307 research outputs found

    Towards High Efficiency and High Power Density Converter: System Level Design, Modulation, and Active EMI Filters

    Get PDF
    Power converter exposes strong challenges to its efficiency, power density and reliability. For the grid-connected inverter application, three-level (3-L) T-type neutral-point-clamped (TNPC) inverters has higher efficiency and lower total harmonic distortion (THD) compared to two-level inverter. Hybrid switch concept combines the benefit of both silicon carbide (SiC) MOSFET and Si IGBT. By applying hybrid switch structure in 3-L T-type inverter, the total power density of 3-L TNPC inverter will be higher while the cost will be lower than that of all-SiC 3-L T-type inverter. The hybrid switch based 3-L TNPC inverter also imposes challenge to its modulation and control, a propoer modulation and control shceme need to be chosen to enable better inverter performance in terms of efficiency, neutral point balancing and electromagnetic interference (EMI). Morever, to shrink the EMI filter size for the power converter, an active EMI filter (AEF) structure is proposed. The proposed AEF provides superior performance than any of the conventional passive EMI filter and the existing AEFs. In this work, the system level design and testing of a 30 kW grid-connected 3-L T-type inverter with hybrid switch structure is discussed. Then, an improved space vector modulation (SVM) has been proposed, which enables neutral-point balancing (NPB) control in the proposed hybrid-switch-based TNPC inverters with loss and common-mode voltage reduction. Finally, the design, modelling, and testing of the proposed AEF is demonstrated

    Experimental efficiency comparison between a direct matrix converter and an indirect matrix converter based on efficiency using Si IGBT and SiC MOSFETs

    Get PDF
    This paper presents an experimental efficiency comparison study between two different direct AC-AC converter topologies: a direct matrix converter (DMC) and an indirect matrix converter (IMC). The evaluation is performed under variable load conditions using both discrete Silicon (Si) IGBTs and Silicon Carbide (SiC) MOSFETs working at power levels up to 9 kW. Each loss measurement is carried out using two power analyzers: one placed at the input and one at the output of the converter under study. To facilitate this measurement an output filter was necessary in addition to the normal input filter. Both converters are modulated the same traditional symmetrical space vector approach and feature an identical input/output filter design

    Predictive current control with instantaneous reactive power minimization for a four-leg indirect matrix converter

    Get PDF
    This paper presents the experimental valida¬tion of a predictive current control strategy with minimiza¬tion of the instantaneous reactive input power for a Four-Leg Indirect Matrix Converter (4Leg-IMC). The topology includes an input matrix converter stage, which provides the dc voltage for a four-leg voltage source converter (VSC) output stage. The VSC’s fourth leg provides a path for the zero sequence load current. The control technique is based on a finite control set model predictive control (FCS-MPC) strategy, whereby the switching states for the input and out¬put converters are selected by evaluating a predictive cost function. This results in a simpler approach than that seen in other well-known modulation methods, such as three-dimensional space vector modulation (3D-SVM). Positive dc voltage, (a requirement for the safe operation of the IMC) and minimization of the instantaneous input reactive power are obtained, while maintaining good tracking of the load reference currents. Furthermore, soft switching is achieved by synchronizing the state changes in the input stage with the application of zero voltage space vectors in the inverter stage. The control strategy is experimentally verified using a laboratory prototype

    マトリックスコンバータを用いた絶縁型ACDC変換器の電圧/電流を高精度に調整するスイッチシーケンスに関する研究

    Get PDF
    国立大学法人長岡技術科学大

    Data Mining Applications to Fault Diagnosis in Power Electronic Systems: A Systematic Review

    Get PDF

    Analysis and design of matrix converters for adjustable speed drives and distributed power sources

