
Computing and Informatics, Vol. 30, 2011, 1247–1257

GPGPU: HARDWARE/SOFTWARE CO-DESIGN FOR THE
MASSES

Zoltán Ádám Mann

Budapest University of Technology and Economics
Department of Computer Science and Information Theory
H-1117 Budapest, Magyar tudósok körútja 2, Hungary
e-mail: zoltan.mann@gmail.com

This paper was published in Computing and Informatics, volume 30, number 6, pages
1247-1257, 2011.

Abstract. With the recent development of high-performance graphical processing units
(GPUs), capable of performing general-purpose computation (GPGPU: general-purpose
computation on the GPU), a new platform is emerging. It consists of a central processing
unit (CPU), which is very fast in sequential execution, and a GPU, which exhibits high
degree of parallelism and thus very high performance on certain types of computations.
Optimally leveraging the advantages of this platform is challenging in practice.

We spotlight the analogy between GPGPU and hardware/software co-design (HSCD), a
more mature design paradigm, to derive a design process for GPGPU. This process, with
appropriate tool support and automation, will ease GPGPU design significantly. Identifying
the challenges associated with establishing this process can serve as a roadmap for the
future development of the GPGPU field.

Keywords: GPGPU, GPU computing, hardware/software co-design, design flow

1 INTRODUCTION

Graphical processing units (GPUs) are increasingly powerful and programmable. Pro-
grammability opens the possibility to use GPUs for general-purpose, i.e., non-graphical,
computation that is normally carried out by the central processing unit (CPU). General-
purpose computing on the GPU (GPGPU) is thus a fascinating opportunity to share the
load between the CPU and the GPU in compute-intensive applications, such as matrix

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository of the Academy's Library

https://core.ac.uk/display/42927474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1248 Zoltán Ádám Mann

multiplication [15], collision detection [6], scientific simulation [9], ray tracing [26], elec-
tronic design verification [3], and genetic algorithms [8].

Despite numerous success stories, GPGPU is still far from becoming a mainstream
technology. The current development of the field is driven by the competition of two
GPU vendors: AMD and NVIDIA. Both vendors introduce new system generations with
more features, higher performance, and improved programming facilities with a neck-
breaking pace. With compatibility issues unaddressed and lacking a roadmap for the
future development, the target platform for GPGPU practitioners is a moving target [25].

Our aim is to put the current development of GPGPU in a larger technological con-
text by relating it to a now mature technology, hardware/software co-design (HSCD). We
demonstrate the similarities between GPGPU and HSCD in their goals, scope, and in-
herent complexity. We identify concepts from HSCD that can be readily transferred to
GPGPU, but also analyze basic differences that pose special challenges in the transfer of
ideas. Through the analogy with HSCD, we can provide a technologically sound roadmap
for the future development of GPGPU, centered around a proposed GPGPU design flow.
The presented roadmap can help practitioners anticipate what is coming their way; it can
help researchers in deriving the scientific challenges that need to be tackled; and it can
help GPU vendors in defining focus areas for future technical innovation.

Most previous papers on GPGPU report on the experiences of implementing some
specific programs on the GPU. We feel the need to complement these reports with a more
abstract view. Thus, in contrast to most previous work, this paper is intentionally pitched
at a higher level of abstraction.

2 GPGPU: HISTORY AND STATE OF THE ART

For many years, researchers have found it tempting to „mis-use” the resources of the
GPU for general-purpose computation. In the 1990s, several isolated attempts were made
that can now be seen as the precursors of modern GPGPU [16, 22, 11, 12]. The main
characteristic of these approaches was the direct use of graphics APIs. That is, they had
to formulate in graphical terms (such as vertices and textures) the non-graphical problems
that they wanted to solve. These attempts were more of a black art than engineering
practice, but they proved the general feasibility of GPGPU.

In subsequent years, GPUs became more and more programmable through shading
languages of increasing level of abstraction, like the OpenGL Shading Language. The
first programming languages for GPUs, in which the programmer could express general
computation without using graphics terms, were introduced in 2004 [2, 21]. Since then,
further programming languages with a C-like syntax have been proposed [28, 20]. The
two big GPU vendors have also come up with their own programming environments:
AMD offers CTM (Close To The Metal) for low-level and CAL (Compute Abstraction
Layer) for high-level access, whereas NVIDIA provides the CUDA (Compute Unified
Device Architecture) environment.

