13 research outputs found

    Implementación de sensores extereoceptivos para una plataforma móvil utilizando microcontroladores.

    Get PDF
    El uso de robots móviles está justificado en aplicaciones en las que se realizan tareas de riesgo para el ser humano. El transporte de material peligroso, las excavaciones mineras, o la inspección de plantas nucleares son ejemplos donde un robot móvil puede desarrollar su labor. Para realizar estas tareas es necesario dotar al robot de un conjunto de sensores, que le den la capacidad de navegar en cualquier entorno. En este documento se presenta el diseño e implementación de un conjunto de sensores, los cuales dotaran a una plataforma móvil de la inteligencia necesaria para navegar por cualquier entorno

    Implementación de sensores extereoceptivos para una plataforma móvil utilizando microcontroladores.

    Get PDF
    El uso de robots móviles está justificado en aplicaciones en las que se realizan tareas de riesgo para el ser humano. El transporte de material peligroso, las excavaciones mineras, o la inspección de plantas nucleares son ejemplos donde un robot móvil puede desarrollar su labor. Para realizar estas tareas es necesario dotar al robot de un conjunto de sensores, que le den la capacidad de navegar en cualquier entorno. En este documento se presenta el diseño e implementación de un conjunto de sensores, los cuales dotaran a una plataforma móvil de la inteligencia necesaria para navegar por cualquier entorno

    Reactive Collision Avoidance Strategies for Robots in direct Human-Robot Interaction

    Get PDF
    In the near future robots are sought to become an integral part of human everyday life. Also in industrial settings robotic Co-Workers are expected to become a commodity. Even though the particular application areas may vastly change, a robot always needs to act in a dynamic and partially unknown environment. It shall reactively generate motions and prevent upcoming collisions. If contact is desired or inevitable, it has to handle it robustly and safely. In order to evaluate existing algorithms an extensive simulation environment with test scenarios of rising complexity in 2D, 3D, and 6D was developed. After an initial analysis in rather complex 2D simulations, particularly well suited ones were extended to 3D as well as 6D, and combined into a hybrid strategy. Finally, the 6D MATLAB/Simulink/StateFlow implementation of a hybrid Circular & Potential Fields approach is used to perform the experimental analysis for static multi-object parcours and to avoid dynamically moving humans in a 6D task motion. Furthermore, we developed and tested a high-performance algorithm for tactile exploration of complex planar 3D wire elements, whose structure is a-priori unknown

    A study to implement a 2D laser scanner to determine the platform position and orientation of a cable robot for logistic applications

