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ultiobjective scheduling for semiconductor manufacturing plants

. Baez Senties, C. Azzaro-Pantel ∗, L. Pibouleau, S. Domenech
niversité de Toulouse, Laboratoire de Génie Chimique, UMR 5503, ENSIACET INPT, 4, allée Emile Monso - BP 44362, 31432 Toulouse, Cedex 4, France

a b s t r a c t

Scheduling of semiconductor wafer manufacturing system is identified as a complex problem, involving
multiple and conflicting objectives (minimization of facility average utilization, minimization of waiting
time and storage, for instance) to simultaneously satisfy. In this study, we propose an efficient approach
based on an artificial neural network technique embedded into a multiobjective genetic algorithm for
eywords:
iscrete event simulation
rtificial neural networks

multi-decision scheduling problems in a semiconductor wafer fabrication environment.
ultiobjective genetic algorithm
emiconductor manufacturing

. Introduction

Scheduling of semiconductor wafer manufacturing system is
dentified as a highly complex job shop task, mainly because of
he typical features of the process scheme, such as complex prod-
ct flows (the so-called wafer fab is indeed a multipurpose plant),
apidly changing demands and product mixes with sometimes very
rief product life cycles (Ellis, Lu, & Bish, 2004). It is thus a significant
hallenge to develop effective scheduling methods in wafer fabri-
ation. Discrete event simulation (DES) is one of the most widely
sed tools to study, analyze, design, and improve manufacturing
ystems. The combined used of a DES and an optimization pro-
edure based on a genetic algorithm was an efficient solution to
hort-term job-shop scheduling problems and was implemented
n our research team (Charles, Floru, Azzaro-Pantel, Pibouleau, &
omenech, 2003).

In spite of its acknowledged benefits, this kind of approach
ften reaches its limits in the industrial practice because of the
ighly combinatorial nature of the problems. In addition, the main
mphasis of much of the work on scheduling has been on the
evelopment of predictive methodologies with a single objective
o optimize. A lot of scheduling techniques for semiconductor man-
facturing have been stated in publications over the last years

Uzsoy, Lee, & Martin-Vega, 1992a; Uzsoy, Lee, & Martin-Vega,
992b). Most approaches to the semiconductor manufacturing
cheduling problem can be classified into four categories: heuris-
ic rules, mathematical programming techniques, neighbourhood

∗ Corresponding author. Tel.: +33 5 34 32 33 00; fax: +33 5 34 32 33 99.
E-mail address: Catherine.AzzaroPantel@ensiacet.fr (C. Azzaro-Pantel).
search methods, and artificial intelligence techniques. A thorough
review is proposed in (Gupta & Sivakumar, 2006).

In industrial practice, wafer fabrication is a complex, dynamic
and stochastic task in which satisfying multiple objectives might be
more realistic than only optimally meeting a single criterion. Actu-
ally, production managers have to cope with various objectives,
which contributes to scheduling complexity: meeting due dates
is an important goal in low-volume and high variety production
circumstances within competitive market environments. Another
major objective in scheduling of semiconductor wafer fabrication
is reducing waiting time for work in process (WIP) inventory to
improve responsiveness to customers. In addition, the shorter the
period that wafers are exposed to contaminants while waiting for
process, the smaller the yield loss. Increasing the throughput is also
an important stake, since the investment in fabrication equipment
is capital intensive.

In this study, an approach based on an artificial neural network
(ANN) technique coupled with a multiobjective genetic algorithm
(MUGA) for multi-decision scheduling problems in semiconductor
wafer fabrication, is proposed. Indeed, instead of using a classical
DES procedure for simulating the manufacturing system, an ANN is
preferred for response time reasons. Furthermore, the multiobjec-
tive optimization problem arising for the multi-decision scheduling
problem is tackled with a genetic algorithm, insofar as this type
of procedure is particularly well fitted to simultaneously handle
several competitive objectives. Fig. 1 summarizes the proposed

methodology, which will be presented in the following sections.

The paper is organized as follows. Section 2 is devoted to the
general process description. Section 3 recalls the principles of dis-
crete event simulation. Then, Section 4 presents the methodology
for ANN modelling. In Section 5, the principles of the multiob-
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Nomenclature

ACT average cycle time (days)
AWT average waiting time (min)
ANN artificial neural network
Bi bias
DES discrete event simulator
FAU facility average utilization (%)
g(k) kth output of the ANN
MNR maximum number of recipes
MSE mean square error
MUGA multiobjective genetic algorithm
NB number of batches in the WIP
Nbits number of bits in the binary code
NHN number of hidden neurons
NSL number of sequencing batches (batches)
NTe number of couples for the test phase
NTr number of couples for the training phase
n size of the data base
PEC percentage of each family
R coefficient correlation
RMSE root square of mean square error
S binary string coding the value of the chromosome
SD standard deviation of the average cycle time (days)
TBB time between batches (min)
TBC time between campaigns (min)
Te test
TP total production (batches)
Tr training
TS total storage of batches
WIP work in process
w weight
xi input variable
xmax upper bound on the input variable xi
xmin lower bound on the input variable xi
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industry for a wide range of strategic objectives such as fab design,
xnorm normalized value of the input variable xi
y(k) kth output of the ANN

ective optimization procedure are presented. Section 6 discusses
ome typical results in the case of bicriteria and tricriteria opti-
izations. Then, the conclusions and perspectives are reported in

he last section.