To allow for the special characteristics of GPUs, current GPGPU programming plat-
forms are based on a stream-computing paradigm. A program is composed of kernels,



GPGPU: Hardware/software co-design for the masses 1249

each kernel processing one or more input data streams to create an output data stream.
Technically, data streams are read from / written to the graphics card’s onboard memory.

The strength of GPUs is the number of instructions executed per second, much more
than latency, i.e., the time to process one instruction. This is in contrast with traditional
CPUs, which offer lower latency at the cost of fewer instructions per second. GPUs are
optimized for running the same sequence of instructions on a large number of data items
in parallel. This is known as the SPMD (Single Program Multiple Data) paradigm. With
today’s GPGPU platforms, it is possible for the program to take different paths for dif-
ferent inputs, but this incurs substantial overhead [25]. GPUs excel when the application
provides sufficient data-parallelism to leverage the hardware’s high degree of parallelism.

Some parts of a program1 can be more efficiently carried out by the GPU, whereas
others may be more suitable for a traditional, CPU-based implementation. Typically,
compute-intensive tasks with low variance in control flow are good candidates for a GPU
implementation; for the other tasks, the CPU implementation may be more suitable.
Therefore, it is often beneficial to partition the application between the two available
processors. This also implies that communication between the CPU and the GPU is nec-
essary. Technically, this involves data transfer between the system’s main memory and
video memory. This may lead to a significant time penalty, which can have a negative
impact on the performance of the whole system [29]. Minimization of this overhead is
one more aspect to consider when partitioning the tasks between CPU and GPU.

For specific problem domains, first attempts to automate the partitioning between
GPU and CPU have already been proposed [13, 24].

3 THE HSCD PERSPECTIVE

In the early 1990s, hardware/software co-design (HSCD) emerged as an approach to com-
bine the advantages of fast but expensive special-purpose hardware with cheap but slow
software-based solutions [5, 7, 18, 4, 23, 30]. The idea is to combine, in a single design,
both special-purpose circuits and a general-purpose processor, on which the appropriate
software can run. HSCD targets mainly embedded systems with strict constraints on per-
formance, area, and energy consumption. By carefully partitioning tasks between hard-
ware and software, an appropriate trade-off between the conflicting requirements can be
found. During partitioning, it has to be taken into account which tasks are more suitable
for a hardware implementation and which ones for a software implementation. Moreover,
the communication overhead between hardware and software also has to be taken into
account [14, 17, 19, 1].

A possible HSCD design flow is depicted in Figure 1. It starts with a high-level spec-
ification, defining the functionality of the system. At this stage, non-functional require-
ments such as performance or area constraints are specified in a declarative way, without
explicitly defining how the system should be implemented. The implementation is deter-
mined in subsequent steps. For partitioning, a graph representation is extracted from the

1 The program parts of interest will be called tasks in the rest of the paper. Tasks can be of
different granularity, see later.



1250 Zoltán Ádám Mann

Fig. 1. Hardware/software co-design process

functional specification, in which nodes represent tasks and edges represent dependency
and communication between tasks. Each node is associated with one or more hardware
cost (e.g. required area on the chip), which is only relevant if the given task is imple-
mented in hardware. Likewise, each node is associated with one or more software cost
(e.g. running time on the processor). Finally, each edge is associated with a communica-
tion cost, relating to the amount of communication between the given pair of tasks. These
costs are determined based on the high-level system specification, using static analysis,
high-level synthesis, profiling etc. Based on the extracted information, the system is parti-
tioned by mapping each task to either hardware or software. Afterwards, the hardware and
software implementation of the tasks are synthesized based on the partitioning decisions.
Communication interfaces are synthesized to allow the seamless communication between
tasks in hardware and tasks in software. The result is a fully synthesized and optimized
system implementing the original specification and obeying the given constraints.

As a result of intensive research in the last 15 years, now all these steps are well
understood. In particular, design automation support exists for all the steps. Today, HSCD
is a mature and mainstream approach in embedded system design.