    Get PDF
    Der Einsatz seilgetriebener Parallelmanipulatoren (CDPR) in der Industrie ist der Weg in eine vielversprechende Zukunft. Im Vergleich zum klassischen Parallelmanipulator hat der CDPR einen größeren Arbeitsraum und verbraucht dennoch weniger Energie. Ein CDPR-Prototyp für die Anwendung im Hochregallager wurde im Lehrstuhl für Mechatronik der Universität Duisburg-Essen entwickelt. Ziel ist, diese Anwendung auf den Markt zu bringen. Für die Roboterkalibrierung, zur Bewertung der Roboterregelung und aus Gründen der Sicherheit muss die Position und Orientierung (Pose) der CABLAR-Plattform bestimmt werden. Aktuelle Forschungsarbeiten zeigen, dass die effektivsten Verfahren zur Bestimmung der Plattformpose die direkte Messung mit einem externen Sensor und die indirekte Messung mit einem integrierten Sensor am Seilroboter sind. Beispiele für die direkte und indirekte Messung sind das Kamerasystem und die Vorwärtskinematik. Aufgrund der hohen Kosten ist das Kamerasystem für diese Anwendung weniger geeignet. Andererseits birgt auch die Vorwärtskinematik einige Nachteile: Die aktuelle Geometrie des Roboters stimmt wahrscheinlich wegen der Herstellungs- und/oder Montagetoleranz nicht mit dem kinematischen Modell überein. Zudem beeinflussen Umweltfaktoren, wie z. B. die Temperatur, und eine lange Betriebszeit die Seileigenschaften (z. B. Elastizitätsmodul, Seildichte, Durchmesser). Diese Änderungen verringern die Genauigkeit der Plattformpositionierung. Ein alternatives Verfahren zur Bestimmung der Plattformpose ist die Messung mittels eines 2D-Laserscanners und eines Orientierungsaufnehmers (IMU). In Kombination mit Reflektoren an der linken, rechten und spezielle Anordnung an oberen Seite des Roboterrahmens liefert der Laserscanner einzigartige Messdaten. Das Messergebnis des Laserscanners basiert auf dem Gerade-Ebene-Schnittpunkt, der mittels Gradientenprojektionsverfahren modelliert wird. Zudem wurde ein Kompensationsalgorithmus entwickelt, um die Auswirkung des Geschwindigkeitseffekts auf das Messergebnis aufgrund der Plattformbewegung zu verringern. Der Näherungswert der normalen Parametrierung aller Reflektoren wird mittels der modizierten Hough-Transformation geschätzt. Unter Zuhilfenahme dieses Wertes wurde das Messergebnis anhand eines zufälligen Stichprobenverfahrens (RANSAC Algorithmus, englisch Random Sample Consensus) segmentiert. Ziel ist, die Messdaten der Reflektoren an der linken, rechten, und oberen Seite des Roboterrahmens zu trennen. Die Methode der kleinsten Quadrate (KQ-Methode) bestimmt anhand dieser segmentierten Messdaten den besten Wert der normalen Parametrierung jeder Geraden, die zu allen Reflektoren gehört. Aus diesen Werten werden die y- und z-Komponente und der Rollwinkel der Plattformpose bestimmt. Um die Messfähigkeit des 2D-Laserscanners vom zwei dimensionalen zum räumlichen Messen zu erweitern, wurde ein mathematisches Modell mittels einer speziellen Reflektoranordnung entwickelt. Ziel ist die Bestimmung der x-Komponente und des Gierwinkels der Plattformpose. Der Nickwinkel wird vom IMU gemessen. Die Simulation der Plattform wurde in Ruhe und in Bewegung durchgeführt. Die Simulationsergebnisse sind als Empfehlung für den Versuch am Prototyp zu sehen. Vor dem Versuch wurde die passende Sensorschnittstelle gewählt und getestet. Zudem erfolgte die Gestaltung des Sensorkonzepts zur Datenübertragung. Der Treiber für die Sensoren und die Software für die Datenbearbeitung wurden vorbereitet und das vorgeschlagene Verfahren zur Bestimmung der Plattformpose am Prototyp getestet. Im Versuch wurde die translatorische Komponente der Plattformpose mit direkter Messung der Plattformposition validiert. Der Vergleich zeigt, dass die gemessene Plattformpose nicht an gewünschter Stelle liegt. Danach wurde das vorgeschlagene Verfahren zur Bestimmung der Plattformpose während niedriger und hoher Plattformgeschwindigkeit getestet. Das Ergebnis zeigt, dass dieses Verfahren zur Bestimmung der aktuellen Plattformpose geeignet ist. Die oben beschriebenen Forschungsergebnisse zeigen, dass vorgeschlagene Messverfahren sich zur Bestimmung der Plattformpose in Ruhe und in Bewegung eignet. Aufgrund des günstigen Preises ist das vorgeschlagene Messsystem eine vielsprechende Möglichkeit, die in der kommerziellen Anwendung des CABLAR eingesetzt werden kann.The implementation of a Cable Driven Parallel Robot (CDPR) as a commercial product has a promising future due to its energy efficiency and larger workspace compared to conventional parallel manipulators. A prototype of a CDPR for warehouse applications called CABLAR has been developed at the Chair of Mechatronics at the University of Duisburg-Essen (UDE), which aims to develop the CDPR as a commercial product. In order to benchmark the controller and calibrate the robot, for safety reasons, the platform position and orientation (pose) of the CABLAR must be measured. The current reported approaches to determine the platform pose of a cable robot are direct measurement and indirect measurement. An external sensor such as a camera system or laser tracker is used in direct measurement. Meanwhile, indirect measurement is the determination of the platform pose by forward kinematics where the input is from the proprioceptive sensor. However, the camera system is not worth implementing in the commercial product due to its high cost. On the other hand, forward kinematics has drawbacks when the defined parameters are not identical to the actual parameters. The manufacturing tolerance, assembly tolerance or changing the properties and diameter of the cable because of environmental effects (e.g. temperature) and long operation time are the reasons for this and are difficult to avoid. As a result, the actual pose of the platform could deviate from the desired pose. In this thesis, a direct measurement method by combining a 2D laser scanner with an Inertial Measurement Unit (IMU) is proposed. Several flat reflectors are fixed on the left and right of the robot frame with a special pattern design on the upper side. The laser scanner measurement result during the operation of the CABLAR is imitated based on the line-plane intersection according to the gradient projection method. A compensation algorithm aimed at reducing the velocity effect on the measurement result due to platform motion is proposed. The rough value of normal parametrization of each reflector is estimated using the Modified Hough Transform (mHT) from the measurement result. According to the rough value of the normal parametrization, the measurement result is segmented into a dataset corresponding to the left-, right- and upper-side reflectors by Random Sample Consensus (RANSAC). The linear least squares method is applied in order to determine the ne value of the normal parametrization of all segmented data. The y-component, z-component and roll angle of the platform pose are determined from the fine normal parametrization. A mathematical model based on the reflector special pattern design is developed. The goal is to extend the limitation of the 2D laser scanner from plane measurement to become space measurement in order to obtain the x-component and the yaw angle of the platform pose. The pitch angle is measured by the IMU. The CABLAR model is simulated to verify the proposed measurement method for the conditions where the platform is stationary and in motion. According to the simulation results, several points are concluded as the recommendations for the experiment. Before the experiment was conducted, the suitable hardware interface of the sensors was chosen and tested. The system architecture of the data transfer was designed. The software to drive the sensors and to process the measurement data was prepared. In the experiment on the prototype, the translational components of the platform pose were validated with the direct measurement. Meanwhile the rotational components obtained from the proposed method were validated with the measurement result from the IMU. The results show that the platform position deviates from the desired pose. Furthermore, the proposed platform pose measurement method is tested for the platform in low- and high-velocity motion. The results show that the proposed measurement method is able to determine the actual platform pose. Finally, the proposed measurement method is able to determine the platform pose when stationary and in motion. The proposed measurement system is suitable for application in the commercial CABLAR due its low cost compared to the actual reported measurement system