. Process description
In this investigation, a didactic example of small size, represent-
ng the behaviour of a real fab is considered. The process takes
nto account 14 different equipment units used (from which 12

Fig. 1. General m
are different) and involves 24 operating stages. To answer to the
request of the market, the workshop has, for the majority of the
manufacturing stages, several equipment units operating in paral-
lel able to carry out the same operations. Two shared equipment
units (units C and D) are used up to 6 times in the manufacturing
sequence, to reproduce the so-called re-entrant flow, in which a
similar sequence of processing step is repeated several times. Some
units are arranged in parallel, which confers more flexibility to the
process. The production of five different products with their asso-
ciated recipes identified by an integer number (1–5) is considered.
This workshop must satisfy a production varying from 4 to 5 prod-
ucts. It is described in Table 1, where the treatments for the five
products and the stages of the manufacturing process.

For each stage, the membership zone, the name of the stage,
the involved equipment and processing times of each product are
specified. A processing time equal to zero means that the product
recipe does not use the corresponding equipment. The equipment
units E and F, like G and H, are identical equipment placed in parallel
for carrying out the same operation.

A batch is constituted by 50 wafers and 3 levels of productions
are to be considered according to market demand, i.e. 32, 64 and 96
batches (noted TP as total production). The example, which serves
as an illustration of the procedure, is presented in Fig. 2 and mim-
ics the manufacturing plant of a typical semiconductor process. It
reproduces all the characteristics of a real production system.

3. Discrete event simulation

3.1. MELISSA simulator

The conventional search and optimization methods used for
batch plant scheduling and reviewed in (Gupta & Sivakumar, 2006)
are generally intensive in computation time as even the simple
manufacturing scheduling problems are NP-hard. The complexity
of scheduling problem increases more in semiconductor manufac-
turing because of the presence of different types of work-centers,
very large and changing varieties of the products, re-entrant pro-
cess flow, and contradicting multiple objective functions, etc.
In modelling the scheduling problem of semiconductor manu-
facturing, the use of discrete event simulation method helps in
overcoming many of the limitations of the conventional approaches
(Sivakumar, 2001).

Let us recall that simulation modelling has become an abso-
lutely essential tool to accurately assess the capacity of a facility.
Simulation modelling has been widely used in the semiconductor
equipment selection, capacity and cycle time planning, etc. (Min &
Yih, 2003). Its use in the tactical area has been relatively limited.
The involved areas include short-interval scheduling, dispatching
of individual batches, equipment scheduling, short-term human

ethodology.



Table 1
Processing times of the batches by product.

Phase Zone Equipment Capacity [lots] Process times by lot [min]

Product 1 Product 2 Product 3 Product 4 Product 5

1 Diffusion A 1 120 120 120 120 120
2 Diffusion B 4 0 0 1000 700 850
3 Photo C 1 0 0 20 20 20
4 Engraving D 1 0 0 15 15 15
5 Diffusion E 2 500 200 500 400 300
6 Diffusion F 2 500 200 500 400 300
7 Photo C 1 20 20 20 20 20
8 Engraving D 1 15 15 15 15 15
9 Diffusion G 2 700 600 500 700 400

10 Diffusion H 2 700 600 500 700 400
11 Photo C 1 20 20 20 0 0
12 Engraving D 1 15 15 15 0 0
13 Test I 1 1 1 1 1 1
14 Diffusion J 2 350 400 500 0 0
15 Photo C 1 0 0 0 30 30
16 Engraving D 1 0 0 0 20 20
17 Diffusion K 2 0 0 0 400 500
13 Photo C 1 30 30 30 30 30
19 Engraving D 1 20 20 20 20 20
20 Engraving L 1 140 180 200 0 0
21 Metal M 1 120 120 120 120 120
22 Photo C 1 20 20 20 20 20
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23 Engraving D 1
24 Metal N 1

ote: 1 lot = 50 silicon plaquetes.