4 CONSEQUENCES FOR GPGPU

As can be seen from Table 1, HSCD and GPGPU are analogous, at least at a sufficiently
high level of abstraction. This makes it possible to transfer some of the results of the
HSCD community to the field of GPGPU:

• Typically, most of the runtime of a program is spent in some relatively small loops.
These loops, or parts of them, are the candidates for acceleration in hardware / GPU.

• With appropriate algorithms (e.g., genetic algorithms, integer linear programming
etc.), partitioning can be automated. A carefully implemented partitioning algorithm



GPGPU: Hardware/software co-design for the masses 1251

HSCD GPGPU Explanation

Software implemen-
tation of a task

Implementation of
the task on the CPU

In both cases, the task is implemented in a
traditional, CPU-based way

Hardware implemen-
tation of a task

Implementation of
the task on the GPU

In both cases, the task is implemented on
a non-CPU-like platform, offering a high
degree of parallelism, thus potentially – if
the task is suitable – offering a significant
speedup over the CPU-based implementation

Hardware/software
communication
overhead

CPU/GPU communi-
cation overhead

In both cases, the communication between
the two parts of the system incurs a non-
negligible time penalty

Hardware/software
partitioning

Deciding which tasks
to assign to the CPU
and which ones to the
GPU

In both cases, it is a crucial decision which
tasks to implement in which part of the sys-
tem. The decision must take into account the
different cost factors associated with the im-
plementation options for each task, as well as
the incurred communication overhead

Hardware area con-
straint

Available parallel
hardware resources
of the GPU

In both cases, the speed-up achievable
through moving tasks from the CPU to the
other implementation option is constrained
by the available resources

Performance opti-
mization of the whole
hardware/software
system

Performance op-
timization of the
whole GPU/CPU
system

In both cases, it is the overall system perfor-
mance that needs to be optimized

Table 1. Analogies between hardware/software co-design and GPGPU

can outperform the human expert concerning the quality of the found solution, and
needs only a fraction of the time that human experts need to tackle the problem.

• Just like with hardware/software partitioning, the decision of what to put into the
GPU can be made at different levels of granularity. One extreme is to decide for each
instruction, on which processor it should run. Alternatively, the partitioning decisions
can be made on the level of basic blocks, functions, objects, components etc., and a
mixture of these granularity levels is also possible. The chosen level of granularity
has significant impact on the effectiveness but also on the hardness of partitioning:
fine-grain partitioning decisions might result in the best resource utilization; however,
they might also lead to high overhead in terms of communication and management
and increase the search space for partitioning. For more details on how the optimal
granularity can be found in the context of HSCD, see [10] and references therein.

• For both HSCD and GPGPU, it is beneficial if there is little variance in the control



1252 Zoltán Ádám Mann

flow of the application. This way, partitioning decisions can be made a priori with
high confidence. Otherwise, dynamic re-partitioning might be required on the fly.
This is possible in GPGPU, just like with some reconfigurable HSCD platforms [27].

• The „glue code” responsible for establishing the technical context of the GPU-CPU
collaboration – communication, scheduling, and memory management issues – can
be implemented in an application-independent manner, thus fostering reuse. Such
code can be made available as a library and linked to the application.

• The proliferation of HSCD was significantly supported by the enhancement of the ca-
pabilities of the underlying hardware platforms, e.g. field-programmable gate arrays
and synthesizable processor cores. Currently, a similar trend can be observed in the
transformation of GPU data paths (e.g., architectural transformation, programmabil-
ity of the GPU pipeline, support for double-precision computation etc.), see [25].

Of course, no analogy is perfect. In order to fully understand the implications and
limitations of this analogy, it is vital to also look at the differences between HSCD and
GPGPU, as they are the challenges in transferring ideas from HSCD to GPGPU:

• In HSCD, moving a function from software to hardware will usually accelerate it. So,
if the goal is to optimize overall performance and if there were no other constraints,
then the optimum would be to implement everything in hardware. It is due to con-
straints on cost and/or size that this solution is not applicable. In contrast, in GPGPU
it is not necessarily optimal to put everything into the GPU. In fact, moving some-
thing from the CPU to the GPU might not accelerate it at all, if the given function
does not fit well to the highly data parallel nature of the GPU.