    Get PDF
    Recently, matrix converter has received considerable interest as a viable alternative to the conventional back-to-back PWM (Pulse Width Modulation) converter in the ac/ac conversion. This direct ac/ac converter provides some attractive characteristics such as: inherent four-quadrant operation; absence of bulky dc-link electrolytic capacitors; clean input power characteristics and increased power density. However, industrial application of the converter is still limited because of some practical issues such as common mode voltage effects, high susceptibility to input power disturbances and low voltage transfer ratio. This dissertation proposes several new matrix converter topologies together with control strategies to provide a solution about the above issues. In this dissertation, a new modulation method which reduces the common mode voltage at the matrix converter is first proposed. The new method utilizes the proper zero vector selection and placement within a sampling period and results in the reduction of the common mode voltage, square rms of ripple components of input current and switching losses. Due to the absence of a dc-link, matrix converter powered ac drivers suffer from input voltage disturbances. This dissertation proposes a new ride-through approach to improve robustness for input voltage disturbances. The conventional matrix converter is modified with the addition of ride-through module and the add-on module provides ride-through capability for matrix converter fed adjustable speed drivers. In order to increase the inherent low voltage transfer ratio of the matrix converter, a new three-phase high-frequency link matrix converter is proposed, where a dual bridge matrix converter is modified by adding a high-frequency transformer into dc-link. The new converter provides flexible voltage transfer ratio and galvanic isolation between input and output ac sources. Finally, the matrix converter concept is extended to dc/ac conversion from ac/ac conversion. The new dc/ac direct converter consists of soft switching full bridge dc/dc converter and three phase voltage source inverter without dc link capacitors. Both converters are synchronized for zero current/voltage switching and result in higher efficiency and lower EMI (Electro Magnetic Interference) throughout the whole load range. Analysis, design example and experimental results are detailed for each proposed topology

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine

    Digital Control of Power Converters and Drives for Hybrid Traction and Wireless Charging

    Get PDF
    In the last years environmental issues and constant increase of fuel and energy cost have been incentivizing the development of low emission and high efficiency systems, either in traction field or in distributed generation systems from renewable energy sources. In the automotive industry, alternative solutions to the standard internal combustion engine (ICE) adopted in the conventional vehicles have been developed, i.e. fuel cell electric vehicles (FCEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEV) or pure electric vehicles (EVs), also referred as battery powered electric vehicles (BEV). Both academic and industry researchers all over the world are still facing several technical development areas concerning HEV components, system topologies, power converters and control strategies. Efficiency, lifetime, stability and volume issues have moved the attention on a number of bidirectional conversion solutions, both for the energy transfer to/from the storage element and to/from the electric machine side. Moreover, along with the fast growing interest in EVs and PHEVs, wireless charging, as a new way of charging batteries, has drawn the attention of researchers, car manufacturers, and customers recently. Compared to conductive power transfer (usually plug-in), wireless power transfer (WPT) is more convenient, weather proof, and electric shock protected. However, there is still more research work needs to be done to optimize efficiency, cost, increase misalignment tolerance, and reduce size of the WPT chargers. The proposed dissertation describes the work from 2012 to 2014, during the PhD course at the Electric Drives Laboratory of the University of Udine and during my six months visiting scholarship at the University of Michigan in Dearborn. The topics studied are related to power conversion and digital control of converters and drives suitable for hybrid/electric traction, generation from renewable energy sources and wireless charging applications. From the theoretical point of view, multilevel and multiphase DC/AC and DC/DC converters are discussed here, focusing on design issues, optimization (especially from the efficiency point-of-view) and advantages. Some novel modulation algorithms for the neutral-point clamped three-level inverter are presented here as well as a new multiphase proposal for a three-level buck converter. In addition, a new active torque damping technique in order to reduce torque oscillations in internal combustion engines is proposed here. Mainly, two practical implementations are considered in this dissertation, i.e. an original two-stage bi-directional converter for mild hybrid traction and a wireless charger for electric vehicles fast charge

    Design Tools for Submersible Converter

    Get PDF
    corecore