esource assignment, etc. To model the wafer fab in a high degree of
etail, discrete event simulation (DES) techniques were previously

mplemented, leading to the development of the MELISSA software
n collaboration with the Motorola Company in Toulouse, France
Peyrol, Pibouleau, Floquet, Couderc, & Domenech, 1993). Process
lanning simulations evaluate assignments of jobs to machines
nd routings for those jobs through the shop. Scheduling sim-
lations seek solutions to daily issues including on-time order
ompletion, priority changes, and unexpected changes in resource
vailability. Typical events taken into account and managed in
he simulation core have been widely presented in Bérard et al.
1999) and will not be recalled here. The software tool was widely
sed and validated in previous works and reflects the behaviour
f the plant. The different runs performed with MELISSA allow
dentifying the more sensitive variables on some performance cri-
eria, such as facilities utilization, cycle time, limitation of WIP,
tc.
MELISSA was developed to represent the path followed by the
atches of products in a manufacturing plant of electronic compo-
ents, in order to help the production manager, who has to cope
ith several difficult problems, such as multiproduct manufactur-

Fig. 2. Typical semico
20 20 20 20
20 20 20 20

ing on general-purpose equipment in order to organize the product
flows and to use efficiently the available resources.

For MELISSA design, the following assumptions were used.

• The equipment units are reliable at 100% and are not subjected
to preventive maintenances.

• The workshop runs 24 h a day and 7 days a week.
• The production is organized in periodic production campaigns:

the planning horizon has been partitioned into a number of time
periods (campaigns), each dedicated to the production of a subset
of products; campaigns are assumed to be identical (same length
and same set of products for each campaign).

• The batches of a given product are all of the same size.
• Storages have a sufficient capacity, in order not to introduce con-

straints of availability.
• In the same way, the initial levels of raw material storage are
sufficiently important not to generate constraints of availability.
• All the batches are assigned to each recipe and are managed

according to the same rule of priority, i.e. FIFO.
• The percentage of each family (a number of batches of each family

to be processed in a campaign) can be equal to 12.5% or 25%, or

nductor plant.



Table 2
Decision variables.

Decision variable Value

Maximum number of
recipes

5: R1, R2, R3, R4, R5

Maximum number of
recipes treated
simultaneously (MNR)

4 among the 5 possible recipes
Ex: R1, R2, R3, R4

Percentage of each family
(PEC)

3 combinations: 25% R1, 25% R2, 25% R3,
25% R4, 12.5% R1, 37.5% R2, 25% R3, 25%
R4, 37.5% R1, 12.5% R2, 25% R3, 25% R4

Total production (TP) 3 discrete values: 32, 64, 96
Number of sequencing

batches (NSL)
2 discrete values: 8 and 16

Time between campaigns
(TBC)

10 discrete values (min): 1500, 2200,
2800, 3300, 3800, 4400, 5000, 5500,
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each layer, determining the function complexity. Important issues
6000, 6500
Time between batches

(TBB)
Continuous value between 0 and TBC

37.5% (this variable is often called “mix of production”).
The quantities of products, both equipment and storage capaci-
ties are expressed in number of batches.
The equipment units located in parallel are identical on all the
aspects.
The processing times for all the stages are deterministic.
The loading/unloading times of the products are taken into
account in the processing time.
The “operator” resource is not modelled.

To sum up, the data, which are necessary for simulation pur-
ose involve workshop architecture, product recipe, production
ata (simulation horizon, batch treatment priority, batch release
rder either imposed or fixed by heuristic rules, and heuristic rules
or conflict management). Since the MELISSA discrete event simu-
ator has been already presented in detail (Peyrol et al., 1991) only
he key points that will be used for ANN design will be presented
n what follows.

.2. Input–output data of MELISSA

This section describes the data set, which will be used in the
imulation for training the multi-layer perceptron (MLP) neural
etworks presented below.

.2.1. Input data: decision variables
The input data for the simulation, which are the decision vari-

bles for the optimization phase, and their corresponding values
re reported in Table 2.

.2.2. Output variables: performance criteria
There are multiple criteria that can be used in evaluating the

ystem performance and system status of the semiconductor fab-
ication. They are mainly based on inventory level, waiting time, or
acility utilization.

Six criteria related to equipment and products were selected
ere:

. Facility average utilization (FAU).

. Average cycle time (ACT).
. Standard deviation of the average cycle time (SD).

. Average waiting time (AWT).

. Number of batches in the WIP (NB).

. Total number of batch storages (TS).
These criteria are computed according to the following rela-
tions:

FAU(%) =
∑E

j=1UTj

E
× 100 (1)

In this expression,

UTj(%) = NUEj

TBC
× 100 (2)

NUEj corresponds to the net utilization time for equipment j and
TBC is the campaign duration (time between two consecutive cam-
paigns). UTj corresponds to the net utilization time expressed in
percentage of the campaign duration.

E corresponds to the total number of equipment items.

ACT =
∑NEL

j=1 (EDj − IDj)

NEL
(3)

ID is the input date of batch j, ED represents the exit date of batch j
and NEL is the number of exit batches.

SD =

√√√√√ 1
NEL

⎛
⎝

NEL∑
j=1

ACTj
2

⎞
⎠ − ACT2 (4)

ACTj corresponds to the average cycle time of batch j.

