646 research outputs found

    Sparsity in Reservoir Computing Neural Networks

    Get PDF
    Reservoir Computing (RC) is a well-known strategy for designing Recurrent Neural Networks featured by striking efficiency of training. The crucial aspect of RC is to properly instantiate the hidden recurrent layer that serves as dynamical memory to the system. In this respect, the common recipe is to create a pool of randomly and sparsely connected recurrent neurons. While the aspect of sparsity in the design of RC systems has been debated in the literature, it is nowadays understood mainly as a way to enhance the efficiency of computation, exploiting sparse matrix operations. In this paper, we empirically investigate the role of sparsity in RC network design under the perspective of the richness of the developed temporal representations. We analyze both sparsity in the recurrent connections, and in the connections from the input to the reservoir. Our results point out that sparsity, in particular in input-reservoir connections, has a major role in developing internal temporal representations that have a longer short-term memory of past inputs and a higher dimension.Comment: This paper is currently under revie

    Reservoir Topology in Deep Echo State Networks

    Full text link
    Deep Echo State Networks (DeepESNs) recently extended the applicability of Reservoir Computing (RC) methods towards the field of deep learning. In this paper we study the impact of constrained reservoir topologies in the architectural design of deep reservoirs, through numerical experiments on several RC benchmarks. The major outcome of our investigation is to show the remarkable effect, in terms of predictive performance gain, achieved by the synergy between a deep reservoir construction and a structured organization of the recurrent units in each layer. Our results also indicate that a particularly advantageous architectural setting is obtained in correspondence of DeepESNs where reservoir units are structured according to a permutation recurrent matrix.Comment: Preprint of the paper published in the proceedings of ICANN 201

    Reservoir Topology in Deep Echo State Networks

    Get PDF
    Deep Echo State Networks (DeepESNs) recently extended the applicability of Reservoir Computing (RC) methods towards the field of deep learning. In this paper we study the impact of constrained reservoir topologies in the architectural design of deep reservoirs, through numerical experiments on several RC benchmarks. The major outcome of our investigation is to show the remarkable effect, in terms of predictive performance gain, achieved by the synergy between a deep reservoir construction and a structured organization of the recurrent units in each layer. Our results also indicate that a particularly advantageous architectural setting is obtained in correspondence of DeepESNs where reservoir units are structured according to a permutation recurrent matrix

    A Survey on Reservoir Computing and its Interdisciplinary Applications Beyond Traditional Machine Learning

    Full text link
    Reservoir computing (RC), first applied to temporal signal processing, is a recurrent neural network in which neurons are randomly connected. Once initialized, the connection strengths remain unchanged. Such a simple structure turns RC into a non-linear dynamical system that maps low-dimensional inputs into a high-dimensional space. The model's rich dynamics, linear separability, and memory capacity then enable a simple linear readout to generate adequate responses for various applications. RC spans areas far beyond machine learning, since it has been shown that the complex dynamics can be realized in various physical hardware implementations and biological devices. This yields greater flexibility and shorter computation time. Moreover, the neuronal responses triggered by the model's dynamics shed light on understanding brain mechanisms that also exploit similar dynamical processes. While the literature on RC is vast and fragmented, here we conduct a unified review of RC's recent developments from machine learning to physics, biology, and neuroscience. We first review the early RC models, and then survey the state-of-the-art models and their applications. We further introduce studies on modeling the brain's mechanisms by RC. Finally, we offer new perspectives on RC development, including reservoir design, coding frameworks unification, physical RC implementations, and interaction between RC, cognitive neuroscience and evolution.Comment: 51 pages, 19 figures, IEEE Acces

    Biological neurons act as generalization filters in reservoir computing

    Full text link
    Reservoir computing is a machine learning paradigm that transforms the transient dynamics of high-dimensional nonlinear systems for processing time-series data. Although reservoir computing was initially proposed to model information processing in the mammalian cortex, it remains unclear how the non-random network architecture, such as the modular architecture, in the cortex integrates with the biophysics of living neurons to characterize the function of biological neuronal networks (BNNs). Here, we used optogenetics and fluorescent calcium imaging to record the multicellular responses of cultured BNNs and employed the reservoir computing framework to decode their computational capabilities. Micropatterned substrates were used to embed the modular architecture in the BNNs. We first show that modular BNNs can be used to classify static input patterns with a linear decoder and that the modularity of the BNNs positively correlates with the classification accuracy. We then used a timer task to verify that BNNs possess a short-term memory of ~1 s and finally show that this property can be exploited for spoken digit classification. Interestingly, BNN-based reservoirs allow transfer learning, wherein a network trained on one dataset can be used to classify separate datasets of the same category. Such classification was not possible when the input patterns were directly decoded by a linear decoder, suggesting that BNNs act as a generalization filter to improve reservoir computing performance. Our findings pave the way toward a mechanistic understanding of information processing within BNNs and, simultaneously, build future expectations toward the realization of physical reservoir computing systems based on BNNs.Comment: 31 pages, 5 figures, 3 supplementary figure

    Photonic reservoir computing with a network of coupled semiconductor optical amplifiers