• In HSCD, partitioning is based on functionality: some parts of the code are mapped
to hardware, others to software. This is necessary in GPGPU as well. However,
since GPGPU is inherently a platform for highly data parallel applications, partition-
ing data between CPU and GPU is also vital. An example of data partitioning is the
GPGPU implementation of 2D FFT calculation as described in [24]. 2D FFT calcu-
lation involves a high number of 1D FFT calculations on different columns and rows
of the 2D matrix. Performance can be optimized by appropriately distributing the 1D
FFT calculations between the GPU and the CPU. That is, the functionality carried out
by the two processors is the same, but the data are partitioned. In general, partitioning
both functionality and data are possible and should be exploited.

• A more technical, yet important difference is the maturity of synthesis tools. When
HSCD appeared, tools were already available for hardware synthesis (high-level syn-
thesis, silicon compilation, design simulation and verification techniques etc.) that
could be built upon. Today, synthesizing code for GPU is still in its infantry.

Based on the presented analogy, the idea of a GPU/CPU co-design process emerges,
as shown in Figure 2. The structure of the process is largely the same as the previously
presented HSCD process, with differences in the details.

The system to implement is given in form of a high-level specification, describing
functionality and the structure and amount of data to be processed. At this stage, it is



GPGPU: Hardware/software co-design for the masses 1253

Fig. 2. GPU/CPU co-design process

not decided yet which tasks will be implemented on the GPU and which ones on the
CPU. These decisions will be made later in the partitioning step. For partitioning, the
necessary data have to be extracted: dependency and data flow between the tasks, as
well as the associated costs. For each task, it has to be determined how long it would
take to execute that task on the GPU and on the CPU, respectively, as well as how much
it would add to the load of the processors. For each pair of communicating tasks, the
amount of transferred data is determined. For these cost estimations, static analysis and
simulation runs can be used. Then, based on the extracted data, the partitioning decisions
can be made, by mapping each task to either the GPU or the CPU. Partitioning must
also include preliminary scheduling information about the schedule of the tasks and data
transfers. Afterwards, each task is synthesized to make it executable on the GPU or CPU,
respectively, according to the partitioning decision. In order to allow for communication
between tasks on the GPU and the CPU, the appropriate communication routines are also
parameterized and linked to the system. The result is an optimized and fully synthesized
system consisting of tasks on the GPU and the CPU.

In a couple of years, the steps of this process could also be automated using smart
optimization techniques. This would bring tremendous benefits for GPGPU:

• Today, adapting a program for GPGPU and optimizing which tasks should be im-
plemented on the GPU are carried out manually. This is a long and tedious process,
which could be significantly shortened with the appropriate tools.

• Automated synthesis of GPU code and communication routines would add a lot to
the quality of the produced code by reducing the probability of inserting errors.

• Automated partitioning can be superior to human judgement, especially in the case of
fine-grained (e.g., instruction-level) partitioning that implies a huge problem space.

• The high-level system specification lets designers focus on application design instead
of low-level implementation details, thus boosting design productivity.



1254 Zoltán Ádám Mann

• Using a high-level functional system specification enhances portability between dif-
ferent GPUs, even of different vendors.

In order to achieve these benefits, a number of challenges need to be addressed:

• Development of a high-level specification language, from which both CPU code and
GPU code can be synthesized.

• Development of appropriate analysis and simulation techniques to quickly and ac-
curately predict the characteristics of the implementation of a task on the GPU. In
particular, performance and processor load are of interest.

• Development of appropriate GPU/CPU partitioning algorithms to find the best trade-
off between the two implementation options.

• Defining the best granularity for partitioning between GPU and CPU.

• Development of synthesis techniques to automatically convert a task from a high-level
specification to an optimized GPU-based implementation.

5 CONCLUSIONS

We presented analogies between GPGPU and HSCD, in order to derive, based on a HSCD
process, a possible future design process for GPGPU applications. We identified the main
steps of such a GPGPU design process, the advantages associated with the approach, and
the challenges that need to be tackled to make this reality.