AWT =
∑TS

j=1WTj

TS
(5)

WTj represents the waiting time for each batch that has been stored
in the sequence. A batch may have been stored several times in front
of an equipment unit of its processing recipe.

The criteria NB and TS are directly given by the simulator.
Of course, the time criteria are converted in the most represen-

tative time units in the final presentation of the results.

4. ANN modelling

4.1. ANN building

The embedding of the DES simulation model in an optimiza-
tion procedure may require a lot of CPU time, which renders its use
impractical for handling the problem of multi-decision schedul-
ing of semiconductor manufacturing processes. For this reason, an
artificial neural network (ANN) technique (Dreyfus et al., 2004)
has been implemented to model the semiconductor plant, since
its efficiency has been successfully demonstrated in semiconductor
processing by many researchers (Min & Yih, 2003; Sung & Choung,
1999). The neural network stores the information in the strength of
the neuron interconnection through the so-called weights. Because
the weights of the links between the neurons cannot be prede-
fined for neural networks used in real-life applications, the learning
phase, in which all the examples are presented to the ANN repeat-
edly, is necessary to adjust the weights. The DES simulator is used
for performing this learning phase. The multi-layer perceptron
(MLP) neural network has been used in this study, since this kind
of networks is typically used in supervised learning problems (see
Fig. 3) with a back propagation (BP) algorithm scheme as a learn-
ing algorithm used to train multi-layer networks in a very general
mode. Such networks can model functions of almost arbitrary com-
plexity, with the number of layers, and the number of units in
in multi-layer perceptrons (MLP) design include specification of
the number of hidden layers and the number of units in these lay-
ers (Haykin, 1994). One hidden layer has been considered to be
sufficient in this work to represent the DES behaviour.
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Table 3
Bounds on the decision variables.

Decision variable Lower bound Upper bound

MNR 1 5
PEC 1 3
TP 32 96
Fig. 3. Multi-layer perceptron neural network.

In Fig. 3, the input layer is made up by the decision variables (see
able 2), the intermediate layer is the hidden layer, and the perfor-
ance criteria (see Section 3.2.2) are the outputs of the network.

he terms B1 and B2 refer to biases of the network.
The choice of an adequate activation function proves to be an

mportant component of the ANN’s. Several types of activation
unctions can be classically used: some are linear, exponential,
ith threshold, Gaussian. . .. The activation function adopted in

his study is the hyperbolic tangent that turns out to be ideal for
ustomization of multi-layer perceptrons, particularly the hidden
ayers.

= tanh[Bi +
p∑

i=1

wpxp] (6)

here Bi is the bias (i = 1 or 2), p is the number of neurons of the
nput layer or the hidden layer, xi are the variables and wi are the

eights.
The implementation of a neural network begins with the con-

truction of a data base and the choice of the samples. According
o Miller, Freund, and Johnson (1990), the size n of the data base is
iven by the relation:

= Z2pq

d2
(7)

here Z is the normalized Gaussian variable corresponding to a
robability of 95% (Z = 1.96), p = q = 0.5, and d is the target (d = 2%).
he value of n is truncated at 2250.

Data normalization is especially useful for modelling applica-
ions where the inputs are generally on different scales. A min–max
ormalization technique has been adopted in this study, since it has
he advantage of preserving exactly all the relationships in the data
nd it does not introduce any bias. A linear interpolation formula
uch as that proposed in (8) has been used for rescaling: the values
f input/output variables of the network are in the range [−1, 1]:

norm = 2
(xi − xmin)

(xmax − xmin)
− 1 (8)

here xmin and xmax are the lower and upper bounds of variable
i. For each decision variable, the bounds values are reported in
able 3.

During the training phase, the network adapts its structure (i.e.
eights of connections) in order to obtain the desired values on its
xit neurons. The data base for performing the training is built up
y using the DES simulator. In the supervised training phase imple-
ented here, after initialization of the weights of the network (in

eneral with random values), couples of input (decision variables)
nd output (performance criteria) are extracted from the data base.
NSL 8 16
TBC 1500 6500
TBB 0 TBC

The error during the learning is the so-called root-mean square
error (RMSE) and defined as follows:

RMSETr =
√

MSETr (9)

with the mean square error (MSE) given by

MSETr = 1
NTr

NTr∑
k=1

(y(k) − g(k))2 (10)

RMSE gives a measure of the prediction accuracy, where NTr is
the pattern number, that is the number of couples used for the train-
ing phase (we have chosen NTr equal to 2/3n, that is to say NTr is
equal to 1485), g(k) represents the kth target value computed with
MELISSA and y(k) is the kth output computed by the ANN. The MSETr

minimization is performed by using the Levenberg–Marquart algo-
rithm.

The process of MSETr minimization does not guarantee that the
training of the network is complete. An over-training of the net-
work may occur when the network is trained excessively and/or
the network architecture comprises a number of hidden neurons
(NHN) more important than necessary (over-parameterization).
There are various procedures to define the network architecture
(Nandi, Ghosh, Tambe, & Kulkarni, 2001); the following two-phase
procedure is used in this study.