    Proceedings of the KI 2009 Workshop on Complex Cognition

    Get PDF
    The KI ´09 workshop on Complex Cognition was a joint venture of the Cognition group of the Special Interest Group Artificial Intelligence of the German Computer Science Society (Gesellschaft für Informatik) and the German Cognitive Science Association. Dealing with complexity has become one of the great challenges for modern information societies. To reason and decide, plan and act in complex domains is no longer limited to highly specialized professionals in restricted areas such as medical diagnosis, controlling technical processes, or serious game playing. Complexity has reached everyday life and affects people in such mundane activities as buying a train ticket, investing money, or connecting a home desktop to the internet. Research in cognitive AI can contribute to supporting people navigating through the jungle of everyday reasoning, decision making, planning and acting by providing intelligent support technology. Lessons learned from expert systems research of the nineteen-eighties show that the aim should not be to provide for fully automated systems which can solve specialized tasks autonomously but instead to develop interactive assistant systems where user and system work together by taking advantage of the respective strengths of human and machine. To accomplish a smooth collaboration between humans and intelligent systems, basic research in cognition is a necessary precondition. Insights into cognitive structures and processes underlying successful human reasoning and planning can provide suggestions for algorithm design. Even more important, insights into restrictions and typical errors and misconceptions of the cognitive systems provide information about those parts of a complex task from which the human should be relieved. For successful human-computer interaction in complex domains it has, furthermore, to be decided which information should be presented when, in what way, to the user. We strongly believe that symbolic approaches of AI and psychological research of higher cognition are at the core of success for the endeavor to create intelligent assistant system for complex domains. While insight into the neurological processes of the brain and into the realization of basic processes of perception, attention and senso-motoric coordination are important for the basic understanding of the principles of human intelligence, these processes have a much too fine granularity for the design and realization of interactive systems which must communicate with the user on knowledge level. If human system users are not to be incapacitated by a system, system decisions must be transparent for the user and the system must be able to provide explanations for the reasons of its proposals and recommendations. Therefore, even when some of the underlying algorithms are based on statistical or neuronal approaches, the top-level of such systems must be symbolical and rule-based. The papers presented at this workshop on complex cognition give an inspiring and promising overview of current work in the field which can provide first building stones for our endeavor to create knowledge level intelligent assistant systems for complex domains. The topics cover modelling basic cognitive processes, interfacing subsymbolic and symbolic representations, dealing with continuous time, Bayesian identification of problem solving strategies, linguistically inspired methods for assessing complex cognitive processes and complex domains such as recognition of sketches, predicting changes in stocks, spatial information processing, and coping with critical situations