Of course, the GPGPU process that we presented is certainly not the only possibility:
there will be differences in scope, aims, and realization details. However, we believe that
the presented process is a good basis to interpret GPGPU progress, providing a sound
roadmap for the future development for practitioners, researchers, and vendors alike. The
next step will be to elaborate on the presented challenges, each of which will require a
substantial amount of future research.

6 ACKNOWLEDGEMENTS

This work was partially supported by the Hungarian National Research Fund and by the
National Office for Research and Technology (Grant Number OTKA 67651), and the
János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

REFERENCES

[1] P. ARATÓ, Z. Á. MANN, AND A. ORBÁN. ALGORITHMIC ASPECTS OF HARD-
WARE/SOFTWARE PARTITIONING. ACM Transactions on Design Automation of Electronic
Systems, 10(1):136–156, 2005.



GPGPU: Hardware/software co-design for the masses 1255

[2] IAN BUCK, TIM FOLEY, DANIEL HORN, JEREMY SUGERMAN, KAYVON FATAHALIAN,
MIKE HOUSTON, AND PAT HANRAHAN. BROOK FOR GPUS: stream computing on graph-
ics hardware. In ACM SIGGRAPH ’04 International Conference on Computer Graphics and
Interactive Techniques, pages 777–786, 2004.

[3] D. CHATTERJEE, A. DEORIO, AND V. BERTACCO. GCS: High-performance gate-level
simulation with GP-GPUs. In Design Automation and Test in Europe (DATE), 2009.

[4] R. P. DICK AND N. K. JHA. MOGAC: A multiobjective genetic algorithm for hardware-
software co-synthesis of hierarchical heterogeneous distributed embedded systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 17(10):920–
935, 1998.

[5] R. ERNST, J. HENKEL, AND T. BENNER. HARDWARE/SOFTWARE COSYNTHESIS FOR

MICROCONTROLLERS. IEEE Design and Test of Computers, 10(4):64–75, 1993.
[6] NAGA K. GOVINDARAJU, STEPHANE REDON, MING C. LIN, AND DINESH MANOCHA.

CULLIDE: interactive collision detection between complex models in large envi-
ronments using graphics hardware. In HWWS ’03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages 25–32, 2003.

[7] R. K. GUPTA AND G. DE MICHELI. HARDWARE-SOFTWARE COSYNTHESIS FOR DIGITAL

SYSTEMS. IEEE Design & Test of Computers, 10(3):29–41, 1993.
[8] S. Harding and W. Banzhaf. Fast Genetic Programming on GPUs. In Proceedings of the 10th

European Conference on Genetic Programming, pages 90–101, 2007.
[9] Mark J. Harris, William V. Baxter, Thorsten Scheuermann, and Anselmo Lastra. Simulation

of cloud dynamics on graphics hardware. In HWWS ’03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages 92–101, 2003.

[10] J. HENKEL AND R. ERNST. AN APPROACH TO AUTOMATED HARDWARE/SOFTWARE

PARTITIONING USING A FLEXIBLE GRANULARITY THAT IS DRIVEN BY HIGH-LEVEL ES-
TIMATION TECHNIQUES. IEEE Transaction on VLSI Systems, 9(2):273–289, 2001.

[11] Kenneth E. Hoff, III, John Keyser, Ming Lin, Dinesh Manocha, and Tim Culver. Fast com-
putation of generalized Voronoi diagrams using graphics hardware. In SIGGRAPH ’99: Pro-
ceedings of the 26th annual conference on Computer graphics and interactive techniques,
pages 277–286, 1999.

[12] Matthias Hopf and Thomas Ertl. Accelerating 3D convolution using graphics hardware (case
study). In VIS ’99: Proceedings of the conference on Visualization ’99, pages 471–474, 1999.

[13] M. Joselli, M. Zamith, E. Clua, A. Montenegro, A. Conci, R. Leal-Toledo, L. Valente,
B. Feijo, M. d’Ornellas, and C. Pozzer. Automatic dynamic task distribution between CPU
and GPU for real-time systems. In 11th IEEE International Conference on Computational
Science and Engineering, pages 48–55, 2008.