Phase 1: Determination of the number of neurons for the hidden
layer. Fix an iteration count (50 for example). Discretize the set of
the possible values for the number of hidden neurons (for example
between 10 and 100 with a step of 5). Determine the value of the
number of neurons of the hidden layer from the minimum value
of the error of training MSETr. Improve this value while discretiz-
ing again more accurately around the value previously found and
repeating the procedure.
Phase 2: Determination of the optimum number of iterations by
using the number of hidden neurons obtained with phase 1. Use
the same type of iterative procedure by discretizing the set of the
possible values of the iteration count (for example between 50 and
800).

Once the network is determined (weights, number of hidden
neurons and number of iterations), the last step is the test phase.
The data not taken into account in the training phase, namely those
constituting the data base of test (in this case they are 1/3n = 750
couples) are then used to quantify the capacity of the network to
extrapolate.

Fig. 4 illustrates the results of the training procedure for the
facility average utilization (FAU) the optimal topology of the ANN
corresponds to 12 hidden neurons. The error RMSETe has a similar
definition than the RMSETr (it is computed on the NTe pairs used the
in the test phase). Table 4 presents the results related to the number

of hidden neurons for all the performance criteria considered.

For the FAU criterion, the number of hidden neurons being then
fixed at 12, the determination of the optimal number of iterations
is illustrated in Fig. 5. The best results were obtained for approxi-
mately 450 iterations. For the FAU performance index, the RSMSE



Fig. 4. RMSE for calculating the number of hidden neurons.

Table 4
Optimal topology of the ANN for each criterion.

Criterion NHN RMSETr RMSETe

FAU 12 0.02427 0.03257
SD 12 0.11546 0.14712
ACT 14 0.04358 0.06021
AWT 15 0.05250 0.08007
NB 18 0.03452 0.05330
TS 18 0.13212 0.18689
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Fig. 6. Comparison between ANN and MELISSA for the FAU criterion [%].

Fig. 7. Comparison between ANN and MELISSA for the ACT criterion [days].
Fig. 5. RMSE for calculating the number of iterations.

s about 0.0242 for the training and 0.0325 for the test. The coeffi-
ients of correlation (R) for the training and the test are respectively
qual to 0.99987 and 0.99791. The same process was employed to
reate various models with all the other criteria.

Once all the ANNs are determined for all the performance
ndexes listed in Section 3.2.2 (indeed one ANN is implemented
or each criterion), they are used to obtain reliable responses to
nspecified inputs. Table 5 involves the results for all the exits
onsidered.

.2. ANN validation

Fig. 6 compares the computed values by the ANN and those

easured by MELISSA, for the FAU criterion.
For the other performance indexes, i.e. ACT, SD, AWT, NB and TS,

he comparison between the computed and measured values are
espectively reported in Figs. 7–11.

able 5
ptimal number of iterations for each criterion.

Criterion Iterations RMSETr RMSETe

FAU 450 0.01989 0.02791
SD 700 0.09151 0.10062
ACT 550 0.04050 0.05951
AWT 500 0.05076 0.06907
NB 250 0.03315 0.04888
TS 650 0.10356 0.15399

Fig. 8. Comparison between ANN and MELISSA for the SD criterion [days].



Fig. 9. Comparison between ANN and MELISSA for the AWT criterion [min].

Fig. 10. Comparison between ANN and MELISSA for the NB criterion [batches].

Fig. 11. Comparison between ANN and MELISSA for the TS criterion [batches].

Table 6
Fixed values for variables MNR, PEC, TP, NSL.

Variable Fixed value

MNR R1, R2, R3, R4 (Ri represents the ith recipe)

PEC 25% R1, 25% R2, 25% R3, 25% R4

TP 64 batches
NSL 8 batches

These figures emphasize the good agreement between the com-
puted and measured values, and so the effectiveness of the ANN’s
to model these indexes of performance. In terms of computational
times, the use of an ANN instead of the simulator MELISSA reduces
the time by a factor near of 10. These ANN based models can be
now integrated in an optimization procedure in order to deter-
mine the optimal values of the decision variables to satisfy multiple
production targets.

5. Multiobjective optimization

Most of the optimization problems resulting from the real world
are multiobjective optimization problems, because it is rare in prac-
tice to be able to determine a perfect solution from all points of
view. The subject of multiobjective optimization has been exten-
sively published (for instance, Collette & Siarry, 2003; Sawaragi,
Nakayama, Tanino, 1985). In general, there may not be a particu-
lar optimal solution to a multiobjective problem, as one objective
function gains only at the deterioration of the other objectives, due
to their conflicting nature: optimality is thus an illusion when the
objectives are conflicting. Therefore, one must be satisfied with
obtaining the Pareto optimal solutions. Let us recall that a Pareto
optimal solution corresponds to a solution in which no decrease
can be obtained in any of the objectives without causing a simul-
taneous increase in at least one of the other objectives. A Pareto
optimal solution is also called as non-dominated. The solution x* is
efficient to the problem defined if and only if there does not exist
any x ∈ S such that fj(x) ≤ fj(x*) for all j and fj(x) < fj (x*) for at least
one j.