    Robotic Automation of Turning Machines in Fenceless Production: A Planning Toolset for Economic-based Selection Optimization between Collaborative and Classical Industrial Robots

    Get PDF
    Ursprünglich wurden Industrieroboter hauptsächlich hinter Schutzzäunen betrieben, um den Sicherheitsanforderungen gerecht zu werden. Mit der Flexibilisierung der Produktion wurden diese scharfen Trennbereiche zunehmend aufgeweicht und externe Sicherheitstechnik, wie Abstandssensoren, genutzt, um Industrieroboter schutzzaunlos zu betreiben. Ausgehend vom Gedanken dieser Koexistenz bzw. Kooperation wurde die Sicherheitssensorik in den Roboter integriert, um eine wirkliche Kollaboration zu ermöglichen. Diese sogenannten kollaborierenden Roboter, oder Cobots, eröffnen neue Applikationsfelder und füllen somit die bestehenden Automatisierungslücken. Doch welche Automatisierungsvariante ist aus wirtschaftlichen Gesichtspunkten die geeignetste? Bisherige Forschung untersucht zum Großteil isoliert eine der beiden Technologien, ohne dabei einen Systemvergleich hinsichtlich technologischer Spezifika und Wirtschaftlichkeit anzustellen. Daher widmet sich diese Dissertation einer Methodik zum wirtschaftlichen Vergleich von kollaborierenden Robotern und Industrierobotern in schutzzaunlosen Maschinenbeladungssystemen. Besonderer Fokus liegt dabei auf dem Herausarbeiten der technischen Faktoren, die die Wirtschaftlichkeit maßgeblich beeinflussen, um ein Systemverständnis der wirtschaftlichen Struktur beider Robotertechnologievarianten zu erhalten. Zur Untersuchung werden die Inhalte eines solchen Planungsvorhabens beschrieben, kategorisiert, systematisiert und modularisiert. Auf wirtschaftlicher Seite wird ein geeignetes Optimierungsmodell vorgestellt, während auf technischer Seite vor allem die Machbarkeit hinsichtlich Greifbarkeit, Layoutplanung, Robotergeschwindigkeiten und Zykluszeitbestimmung untersucht wird. Mit deduktiven, simulativen, empirischen und statistischen Methoden wird das Systemverhalten für die einzelnen Planungsinhalte analysiert, um die Gesamtwirtschaftlichkeit mit einem Minimum an Investment,- Produktions,- und Zykluszeitinformationen a priori vorhersagen zu können. Es wird gezeigt, dass durch einen Reverse Engineering Ansatz die notwendigen Planungsdaten, im Sinne von Layoutkomposition, Robotergeschwindigkeiten und Taktzeiten, mithilfe von Frontloading zu Planungsbeginn zur Verfügung gestellt werden können. Dabei dient der Kapitalwert als wirtschaftliche Bewertungsgrundlage, dessen Abhängigkeit vom Mensch-Roboter-Interaktionsgrad in einem Vorteilhaftigkeitsdiagramm für die einzelnen Technologiealternativen dargestellt werden kann. Wirtschaftlich fundierte Entscheidungen können somit auf quantitiativer Basis getroffen werden.:1. Introduction 25 1.1 Research Domain 25 1.2 Research Niche 26 1.3 Research Structure 28 2. State of the Art and Research 31 2.1 Turning Machines and Machine Tending 31 2.1.1 Tooling Machine Market Trends and Machine Tending Systems 31 2.1.2 Workpiece System 34 2.1.3 Machine System 36 2.1.4 Logistics System 39 2.1.5 Handling System 41 2.2 Robotics 43 2.2.1 Robot Installation Development and Application Fields 43 2.2.2 Fenceless Industrial and Collaborative Robots 48 2.2.3 Robot Grippers 55 2.3 Planning and Evaluation Methods 56 2.3.1 Planning of General and Manual Workstations 56 2.3.2 Cell Planning for Fully Automated and Hybrid Robot Systems 59 2.3.3 Robot Safety Planning 61 2.3.4 Economic Evaluation Methods 70 2.4 Synthesis - State of the Art and Research 71 3. Solution Approach 77 3.1 Need for Research and General Solution Approach 77 3.2 Use Case Delineation and Planning Focus 80 3.3 Economic Module – Solution Approach 86 3.4 Gripper Feasibility Module – Solution Approach 89 3.5 Rough Layout Discretization Model – Solution Approach 94 3.6 Cycle Time Estimation Module – Solution Approach 97 3.7 Collaborative Speed Estimation Module – Solution Approach 103 3.7.1 General Approach 103 3.7.2 Case 1: Quasi-static Contact with Hand 107 3.7.3 Case 2: Transient Contact with Hand 109 3.7.4 Case 3: Transient Contact with Shoulder 111 3.8 Synthesis – Solution Approach 114 4. Module Development 117 4.1 Economic Module – Module Development 117 4.1.1 General Approach 117 4.1.2 Calculation Scheme for Manual Operation 117 4.1.3 Calculation Scheme for Collaborative Robots 118 4.1.4 Calculation Scheme for Industrial Robots 120 4.2 Gripper Feasibility Module – Module Development 121 4.3 Rough Layout Discretization Module – Module Development 122 4.3.1 General Approach 122 4.3.2 Two-Dimensional Layout Pattern 123 4.3.3 Three-Dimensional Layout Pattern 125 4.4 Cycle Time Estimation Module – Module Development 126 4.4.1 General Approach 126 4.4.2 Reachability Study 127 4.4.3 Simulation Results 128 4.5 Collaborative Speed Estimation Module – Module Development 135 4.5.1 General Approach 135 4.5.2 Case 1: Quasi-static Contact with Hand 135 4.5.3 Case 2: Transient Contact with Hand 143 4.5.4 Case 3: Transient Contact with Shoulder 145 4.6 Synthesis – Module Development 149 5. Practical Verification 155 5.1 Use Case Overview 155 