[14] A. KALAVADE AND E. A. LEE. THE EXTENDED PARTITIONING PROBLEM: hard-
ware/software mapping, scheduling and implementation-bin selection. Design Automation
for Embedded Systems, 2(2):125–164, 1997.

[15] E. Scott Larsen and David McAllister. Fast matrix multiplies using graphics hardware. In
Supercomputing ’01: Proceedings of the 2001 ACM/IEEE conference on Supercomputing,
page 55, 2001.

[16] Jed Lengyel, Mark Reichert, Bruce R. Donald, and Donald P. Greenberg. Real-time robot
motion planning using rasterizing computer graphics hardware. In SIGGRAPH ’90: Pro-



1256 Zoltán Ádám Mann

ceedings of the 17th annual conference on computer graphics and interactive techniques,
pages 327–335, 1990.

[17] M. LOPEZ-VALLEJO AND J. C. LOPEZ. ON THE HARDWARE-SOFTWARE PARTITIONING

PROBLEM: system modeling and partitioning techniques. ACM Transactions on Design Au-
tomation of Electronic Systems, 8(3):269–297, July 2003.

[18] J. MADSEN, J. GRODE, P. V. KNUDSEN, M. E. PETERSEN, AND A. HAXTHAUSEN.
LYCOS: The Lyngby co-synthesis system. Design Automation for Embedded Systems,
2(2):195–236, 1997.

[19] Z. Á. Mann. Partitioning algorithms for hardware/software co-design. PhD thesis, Budapest
University of Technology and Economics, 2004.

[20] M. McCool. Data-parallel programming on the cell BE and the GPU using the RapidMind
development platform. In GSPx Multicore Application Conference, 2006.

[21] M. MCCOOL, S. DU TROIT, T. POPA, B. CHAN, AND K. MOULE. SHADER ALGEBRA.
ACM Transactions on Graphics, 23(3):787–795, 2004.

[22] K. MYSZKOWSKI, O. G. OKUNEV, AND T. L. KUNII. FAST COLLISION DETECTION BE-
TWEEN COMPLEX SOLIDS USING RASTERIZING GRAPHICS HARDWARE. The Visual Com-
puter, 11(9):497–511, 1995.

[23] R. Niemann. Hardware/Software Co-Design for Data Flow Dominated Embedded Systems.
Kluwer Academic Publishers, 1998.

[24] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka. An efficient, model-based CPU-GPU
heterogeneous FFT library. In IEEE International Symposium on Parallel and Distributed
Processing, pages 1–10, 2008.

[25] J. D. OWENS, M. HOUSTON, D. LUEBKE, S. GREEN, J. E. STONE, AND J. C. PHILLIPS.
GPU COMPUTING. Proceedings of the IEEE, 96(5):879–899, 2008.

[26] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray tracing on pro-
grammable graphics hardware. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses, page
268, 2005.

[27] G. STITT, R. LYSECKY, AND F. VAHID. DYNAMIC HARDWARE/SOFTWARE PARTITION-
ING: a first approach. In Proceedings of DAC, 2003.

[28] D. TARDITI, S. PURI, AND J. OGLESBY. ACCELERATOR: Using data-parallelism to pro-
gram GPUs for general-purpose use. In 12th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 325–335, 2006.

[29] L. Wang, Y. Huang, X. Chen, and C. Zhang. Task scheduling of parallel processing in CPU-
GPU collaborative environment. In International Conference on Computer Science and In-
formation Technology, pages 228–232, 2008.

[30] W. WOLF. A DECADE OF HARDWARE/SOFTWARE CODESIGN. Computer, 36(4):38–43,
2003.



GPGPU: Hardware/software co-design for the masses 1257

Zoltán Ádám MANN received the MSC and PHD
degrees in computer science from Budapest Univer-
sity of Technology and Economics in 2001 and 2005,
respectively. He also received an MSC degree in
mathematics from Eötvös Loránd University in 2004.
Currently, he is an associate professor at the Depart-
ment of Computer Science and Information Theory,
Budapest University of Technology and Economics.
In addition, he works as IT and management con-
sultant for various client organizations. His main re-
search interest is the application of combinatorial al-
gorithms to computer engineering problems.