    Get PDF

    Theory and Practice of Computing with Excitable Dynamics

    Get PDF
    Reservoir computing (RC) is a promising paradigm for time series processing. In this paradigm, the desired output is computed by combining measurements of an excitable system that responds to time-dependent exogenous stimuli. The excitable system is called a reservoir and measurements of its state are combined using a readout layer to produce a target output. The power of RC is attributed to an emergent short-term memory in dynamical systems and has been analyzed mathematically for both linear and nonlinear dynamical systems. The theory of RC treats only the macroscopic properties of the reservoir, without reference to the underlying medium it is made of. As a result, RC is particularly attractive for building computational devices using emerging technologies whose structure is not exactly controllable, such as self-assembled nanoscale circuits. RC has lacked a formal framework for performance analysis and prediction that goes beyond memory properties. To provide such a framework, here a mathematical theory of memory and information processing in ordered and disordered linear dynamical systems is developed. This theory analyzes the optimal readout layer for a given task. The focus of the theory is a standard model of RC, the echo state network (ESN). An ESN consists of a fixed recurrent neural network that is driven by an external signal. The dynamics of the network is then combined linearly with readout weights to produce the desired output. The readout weights are calculated using linear regression. Using an analysis of regression equations, the readout weights can be calculated using only the statistical properties of the reservoir dynamics, the input signal, and the desired output. The readout layer weights can be calculated from a priori knowledge of the desired function to be computed and the weight matrix of the reservoir. This formulation explicitly depends on the input weights, the reservoir weights, and the statistics of the target function. This formulation is used to bound the expected error of the system for a given target function. The effects of input-output correlation and complex network structure in the reservoir on the computational performance of the system have been mathematically characterized. Far from the chaotic regime, ordered linear networks exhibit a homogeneous decay of memory in different dimensions, which keeps the input history coherent. As disorder is introduced in the structure of the network, memory decay becomes inhomogeneous along different dimensions causing decoherence in the input history, and degradation in task-solving performance. Close to the chaotic regime, the ordered systems show loss of temporal information in the input history, and therefore inability to solve tasks. However, by introducing disorder and therefore heterogeneous decay of memory the temporal information of input history is preserved and the task-solving performance is recovered. Thus for systems at the edge of chaos, disordered structure may enhance temporal information processing. Although the current framework only applies to linear systems, in principle it can be used to describe the properties of physical reservoir computing, e.g., photonic RC using short coherence-length light

    Optimisation de réseaux de neurones à décharges avec contraintes matérielles pour processeur neuromorphique

    Get PDF
    Les modèles informatiques basés sur l'apprentissage machine ont démarré la seconde révolution de l'intelligence artificielle. Capables d'atteindre des performances que l'on crut inimaginables au préalable, ces modèles semblent devenir partie courante dans plusieurs domaines. La face cachée de ceux-ci est que l'énergie consommée pour l'apprentissage, et l'utilisation de ces techniques, est colossale. La dernière décennie a été marquée par l'arrivée de plusieurs processeurs neuromorphiques pouvant simuler des réseaux de neurones avec une faible consommation d'énergie. Ces processeurs offrent une alternative aux conventionnelles cartes graphiques qui demeurent à ce jour essentielles au domaine. Ces processeurs sont capables de réduire la consommation d'énergie en utilisant un modèle de neurone événementiel, plus communément appelé neurone à décharge. Ce type de neurone est fondamentalement différent du modèle classique, et possède un aspect temporel important. Les méthodes, algorithmes et outils développés pour le modèle de neurone classique ne sont pas adaptés aux neurones à décharges. Cette thèse de doctorat décrit plusieurs approches fondamentales, dédiées à la création de processeurs neuromorphiques analogiques, qui permettent de pallier l'écart existant entre les systèmes à base de neurones conventionnels et à décharges. Dans un premier temps, nous présentons une nouvelle règle de plasticité synaptique permettant l'apprentissage non supervisé des réseaux de neurones récurrents utilisant ce nouveau type de neurone. Puis, nous proposons deux nouvelles méthodes pour la conception des topologies de ce même type de réseau. Finalement, nous améliorons les techniques d'apprentissage supervisé en augmentant la capacité de mémoire de réseaux récurrents. Les éléments de cette thèse marient l'inspiration biologique du cerveau, l'ingénierie neuromorphique et l'informatique fondamentale pour permettre d'optimiser les réseaux de neurones pouvant fonctionner sur des processeurs neuromorphiques analogiques

    Reservoir Computing: computation with dynamical systems

    Get PDF
    In het onderzoeksgebied Machine Learning worden systemen onderzocht die kunnen leren op basis van voorbeelden. Binnen dit onderzoeksgebied zijn de recurrente neurale netwerken een belangrijke deelgroep. Deze netwerken zijn abstracte modellen van de werking van delen van de hersenen. Zij zijn in staat om zeer complexe temporele problemen op te lossen maar zijn over het algemeen zeer moeilijk om te trainen. Recentelijk zijn een aantal gelijkaardige methodes voorgesteld die dit trainingsprobleem elimineren. Deze methodes worden aangeduid met de naam Reservoir Computing. Reservoir Computing combineert de indrukwekkende rekenkracht van recurrente neurale netwerken met een eenvoudige trainingsmethode. Bovendien blijkt dat deze trainingsmethoden niet beperkt zijn tot neurale netwerken, maar kunnen toegepast worden op generieke dynamische systemen. Waarom deze systemen goed werken en welke eigenschappen bepalend zijn voor de prestatie is evenwel nog niet duidelijk. Voor dit proefschrift is onderzoek gedaan naar de dynamische eigenschappen van generieke Reservoir Computing systemen. Zo is experimenteel aangetoond dat de idee van Reservoir Computing ook toepasbaar is op niet-neurale netwerken van dynamische knopen. Verder is een maat voorgesteld die gebruikt kan worden om het dynamisch regime van een reservoir te meten. Tenslotte is een adaptatieregel geĂŻntroduceerd die voor een breed scala reservoirtypes de dynamica van het reservoir kan afregelen tot het gewenste dynamisch regime. De technieken beschreven in dit proefschrift zijn gedemonstreerd op verschillende academische en ingenieurstoepassingen
    • …
    corecore