
Sparsity in Reservoir Computing Neural Networks
Claudio Gallicchio

Department of Computer Science
University of Pisa

Pisa, Italy
gallicch@di.unipi.it

Abstract—Reservoir Computing (RC) is a well-known strategy
for designing Recurrent Neural Networks featured by striking
efficiency of training. The crucial aspect of RC is to properly
instantiate the hidden recurrent layer that serves as dynamical
memory to the system. In this respect, the common recipe is
to create a pool of randomly and sparsely connected recurrent
neurons. While the aspect of sparsity in the design of RC systems
has been debated in the literature, it is nowadays understood
mainly as a way to enhance the efficiency of computation,
exploiting sparse matrix operations.
In this paper, we empirically investigate the role of sparsity in
RC network design under the perspective of the richness of the
developed temporal representations. We analyze both sparsity in
the recurrent connections, and in the connections from the input
to the reservoir. Our results point out that sparsity, in particular
in input-reservoir connections, has a major role in developing
internal temporal representations that have a longer short-term
memory of past inputs and a higher dimension.

Index Terms—Reservoir Computing, Echo State Networks,
Short-term Memory, Sparse Recurrent Neural Networks

I. INTRODUCTION

Recurrent Neural Networks (RNNs) [1] are a fundamental
tool for adaptive processing of dynamically evolving informa-
tion, with excellent performance in fields such as time-series
forecasting [2], machine translation [3], speech and text pro-
cessing [4], [5], just to mention a few. An increasing number of
works are analyzing the role of sparsity in the design of trained
(dynamical) neural networks systems, for example through
pruning [6] or re-wiring [7] connections. The characterization
emerging from these studies is that having sparse connections
between neurons is not only advantageous in computational
terms - as it enables fast sparse matrix computations - but can
also be beneficial to obtain a better performance in practice.
Moreover, in the context of neurobiologically-inspired infor-
mation processing systems, a sparse degree of connectivity
between neurons has been shown to improve the quality of
the developed internal representations [8]. Interestingly, the
optimal amount sparsity in the numerical simulations matched
observed properties of cerebellum-like circuits.

Reservoir Computing (RC) neural networks [9]–[11] rep-
resent an intriguing development in the field of RNNs. In
RC, the recurrent hidden layer of a RNN is left untrained
after initialization subject to asymptotic stability conditions

This paper is currently under review. This work has been partially
supported by the European Unions Horizon 2020 Research and Innova-
tion program, under project TEACHING (Grant agreement ID: 871385).
https://www.teaching-h2020.eu

of the corresponding dynamical system. As a result, learning
is applied only to a simple readout component with striking
advantages in terms of required training times compared to
fully trained RNNs. Pushing the involved algorithms towards
extreme simplicity and efficiency makes the RC approach
very well suited for real-world application scenarios featured
by (possibly severe) resource constraints, such as neuromor-
phic hardware implementations [12] or cyber-physical systems
where the learning modules are embedded at the edge [13].

A typical strategy in the design of RC networks is to setup
the recurrent layer in a sparse way. The initial intuition was
that sparsity in the recurrent untrained layer could enable a
decoupling of state variables and hence richer representations
[14]. Successively, several authors pointed out empirical ev-
idences contrary to the initial intuition (see, e.g., [10], [15],
[16]). Currently, the sparse design of reservoirs is commonly
understood mainly as a way to speedup state computations,
without a practical effect on the resulting performance. How-
ever, the impact of sparsity on the performance of RC neural
networks has been typically studied limited to the recurrent
connections only. In this paper, we intend to shed more light
on the role of sparsity in RC by extending the analysis to both
recurrent and input connections. Specifically, we empirically
show the effect of recurrent and input sparsity in reservoirs,
evaluated by means of short-term memory capacity and effec-
tive dimension of the resulting state trajectories.

The rest of this paper is structured as follows. We intro-
duce the basics of RC methodology in Section II, discussing
initialization and sparsity of reservoirs. Then, in Section III
we present the concepts of short-term memory capacity and
effective reservoir dimension. Our experimental analysis is
described in Section IV. Finally, in Section V we draw our
conclusions and sketch possible developments.