Among multiobjective optimization techniques reported in
(Collette & Siarry, 2003), the major advantage of genetic algorithms
over other methods, particularly over other stochastic procedures
such as Simulated Annealing, is that a GA manipulates not only a
single individual but a population of individuals. The use of GA is
all the more justified here as decision variables are discrete and as
the criteria are evaluated by the DES simulator (the investigation
of the mathematical properties of the functions is not required).

In this section, the methodology of resolution of multiobjective
optimization problems is based on multiobjective genetic algo-
rithms (MUGA) combined with the ANNs previously presented,
used to compute the fitness according to the various performance
criteria to be optimized.

In order to obtain a problem with a reasonable combinatorial
aspect, the decision variables selected for optimizing the various
objectives are the time between campaigns (TBC) and the time
between batches (TBBi, where i refers to the ith batch of the cam-
paign). The range of variation of these two variables is reported in
Table 3. The other input variables (see Section 3.2.1 and Table 2)
are fixed during the optimization phase (see Table 6).

The MUGA is implemented for optimizing the decision variables
and to deal with the set of compromise solutions for the stud-
ied criteria, thus giving the optimal Pareto zone solutions (Baez,

Azzaro-Pantel, Pibouleau, Domenech, & Davin, 2005).

Recently, a large development of different types of multiobjec-
tive genetic algorithms appeared in the literature. A quite general
guideline was proposed by Dietz, Azzaro-Pantel, Pibouleau, and
Domenech (2005), Dietz, Azzaro-Pantel, Pibouleau, and Domenech
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Table 7
Genetic algorithm parameters.

Population size 100
2006) for implementing a MUGA, and this approach has been
dopted in this work, where the code is developed by using the
++ language.

In genetic algorithm-based optimization, the initial population
onstitutes a basic point of the search, insofar as the later efficiency
f the algorithm is closely related to quality of the first generation
f individuals. The three classical methods for generating the ini-
ial population are the random initialization, the use of heuristic
r a combination of the two techniques. The strategy chosen here
s the random generation of the chromosomes. This method has
he advantage of proposing a varied population, ensuring a good

apping of the search space.
In addition to the generation of the initial population, the size

f populations (the initial one and the following populations, kept
onstant during the search) is an important feature for the success
f a genetic algorithm. A population of too small size will not be
ble to evolve satisfactorily, because a bad solution will have a very
mportant influence on the average fitness of the whole popula-
ion. One the other hand, large sized populations may induce too
igh computational times. So, the size of populations was fixed at
00 individuals, which is a classical trade-off between an efficient
earching process and the avoidance of pre-mature convergence.

A genetic algorithm operates on numerical chromosomes, in
rder to compute the fitness for performing genetic operators. Pro-
edure encoding aims at representing chromosomes in the form
f chains of bits containing all the necessary information. Sev-
ral codes are available: absolute code, coding of Gray and natural
inary code, which is most frequently used (Dagli & Sittisathanchai,
995). It is the latter which was adopted in the algorithm imple-
ented in this study. The determination of the coded variables

or the MUGA procedure was carried out by using the following
elation (11) for converting each chromosome k:

k = xmin,k + (xmax,k − xmin,k)
2Nbits − 1

Sk (11)

here xk is the real value of the variable TBB or TBC, xmin,k and xmax,k
he lower and upper bounds (see Table 6), SK the binary string repre-
enting the variable and Nbits the number of bits used for the binary
ode. For obtaining the desired degree of accuracy (see below), the
alue of Nbits was fixed at 8. For example, the binary string:

Sk = [0 1 0 0 1 1 0 0] represents a value of TBC equals to:

BC = xk = 1500 + (6500 − 1500)
255

Sk

= 1500 + (6500 − 1500)
255

76 = 2990.19 min (12)

For the variable TBB, Sk codes the value:

BB = xk = 0 + (TBC − 0)
255

Sk = 0 + (2990.19 − 0)
255

76 = 891.19 min

(13)

For TBC, the accuracy of coding is given by:

TBC = (6500 − 1500)
255

= 19.60 min (14a)

Similarly the lower and upper accuracies for TBB are the follow-
ngs:

LTBB = 1500
255

= 5.88 min (14b)
UTBB = 6500
255

= 25.49 min (14c)

The phase of evaluation consists in calculating the fitness of
daptation of each individual of the population. In this work, the
Number of generations 250
Selection probability 0.5
Mutation probability 0.1

output of an ANN is used as the input to the GA: this is quite simple
here since the output of the ANN is directly an evaluation func-
tion used in the GA The genetic algorithm maximizes this function
during the successive populations to lead to a population adapted
very well. In this study, the classical formulation of the fitness was
chosen:

F(x) = Cmax − C(x) (15)

where C(x) represents an objective function (i.e. FAU, ACT, SD, AWT,
NB, TS computed by using the corresponding ANN) and Cmax will
have to be selected so that the value of the firness remains always
positive. It can be, for example, the greatest actual value of C(x),
either on the current population, or since the beginning of the
search.

