124 research outputs found

    A software-hardware cosynthesis approach to digital system simulation

    Full text link

    Hardware/Software Codesign

    Get PDF
    The current state of the art technology in integrated circuits allows the incorporation of multiple processor cores and memory arrays, in addition to application specific hardware, on a single substrate. As silicon technology has become more advanced, allowing the implementation of more complex designs, systems have begun to incorporate considerable amounts of embedded software [3]. Thus it becomes increasingly necessary for the system designers to have knowledge on both hardware and software to make efficient design tradeoffs. This is where hardware/software codesign comes into existence

    Semantics-preserving cosynthesis of cyber-physical systems

    Get PDF

    HW/SW codesign techniques for dynamically reconfigurable architectures

    Full text link

    GPGPU: Hardware/Software Co-Design for the Masses

    Get PDF
    With the recent development of high-performance graphical processing units (GPUs), capable of performing general-purpose computation (GPGPU: general-purpose computation on the GPU), a new platform is emerging. It consists of a central processing unit (CPU), which is very fast in sequential execution, and a GPU, which exhibits high degree of parallelism and thus very high performance on certain types of computations. Optimally leveraging the advantages of this platform is challenging in practice. We spotlight the analogy between GPGPU and hardware/software co-design (HSCD), a more mature design paradigm, to derive a design process for GPGPU. This process, with appropriate tool support and automation, will ease GPGPU design significantly. Identifying the challenges associated with establishing this process can serve as a roadmap for the future development of the GPGPU field

    Hierarchical Transactions for Hardware/Software Cosynthesis

    Get PDF
    Modern heterogeneous devices provide of a variety of computationally diverse components holding tremendous performance and power capability. Hardware-software cosynthesis offers system-level synthesis and optimization opportunities to realize the potential of these evolving architectures. Efficiently coordinating high-throughput data to make use of available computational resources requires a myriad of distributed local memories, caching structures, and data motion resources. In fact, storage, caching, and data transfer components comprise the majority of silicon real estate. Conventional automated approaches, unfortunately, do not effectively represent applications in a way that captures data motion and state management which dictate dominant system costs. Consequently, existing cosynthesis methods suffer from poor utility of computational resources. Automated cosynthesis tailored towards memory-centric optimizations can address the challenge, adapting partitioning, scheduling, mapping, and binding techniques to maximize overall system utility.This research presents a novel hierarchical transaction model that formalizes state and control management through an abstract data/control encapsulation semantic. It is designed from the ground-up to enable efficient synthesis across heterogeneous system components, with an emphasis on memory capacity constraints. It intrinsically encourages a high degree of concurrency and latency tolerance, and provides verification tools to ensure correctness. A unique data/execution hierarchical encapsulation framework guarantees scalable analysis, supporting a novel concept of state and control mobility. A front-end language allows concise expression of designer intent, and is structured with synthesis in mind. Designers express families of valid executions in a minimal format through high-level dependencies, type systems, and computational relationships, allowing synthesis tools to manage lower-level details. This dissertation introduces and exercises the model, discussing language construction, demonstrating control and data-dominated applications, and presenting a synthesis path that exhibits near-linear scalability with problem size

    A Framework for Cosynthesis of Memory and Communication Architectures for MPSoC

    Full text link

    High-Level Synthesis for Embedded Systems

    Get PDF
    corecore