II. RESERVOIR COMPUTING NEURAL NETWORKS

Here we give a brief description of the RC design method-
ology for RNNs, focusing on the Echo State Network (ESN)
[11], [14] model.

An RC network is a neural information processing system
that treats data in the form of (temporal) sequences. Architec-
turally, the neural network is composed by a hidden recurrent
layer called reservoir, and an output layer called readout.
Fig. 1 illustrates the building blocks of a typical RC network.

In what follows, we denote the number of reservoir neurons,
i.e., the reservoir dimension, by N , and the state of the

ar
X

iv
:2

00
6.

02
95

7v
1 

 [
cs

.L
G

] 
 4

 J
un

 2
02

0



reservoir

readout

input

𝐱(𝑡)

𝐡(𝑡)

𝐲(𝑡)

𝐱(𝑡)

𝐔

𝐕

𝐖

Fig. 1: Architecture of an RC neural network. The dotted arrow
indicates trained connections.

reservoir system at time t by h(t) ∈ RN . This state is evolved
by following a state update equation:

h(t) = tanh(Ux(t) +Wh(t− 1)), (1)

where x(t) ∈ RM is the M-dimensional input at time t, U ∈
RN×M is the input weight matrix, modulating the influence of
the external input on the current state, and W ∈ RN×N is the
recurrent weight matrix, which controls the impact of previous
state on the current state. The state is typically set to a zero
vector as initial condition, i.e. h(0) = 0 ∈ RN . Note that here
we dropped from (1) the reference to bias terms to focus the
analysis on the external stimulating input signal alone. Both
weight matrices U and W remain untrained after initialization
(see Section II-A).

The reservoir system is coupled with a linear readout layer
that computes an L-dimensional output at each time step, i.e.
y(t) ∈ RL, as an affine transformation of the reservoir state:

y(t) = Vh(t) + b, (2)

where V ∈ RL×N is a readout weight matrix and b ∈ RL is
a bias vector (that assumes a constant unitary input bias for
the readout). The readout parameters are the only ones that
undergo a training process, typically in closed-form fashion
by using pseudo-inversion [9].

A. Initialization of Reservoirs

The fundamental characterization of RC neural networks
is that all the reservoir parameters remain untrained after
initialization. Such initialization is performed in agreement to

asymptotic stability conditions expressed by the Echo State
Property (ESP) [14], [17], [18], which essentially require to
control the magnitude of the weights in U and W. Usually,
both the input weights in U and the recurrent weights in W
are randomly drawn from a uniform distribution in [−1, 1].
After that, the elements in U are re-scaled by a factor ωin,
which takes the role of input scaling. The weights in W are
re-scaled to control the largest absolute eigenvalue, i.e., the
spectral radius ρ, typically to a value smaller than 1 [14].

The design strategy of the reservoir topology (i.e., the way
in which the reservoir neurons are connected among each
other) has been subject of several studies in literature (see, e.g.,
[19], [20]). While some of the proposed reservoir organizations
can be beneficial in specific application circumstances, a
random and sparse topological organization of the reservoir
is the architecture of choice in general cases. This is the focus
of our analysis in this paper.

Making the connections among reservoir neurons sparse
has the fundamental practical advantage to reduce the cost of
state update operations in (1). Actually, for densely connected
reservoirs (and assuming N >> M ) the cost of state updating
scales as O(N2), i.e. quadratically with the reservoir size. A
first approach to make the reservoir sparsely connected would
be to impose a (small) fixed percentage, say C, of non-zero
weights in the involved weight matrices matrices. Although
reducing the running times in practice for smaller reservoirs,
this approach would asymptotically scale as O(N2 C/100),
hence still quadratically with the reservoir size. A more
effective approach, which is adopted in this paper, is to fix the
number, say χR, of incoming recurrent connections for each
reservoir unit. This indeed makes the state update cost as small
as O(N χR), i.e. scaling only linearly with the number of
neurons in the reservoir. A similar strategy can be adapted for
the setup of the input connections. In this case, to ensure that
each input dimension is actually forwarded to the reservoir, we
fix the number of outgoing connections from each input units,
denoted as χI . The sparse architectural reservoir setup used in
this paper is exemplified in Figure 2. Notice that in this case,
every row of W has exactly χR non-zero values, and every
column of U has exactly χI non-zero elements, with both χR

and χI being not greater than N .

