41,806 research outputs found

    On a Hybrid Preamble/Soft-Output Demapper Approach for Time Synchronization for IEEE 802.15.6 Narrowband WBAN

    Full text link
    In this paper, we present a maximum likelihood (ML) based time synchronization algorithm for Wireless Body Area Networks (WBAN). The proposed technique takes advantage of soft information retrieved from the soft demapper for the time delay estimation. This algorithm has a low complexity and is adapted to the frame structure specified by the IEEE 802.15.6 standard for the narrowband systems. Simulation results have shown good performance which approach the theoretical mean square error limit bound represented by the Cramer Rao Bound (CRB)

    Maximum likelihood estimation of cloud height from multi-angle satellite imagery

    Full text link
    We develop a new estimation technique for recovering depth-of-field from multiple stereo images. Depth-of-field is estimated by determining the shift in image location resulting from different camera viewpoints. When this shift is not divisible by pixel width, the multiple stereo images can be combined to form a super-resolution image. By modeling this super-resolution image as a realization of a random field, one can view the recovery of depth as a likelihood estimation problem. We apply these modeling techniques to the recovery of cloud height from multiple viewing angles provided by the MISR instrument on the Terra Satellite. Our efforts are focused on a two layer cloud ensemble where both layers are relatively planar, the bottom layer is optically thick and textured, and the top layer is optically thin. Our results demonstrate that with relative ease, we get comparable estimates to the M2 stereo matcher which is the same algorithm used in the current MISR standard product (details can be found in [IEEE Transactions on Geoscience and Remote Sensing 40 (2002) 1547--1559]). Moreover, our techniques provide the possibility of modeling all of the MISR data in a unified way for cloud height estimation. Research is underway to extend this framework for fast, quality global estimates of cloud height.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS243 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The application of iterative equalisation to high data rate wireless personal area networks

    Get PDF

    Performance Study of a Near Maximum Likelihood Code-Aided Timing Recovery Technique

    No full text
    International audienceIn this paper, we propose a new code-aided (CA) timing recovery algorithm for various linear constant modulus constellations based on the Maximum Likelihood (ML) estimator. The first contribution is the derivation of a soft estimator expression of the transmitted symbol instead of its true or hard estimated value which is fed into the timing error detector (TED) equation. The proposed expression includes the Log-Likelihood Ratios (LLRs) obtained from a turbo decoder. Our results show that the proposed CA approach achieves almost as good results as the data-aided (DA) approach over a large interval of SNR values while achieving a higher spectral efficiency. We also derive the corresponding CA Cramer Rao Bounds (CRB) for various modulation orders. Contrarily to former work, we develop here the CRB analytical expression for different M-PSK modulation orders and validate them through comparison to empirical CRB obtained by Monte Carlo iterations. The proposed CA estimator realizes an important gain over the non data-aided approach (NDA) and achieves a smaller gap when compared to its relative CA CRB, especially at moderate SNR values where modern systems are constrained to work

    CRB derivation and new Code-Aided timing recovery technique for QAM modulated signals

    No full text
    International audience— * In this paper, we propose a maximum likelihood based Code-Aided (CA) timing recovery algorithm for square-QAM modulated signals. We also theoretically derive the analytical expression of the CA Cramer-Rao Bound for time delay estimation. Our simulations show that the proposed CA approach realizes a performance equivalent to the Data-Aided (DA) approach over a large interval of signal to noise ratio (SNR) values

    Hardware simulation of Ku-band spacecraft receiver and bit synchronizer, volume 1

    Get PDF
    A hardware simulation which emulates an automatically acquiring transmit receive spread spectrum communication and tracking system and developed for use in future NASA programs involving digital communications is considered. The system architecture and tradeoff analysis that led to the selection of the system to be simulated is presented

    Detection and Combining Techniques for Asynchronous Random Access with Time Diversity

    Full text link
    Asynchronous random access (RA) protocols are particularly attractive for their simplicity and avoidance of tight synchronization requirements. Recent enhancements have shown that the use of successive interference cancellation (SIC) can largely boost the performance of these schemes. A further step forward in the performance can be attained when diversity combining techniques are applied. In order to enable combining, the detection and association of the packets to their transmitters has to be done prior to decoding. We present a solution to this problem, that articulates into two phases. Non-coherent soft-correlation as well as interference-aware soft-correlation are used for packet detection. We evaluate the detection capabilities of both solutions via numerical simulations. We also evaluate numerically the spectral efficiency achieved by the proposed approach, highlighting its benefits.Comment: 6 pages, 7 figures. Work has been submitted to the 11th International ITG Conference on Systems, Communications and Coding 201
    • …
    corecore