data sets.Brunel Research Initiative and Enterprise Fund (BRIEF

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    Optimal advertising campaign generation for multiple brands using MOGA

    Get PDF
    The paper proposes a new modified multiobjective genetic algorithm (MOGA) for the problem of optimal television (TV) advertising campaign generation for multiple brands. This NP-hard combinatorial optimization problem with numerous constraints is one of the key issues for an advertising agency when producing the optimal TV mediaplan. The classical approach to the solution of this problem is the greedy heuristic, which relies on the strength of the preceding commercial breaks when selecting the next break to add to the campaign. While the greedy heuristic is capable of generating only a group of solutions that are closely related in the objective space, the proposed modified MOGA produces a Pareto-optimal set of chromosomes that: 1) outperform the greedy heuristic and 2) let the mediaplanner choose from a variety of uniformly distributed tradeoff solutions. To achieve these results, the special problem-specific solution encoding, genetic operators, and original local optimization routine were developed for the algorithm. These techniques allow the algorithm to manipulate with only feasible individuals, thus, significantly improving its performance that is complicated by the problem constraints. The efficiency of the developed optimization method is verified using the real data sets from the Canadian advertising industry

    Multi-objective engineering shape optimization using differential evolution interfaced to the Nimrod/O tool

    Get PDF
    This paper presents an enhancement of the Nimrod/O optimization tool by interfacing DEMO, an external multiobjective optimization algorithm. DEMO is a variant of differential evolution – an algorithm that has attained much popularity in the research community, and this work represents the first time that true multiobjective optimizations have been performed with Nimrod/O. A modification to the DEMO code enables multiple objectives to be evaluated concurrently. With Nimrod/O’s support for parallelism, this can reduce the wall-clock time significantly for compute intensive objective function evaluations. We describe the usage and implementation of the interface and present two optimizations. The first is a two objective mathematical function in which the Pareto front is successfully found after only 30 generations. The second test case is the three-objective shape optimization of a rib-reinforced wall bracket using the Finite Element software, Code_Aster. The interfacing of the already successful packages of Nimrod/O and DEMO yields a solution that we believe can benefit a wide community, both industrial and academic

    Multiobjective scheduling for semiconductor manufacturing plants

    Get PDF
    Scheduling of semiconductor wafer manufacturing system is identified as a complex problem, involving multiple and conflicting objectives (minimization of facility average utilization, minimization of waiting time and storage, for instance) to simultaneously satisfy. In this study, we propose an efficient approach based on an artificial neural network technique embedded into a multiobjective genetic algorithm for multi-decision scheduling problems in a semiconductor wafer fabrication environment

    Economic and environmental strategies for process design

    Get PDF
    This paper first addresses the definition of various objectives involved in eco-efficient processes, taking simultaneously into account ecological and economic considerations. The environmental aspect at the preliminary design phase of chemical processes is quantified by using a set of metrics or indicators following the guidelines of sustainability concepts proposed by . The resulting multiobjective problem is solved by a genetic algorithm following an improved variant of the so-called NSGA II algorithm. A key point for evaluating environmental burdens is the use of the package ARIANE™, a decision support tool dedicated to the management of plants utilities (steam, electricity, hot water, etc.) and pollutants (CO2, SO2, NO, etc.), implemented here both to compute the primary energy requirements of the process and to quantify its pollutant emissions. The well-known benchmark process for hydrodealkylation (HDA) of toluene to produce benzene, revisited here in a multiobjective optimization way, is used to illustrate the approach for finding eco-friendly and cost-effective designs. Preliminary biobjective studies are carried out for eliminating redundant environmental objectives. The trade-off between economic and environmental objectives is illustrated through Pareto curves. In order to aid decision making among the various alternatives that can be generated after this step, a synthetic evaluation method, based on the so-called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) (), has been first used. Another simple procedure named FUCA has also been implemented and shown its efficiency vs. TOPSIS. Two scenarios are studied; in the former, the goal is to find the best trade-off between economic and ecological aspects while the latter case aims at defining the best compromise between economic and more strict environmental impact

    Application of a new multi-agent Hybrid Co-evolution based Particle Swarm Optimisation methodology in ship design

    Get PDF
    In this paper, a multiple objective 'Hybrid Co-evolution based Particle Swarm Optimisation' methodology (HCPSO) is proposed. This methodology is able to handle multiple objective optimisation problems in the area of ship design, where the simultaneous optimisation of several conflicting objectives is considered. The proposed method is a hybrid technique that merges the features of co-evolution and Nash equilibrium with a ε-disturbance technique to eliminate the stagnation. The method also offers a way to identify an efficient set of Pareto (conflicting) designs and to select a preferred solution amongst these designs. The combination of co-evolution approach and Nash-optima contributes to HCPSO by utilising faster search and evolution characteristics. The design search is performed within a multi-agent design framework to facilitate distributed synchronous cooperation. The most widely used test functions from the formal literature of multiple objectives optimisation are utilised to test the HCPSO. In addition, a real case study, the internal subdivision problem of a ROPAX vessel, is provided to exemplify the applicability of the developed method
    corecore