III. SHORT-TERM MEMORY AND EFFECTIVE RESERVOIR
SPACE DIMENSION

The role of the recurrent reservoir system is to embed the
input time-series into an internal “state” representation, given
by the activation of the reservoir neurons over time. Here we
analyze the quality of such internal reservoir representation
by quantifying its short-term memory and effective dimension.

Short-term Memory Capacity (MC) [21] tests the ability of
a recurrent neural system to reconstruct its driving input
time-series from the transient state dynamics. More in de-
tail, the reservoir is driven by a uni-dimensional time-series,
x(t), t = 1, 2, . . ., and different readout units are trained to
recall progressively delayed versions of the input. I.e., the i-th



𝝌𝑹 = 𝟑

𝝌𝑰 = 𝟐

input

reservoir

Fig. 2: Illustration of sparsity in input to reservoir and recurrent
reservoir connections. χR indicates the number of incoming
recurrent connections for each reservoir unit. χI indicates the
number of outgoing connections from each input unit.

readout unit yi(t) should approximate x(t− i). The MC of an
RC network is then quantified as follows:

MC =

∞∑
i=1

cov2(x(t− i), yi(t))
σ2(x(t− i))σ2(yi(t))

, (3)

i.e., as the sum of squared correlation coefficients of the
delayed input and reconstructed signals.

Effective Dimension (Neff ) [8], [22] is a measure of the
number of orthogonal directions in the neuronal system’s state
trajectory over time. While the evolution of the reservoir sys-
tem in (1) is described by an N -dimensional state vector h(t),
the actual reservoir trajectory lies into a lower-dimensional
manifold whose dimension can be quantified as follows:

Neff =
(
∑N

i=1 λi)
2∑N

i=1 λ
2
i

, (4)

where λi, i = 1, 2, . . . , N , denote the eigenvalues of the
covariance matrix of the reservoir state activation over time.
When measured for a reservoir under the driving influence of
an external time-series, (4) gives an estimate of the number
of directions of reservoir state variability that are (linearly)
uncorrelated along the observed trajectory.

IV. EXPERIMENTAL ANALYSIS

We measured the short-term memory (MC) and the effective
reservoir dimension (Neff ) introduced in Section III for RC
networks varying the amount of recurrent and input connec-
tions. Our experimental settings are described in Section IV-A,
while the results are reported in Section IV-B.

A. Settings

We used a uni-dimensional signal as driving input for the
reservoir (i.e., M = 1). To maximally test the intrinsic quality
of reservoir representations, we used iid randomly sampled
inputs x(t) from a uniform distribution (in [−0.8, 0.8]). The
length of the generated input time-series was 6000, and the
number of reservoir neurons was fixed to N = 100. To
compute MC, we used the first 5000 time-steps as training set1,
using the remaining 1000 time-steps to assess the MC score.
The total number of delays used for the computation of (3) was
200, which is in practice sufficient to account for all the non-
negligible contributions for 100-dimensional reservoirs. The
last 1000 time-steps of the dataset were also used to compute
the effective reservoir dimension Neff (see (4)).

In our experiments, we used RC networks with spectral
radius ρ = 0.9 and input scaling ωin = 1. While this setup
is of common use in RC practice, we also ran preliminary
experiments with other choices of these hyper-parameters,
finding that the outcomes are not qualitatively different. We
varied both the number of recurrent connections (χR) and of
input connections (χI ) from 1 to 100 (with step of 1). For
each configuration we averaged the results over 50 reservoir
realizations.

B. Results

The achieved values of MC and Neff in correspondence
of the possible sparsity settings (values of χR and χI ) are
shown in Fig. 3. We can draw two major observations from
the results. First, the number of input connections has a
decisive impact on both the short-term memory and the effec-
tive reservoir dimension of the networks. Indeed, maximally
sparse input connections, with χI = 1, achieved the highest
performances. Interestingly, simply propagating the input to
all the reservoir neurons degrades the performance sensibly.
Second, the role of sparsity in recurrent connections seems to
be much less important. In fact, the trend in Fig. 3 indicates
that for a given input connectivity, the achieved results are not
much sensible to the exact number of recurrent connections
(after a minimum number has been exceeded).