Four typical genetic operators were used to alter the composi-
tion of the offspring in the next generation, based on the pre-set
probability values reported in Table 7. More details concerning
genetic operators can be found in Dietz et al. (2005, 2006). These
operators are the followings.

1. Selection operator: Based on the ranked fitness values for each
criterion, the selection of surviving individuals in the new pop-
ulation is made up by using the classical biased Golberg Wheel
method (Goldberg, 1994). For each criterion, a particular Gold-
berg Wheel is used for carrying out the selection.

2. Crossover operator: Recombination of individuals is carried out to
complete the new population. The crossover is a classical 1-point
crossover.

3. Mutation operator: This genetic operation is performed by replac-
ing a bit randomly selected its complementary binary value.

4. Elitism: The elitism is used to avoid the loss of the best cur-
rent solution during the jump to a generation to the following
one. The best solution of the current generation systematically
replaces the worst solution in the following generation.

The above steps are repeated cyclically and the algorithm is
stopped when a fixed number of generations is reached. This num-
ber must be sufficient to allow a correct scanning of the search
space, but not too large not to induce too high computing times.

When the search is stopped, a procedure of sorting (Pareto’s
sort) is used for all the individuals evaluated during the search in
order to identify all the individuals giving the set of Pareto-optimal
solutions. These sets are known as Pareto’s fronts. The differenti-
ation between several Pareto-optimal solutions goes beyond the
limits of this study and is left with the appreciation of the decision
maker himself. Fig. 12 sums up the procedure for the ANN/MUGA
strategy.

6. Results and discussion

6.1. Bicriteria optimization

The purpose of the present study is the simultaneous optimiza-

tion of all the criteria taken by pairs. The results presented are those
obtained after the final sorting of Pareto, applied to the whole of the
solutions scanned during the search. Three runs of the MUGA were
implemented for each combination of pairs of objective functions.
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.1.1. Facility average utilization (FAU)—average cycle time ACT
The reduction of the average cycle time (ACT) contributes to a

roduct manufacturing within the shortest processing time. Nev-
rtheless, the maximization of the facility average utilization (FAU)
onstitutes an important contradictory force. Fig. 13 shows all the
areto’s solutions (153), presenting an important variation of the
verage cycle time (several days).
In addition to the antagonistic effect of the two criteria con-
idered, it appears that the higher the duration of campaigns is, the
ess the facility average utilization. This way of operating avoids the
ottlenecks, which induces a less long average cycle time. In addi-

Fig. 13. Pareto optimal solutions for FAU-ACT criteria.
d the multiobjective genetic algorithm.

tion, about 70% of the solutions correspond to a TBB value lower
than 3000 min.

6.1.2. Facility average utilization (FAU)—standard deviation of
the average cycle time SD

The consideration of these two criteria is justified by their antag-
onistic behaviour. The results are presented in Fig. 14. The total

number of compromise solutions found is equal to 62.

The figure shows that it is impossible to increase FAU while
decreasing in same time SD. One can note an isolated point which
corresponds to the monoobjective optimization of FAU: the near-

Fig. 14. Pareto optimal solutions for FAU-SD criteria.
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Fig. 17. Pareto optimal solutions for FAU-TS criteria.
Fig. 15. Pareto optimal solutions for FAU-AWT criteria.

st point has an associated very close value for SD, whereas the
ariation in term of FAU is very important.

.1.3. Facility average utilization (FAU)—average waiting time
WT

Fig. 15 highlights an existing contradictory behaviour between
he two criteria considered, as it can be expected. These criteria
re of the highest importance to avoid any form of exposure to the
ollution of the silicon wafers during manufacture.

As previously, the Pareto front resulting from three runs of the
UGA can be analyzed according to the values of the campaign

urations TBB. The inflection point of the curve can be explained
y the existence of a plateau for the FAU. Indeed, when the FAU

ies between 15 and 17, the corresponding AWT passes from 350
o 800 min, that is to say an increase of almost 230%. It is thus clear
hat the solution (FAU = 15) is of much better quality than that cor-
esponding to a FAU equals to 17. The three zones of the Pareto
ront highlight three different behaviours according to the values
f the campaign duration TBB. The number of Pareto solutions is
36.

.1.4. Facility average utilization (FAU)—number of batches in
he WIP (NB)

The Pareto front of Fig. 16 highlights the existence of an antag-
nism between the two criteria. The number of solutions is 103.