5.2 Gripper Feasibility 155 5.3 Layout Discretization 156 5.4 Collaborative Speed Estimation 157 5.5 Cycle Time Estimation 158 5.6 Economic Evaluation 160 5.7 Synthesis – Practical Verification 161 6. Results and Conclusions 165 6.1 Scientific Findings and Results 165 6.2 Critical Appraisal and Outlook 173Initially, industrial robots were mainly operated behind safety fences to account for the safety requirements. With production flexibilization, these sharp separation areas have been increasingly softened by utilizing external safety devices, such as distance sensors, to operate industrial robots fenceless. Based on this idea of coexistence or cooperation, safety technology has been integrated into the robot to enable true collaboration. These collaborative robots, or cobots, open up new application fields and fill the existing automation gap. But which automation variant is most suitable from an economic perspective? Present research dealt primarily isolated with one technology without comparing these systems regarding technological and economic specifics. Therefore, this doctoral thesis pursues a methodology to economically compare collaborative and industrial robots in fenceless machine tending systems. A particular focus lies on distilling the technical factors that mainly influence the profitability to receive a system understanding of the economic structure of both robot technology variants. For examination, the contents of such a planning scheme are described, categorized, systematized, and modularized. A suitable optimization model is presented on the economic side, while the feasibility regarding gripping, layout planning, robot velocities, and cycle time determination is assessed on the technical side. With deductive, simulative, empirical, and statistical methods, the system behavior of the single planning entities is analyzed to predict the overall profitability a priori with a minimum of investment,- production,- and cycle time information. It is demonstrated that the necessary planning data, in terms of layout composition, robot velocities, and cycle times, can be frontloaded to the project’s beginning with a reverse engineering approach. The net present value serves as the target figure, whose dependency on the human-robot interaction grade can be illustrated in an advantageousness diagram for the individual technical alternatives. Consequently, sound economic decisions can be made on a quantitative basis.:1. Introduction 25 1.1 Research Domain 25 1.2 Research Niche 26 1.3 Research Structure 28 2. State of the Art and Research 31 2.1 Turning Machines and Machine Tending 31 2.1.1 Tooling Machine Market Trends and Machine Tending Systems 31 2.1.2 Workpiece System 34 2.1.3 Machine System 36 2.1.4 Logistics System 39 2.1.5 Handling System 41 2.2 Robotics 43 2.2.1 Robot Installation Development and Application Fields 43 2.2.2 Fenceless Industrial and Collaborative Robots 48 2.2.3 Robot Grippers 55 2.3 Planning and Evaluation Methods 56 2.3.1 Planning of General and Manual Workstations 56 2.3.2 Cell Planning for Fully Automated and Hybrid Robot Systems 59 2.3.3 Robot Safety Planning 61 2.3.4 Economic Evaluation Methods 70 2.4 Synthesis - State of the Art and Research 71 3. Solution Approach 77 3.1 Need for Research and General Solution Approach 77 3.2 Use Case Delineation and Planning Focus 80 3.3 Economic Module – Solution Approach 86 3.4 Gripper Feasibility Module – Solution Approach 89 3.5 Rough Layout Discretization Model – Solution Approach 94 3.6 Cycle Time Estimation Module – Solution Approach 97 3.7 Collaborative Speed Estimation Module – Solution Approach 103 3.7.1 General Approach 103 3.7.2 Case 1: Quasi-static Contact with Hand 107 3.7.3 Case 2: Transient Contact with Hand 109 3.7.4 Case 3: Transient Contact with Shoulder 111 3.8 Synthesis – Solution Approach 114 4. Module Development 117 4.1 Economic Module – Module Development 117 4.1.1 General Approach 117 4.1.2 Calculation Scheme for Manual Operation 117 4.1.3 Calculation Scheme for Collaborative Robots 118 4.1.4 Calculation Scheme for Industrial Robots 120 4.2 Gripper Feasibility Module – Module Development 121 4.3 Rough Layout Discretization Module – Module Development 122 4.3.1 General Approach 122 4.3.2 Two-Dimensional Layout Pattern 123 4.3.3 Three-Dimensional Layout Pattern 125 4.4 Cycle Time Estimation Module – Module Development 126 4.4.1 General Approach 126 4.4.2 Reachability Study 127 4.4.3 Simulation Results 128 4.5 Collaborative Speed Estimation Module – Module Development 135 4.5.1 General Approach 135 4.5.2 Case 1: Quasi-static Contact with Hand 135 4.5.3 Case 2: Transient Contact with Hand 143 4.5.4 Case 3: Transient Contact with Shoulder 145 4.6 Synthesis – Module Development 149 5. Practical Verification 155 5.1 Use Case Overview 155 5.2 Gripper Feasibility 155 5.3 Layout Discretization 156 5.4 Collaborative Speed Estimation 157 5.5 Cycle Time Estimation 158 5.6 Economic Evaluation 160 5.7 Synthesis – Practical Verification 161 6. Results and Conclusions 165 6.1 Scientific Findings and Results 165 6.2 Critical Appraisal and Outlook 17