The results are further detailed in Fig. 4, which shows
the best result for each choice of input (resp. recurrent)
connectivity in Fig. 4(a) (resp. Fig. 4(b)), as well as the
results achieved for maximally sparse input connectivity, i.e.
for χI = 1, in Fig. 4(c). Figs. 4(a)-(b) confirm the already
observed trends. On the one hand the performance of the
RC networks tends to deteriorate for less sparse input weight
matrices. On the other hand, a modest number of recurrent
connections is already sufficient to achieve a performance
not far from the highest possible one. For RC networks with
χI = 1 (Fig. 4(c)), both MC and Neff saturate for fairly small
values of χR, without appreciable differences for settings with
more than 20 recurrent connections per reservoir neuron.

1We used pseudo-inversion to train the readout, discarding the first 1000
time-steps as initial transient.



Fig. 3: Short-term Memory Capacity (MC) and effective dimension (Neff ) of RC networks. Results corresponds to N = 100
reservoir neurons, spectral radius ρ = 0.9, and input scaling ωin = 1. Recurrent (χR) and input (χI ) connectivity varied from
1 to 100 with step 1. For each of the 10000 configurations the results are averaged over a number of 50 reservoir realizations.

Fig. 4: Short-term Memory Capacity (MC) and effective dimension (Neff ) of 100 units RC networks, detailed for: (a) best
results for increasing input connectivity; (b) best results for increasing recurrent connectivity; (c) results for maximally sparse
input connections (χI = 1) and increasing recurrent connectivity. Results are re-scaled to [0, 1].

V. CONCLUSIONS

We have empirically analyzed the performance of RC
neural networks in relation to sparsity of input and recurrent
connections. Our results indicate that under commonly used
reservoir configurations, the number of non-zero connections
can play a decisive role in determining the richness of the
developed representations. In particular, while a modest num-
ber of recurrent connections is already sufficient to achieve
good performance, we found that maximally sparse input to
reservoir connections lead to the best results both in terms of
short-term memory and in terms of effective dimension of the
state manifold. Overall, our analysis points out a simple rule
of thumb for shaping reservoir weight matrices in case of uni-
dimensional driving time-series: (i) connect the input to just
one reservoir neuron, and (ii) set a small number of incoming
recurrent connections (≈ 20%) for each reservoir neuron.

The study presented in this paper can be seen as preparatory
to opening further and deeper lines of research. First of

all, the role of sparsity can be investigated in synergy with
structured (rather than random) recurrent reservoir topologies,
such as those based on cyclic [20] or small-world [23]
connections. Similarly, the study can be extended towards
deep RC neural networks [24], [25], where multiple reservoir
layers are connected in a pipeline. In this case, the sparsity
of input connections for higher layers has the even more
intriguing role of modulating the extent of signal propagation
between consecutive internal representations. Neuromorphic
hardware implementations [12], [26]–[28] of deep recurrent
neural systems are an important example of a domain where
such insights can be capitalized in practice. Under a broader
perspective, and outside the RC world, the analysis presented
here pointed out that a sparse setting of RNN connections
brings advantages even before learning of the non-zero con-
nections. How these architectural advantages can be further
exploited by (supervised or unsupervised) training is another
exciting open research question.



REFERENCES

[1] J. F. Kolen and S. C. Kremer, A field guide to dynamical recurrent
networks. John Wiley & Sons, 2001.

[2] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, “Time-series extreme event
forecasting with neural networks at uber,” in International Conference
on Machine Learning, vol. 34, 2017, pp. 1–5.

[3] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[4] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. IEEE, 2013, pp. 6645–
6649.

[5] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang et al., “Abstractive text
summarization using sequence-to-sequence rnns and beyond,” arXiv
preprint arXiv:1602.06023, 2016.

[6] S. Narang, E. Elsen, G. Diamos, and S. Sengupta, “Exploring
sparsity in recurrent neural networks,” ICLR 2017. arXiv preprint
arXiv:1704.05119, 2017.

[7] G. Bellec, D. Kappel, W. Maass, and R. Legenstein, “Deep rewiring:
Training very sparse deep networks,” ICLR 2018. arXiv preprint
arXiv:1711.05136, 2018.