.1.5. Facility average utilization (FAU)—total number of batch
torages (TS)

The last combination of pairs of objectives relates to the criteria
epresenting the number of stored batches. The 162 Pareto-optimal
olutions can be observed in Fig. 17.
.2. Tricriteria optimization

This last study concerning the tricriteria optimization allows a
ore complete consideration of the various compromises to be

arried out between the various criteria, and thus provides more

Fig. 16. Pareto optimal solutions for FAU-NB criteria.
Fig. 18. Pareto optimal solutions for FAU-SD-AWT criteria.

promising solutions among which the decision maker will be able
to carry out a final selection.

6.3. Facility average utilization (FAU) – standard deviation of the
average cycle time SD – average waiting time AWT

The conflict between the minimization of criteria AWT and SD
and the maximization of the use of the equipment FAU, can be
observed in Fig. 18. The trends highlighted in the bicriteria opti-
mization section can be transposed here. Indeed, the influence
of the campaign duration causing the inflection points previously
observed in the bicriteria part, gives place in a three-dimensional
space, to the shape of spiral appearing in Fig. 18. The number of
solutions is 434.
The projections on two two-dimensional spaces are presented
in Figs. 19 and 20. They illustrate the influence of a third criterion
on the Pareto front. For a FAU equals to 17%, the optimal solutions
tend to decrease, because of the presence of a third criterion.

Fig. 19. Pareto optimal solutions for FAU-AWT criteria.



Fig. 20. Pareto optimal solutions for FAU-SD criteria.
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Fig. 21. Pareto optimal solutions for FAU-AWT-NB criteria.

.3.1. Facility average utilization (FAU) – average waiting time
WT – number of batches in the WIP (NB)

For this objective function combination, no inflection point was
bserved for the Pareto front in the bicriteria optimization FAU-
WT, thus, the shape in spiral does not appear here. The number of
olutions reported in Fig. 21 is 780.
.3.2. Facility average utilization (FAU) – average cycle time ACT
number of batches in the WIP (NB)

The conclusions drawn from the combination of the three prece-
ent criteria are applicable here (see Fig. 22). The number of
olutions is 558.

Fig. 22. Pareto optimal solutions for FAU-ACT-NB criteria.
Finally, in conclusion on this tricriteria optimization section, it
can be pointed out that, even if some minor differences appear due
to local inflection points for the bicriteria Pareto fronts, the gen-
eral trends of surfaces in three dimensions are very similar. The
antagonism of the five criteria (ACT, SD, AWT, NB and TS) versus
FAU let suggest that these optimizations are sufficient to deter-
mine total compromise solutions, without having to carry out other
calculations with more criteria to be optimized together.

7. Conclusions and perspectives

Efficient scheduling of wafer fabrication process involves an
important number of decisions, leading to quite complex multi-
objective optimization problems. The objective of this paper is
to propose an optimization strategy in order to assign appropri-
ate values to decision variables. More precisely, a scheduler for
the selection of decision variables in order to obtain desired per-
formance indexes at the end of a given production horizon is
developed. In the proposed methodology, the combined use of
a discrete event simulation technique, a neural network and a
multiobjective genetic algorithm is suggested, to simultaneously
optimize several objectives for the wafer fab. In terms of compu-
tational times, the use of an ANN instead of the DES simulator
MELISSA reduces the computing time by a factor near of 10.
The ANN/MUGA hybrid method constitutes an efficient tool for
decision-making aid in the short-term scheduling of the manufac-
turing of electronic components. A didactic example of small size,
representing the behaviour of a real fab is considered. Six criteria
related to the equipments (FAU: facility average utilization) and
the products (ACT: average cycle time, SD: standard deviation of
ACT, AWT: average waiting time, NB: number of batches in the WIP
and TS: total storage) were chosen as performance indexes of the
workshop.

In a first step, the criteria are simultaneously optimized by pairs
(FAU versus each performance index linked to the products). The
Pareto fronts obtained from the MUGA provide for each pair a set
of optimal solutions. However, the differentiation between several
Pareto-optimal solutions goes beyond the limits of this study and
is left with the appreciation of the decision maker himself. Then,
in the last part of the paper, three objectives are simultaneously
optimized (FAU versus a pair of criteria related to the products).
The obtained three-dimensional Pareto fronts allow the decision
maker to refine its decision about the short-term scheduling of the
manufacturing process.

The methodology reported can be applied easily to the complex
job shop scheduling problems such as in semiconductor man-
ufacturing and significant benefits can be achieved in terms of
cycle time distribution, facility average utilization, average wait-
ing time and storage. Pareto optimal solutions can be consistently
achieved in dynamic manufacturing environment, using the pro-
posed approaches. The limitation of the approach lies in the
necessary update, if a retrofit of the plant is implemented. The
solutions proposed here are only valid within the production range
related to parameters considered in this study. It must be yet said
that the update can be performed in parallel without penalizing the
global time in order to increase the model validity.
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