    Bir robot kolunun sinirsel bulanık konrolü

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Anahtar kelimeler: Yapay Sinir Ağları, Bulanık Mantık, Sinirsel Bulanık Kontrolörler, Dinamik Kontrol, Model Referans, Adaptif Kontrol.Doğrusal olmayan robot kolları çok karmaşık dinamik karakteristiklere sahiptirler. Dış bozucu büyüklükler, sürtünme ve eyleyicilerin doyuma ulaşması gibi nedenlerden ötürü geleneksel tip kontrolörlerle dayanıklı kontrol zordur. Sadece zor olmakla kalmaz aynı zamanda geleneksel kontrolörler robot manipülatörünün detaylı dinamik modeline ihtiyaç duyarlar. Bu çalışmada yapay sinir ağları, bulanık mantık ve model referans adaptif kontrol dinamik sinirsel bulanık mantık kontrolörü yapısı altında birleştirildi. Önerilen kontrolör bulanık kural yapısını ve üyelik fonksiyonlarının parametrelerini ayarlayabilmek için öğrenme yeteneğine sahiptir. Çalışmanın sonunda bir, iki ve üç serbestlik dereceli robot kollarına verilen yörüngeler izlettirilmiş ve performans değerleri gözlemlenmiştirKey Words: Neural Networks, Fuzzy Logic, Neuro Fuzzy Control, Dynamic Control, Model Reference Adaptive Control.Nonlineer robot manipulators have complex dynamic characteristics. Due to external disturbances, friction and saturation of actuators, conventional type controller based robust control is difficult. Not only is it difficult, but also requires detailed manipulator dynamics model. In this study, artificial neural network, fuzzy logic and model reference adaptive control have been combined together under dynamic neuro fuzzy controller. Proposed controller has learning ability to adjust its fuzzy membership function parameters and fuzzy rule structure. In the end of the study, one, two and three degree of freedom manipulators are followed a given path and have investigated the performance of the proposed controller
    corecore