[8] A. Litwin-Kumar, K. D. Harris, R. Axel, H. Sompolinsky, and L. Abbott,
“Optimal degrees of synaptic connectivity,” Neuron, vol. 93, no. 5, pp.
1153–1164, 2017.

[9] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer Science Review, vol. 3,
no. 3, pp. 127–149, 2009.

[10] B. Schrauwen, D. Verstraeten, and J. Van Campenhout, “An overview of
reservoir computing: theory, applications and implementations,” in Pro-
ceedings of the 15th european symposium on artificial neural networks.
p. 471-482 2007, 2007, pp. 471–482.

[11] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication,” science, vol.
304, no. 5667, pp. 78–80, 2004.

[12] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez,
L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information
processing beyond turing: an optoelectronic implementation of reservoir
computing,” Optics express, vol. 20, no. 3, pp. 3241–3249, 2012.

[13] D. Bacciu, P. Barsocchi, S. Chessa, C. Gallicchio, and A. Micheli, “An
experimental characterization of reservoir computing in ambient assisted
living applications,” Neural Computing and Applications, vol. 24, no. 6,
pp. 1451–1464, 2014.

[14] H. Jaeger, “The echo state approach to analysing and training recur-
rent neural networks-with an erratum note,” Bonn, Germany: German
National Research Center for Information Technology GMD Technical
Report, vol. 148, no. 34, p. 13, 2001.

[15] Y. Xue, L. Yang, and S. Haykin, “Decoupled echo state networks with
lateral inhibition,” Neural Networks, vol. 20, no. 3, pp. 365–376, 2007.

[16] C. Gallicchio and A. Micheli, “Architectural and markovian factors of
echo state networks,” Neural Networks, vol. 24, no. 5, pp. 440–456,
2011.

[17] I. B. Yildiz, H. Jaeger, and S. J. Kiebel, “Re-visiting the echo state
property,” Neural networks, vol. 35, pp. 1–9, 2012.

[18] C. Gallicchio, “Chasing the echo state property,” in Proceedings of
ESANN, 2019, pp. 667–672.

[19] T. Strauss, W. Wustlich, and R. Labahn, “Design strategies for weight
matrices of echo state networks,” Neural computation, vol. 24, no. 12,
pp. 3246–3276, 2012.

[20] A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE
transactions on neural networks, vol. 22, no. 1, pp. 131–144, 2010.

[21] H. Jaeger, Short term memory in echo state networks. GMD-
Forschungszentrum Informationstechnik, 2001, vol. 5.

[22] L. F. Abbott, K. Rajan, and H. Sompolinsky, “Interactions between
intrinsic and stimulus-evoked activity in recurrent neural networks,” The
dynamic brain: an exploration of neuronal variability and its functional
significance, pp. 1–16, 2011.

[23] Y. Kawai, J. Park, and M. Asada, “A small-world topology enhances
the echo state property and signal propagation in reservoir computing,”
Neural Networks, vol. 112, pp. 15–23, 2019.

[24] C. Gallicchio, A. Micheli, and L. Pedrelli, “Deep reservoir computing:
A critical experimental analysis,” Neurocomputing, vol. 268, pp. 87–99,
2017.

[25] ——, “Design of deep echo state networks,” Neural Networks, vol. 108,
pp. 33–47, 2018.

[26] J. Moughames, X. Porte, M. Thiel, G. Ulliac, M. Jacquot, L. Larger,
M. Kadic, and D. Brunner, “Three dimensional waveguide-interconnects
for scalable integration of photonic neural networks,” arXiv preprint
arXiv:1912.08203, 2019.

[27] M. Freiberger, P. Bienstman, and J. Dambre, “Towards deep physical
reservoir computing through automatic task decomposition and map-
ping,” arXiv preprint arXiv:1910.13332, 2019.

[28] J. Partzsch and R. Schuffny, “Analyzing the scaling of connectivity
in neuromorphic hardware and in models of neural networks,” IEEE
transactions on neural networks, vol. 22, no. 6, pp. 919–935, 2011.


	I Introduction
	II Reservoir Computing Neural Networks
	II-A Initialization of Reservoirs

	III Short-term Memory and Effective Reservoir Space Dimension
	IV Experimental Analysis
	IV-A Settings
	IV-B Results

	V Conclusions
	References

