2,210 research outputs found

    Virtual reality simulation for the optimization of endovascular procedures : current perspectives

    Get PDF
    Endovascular technologies are rapidly evolving, often - requiring coordination and cooperation between clinicians and technicians from diverse specialties. These multidisciplinary interactions lead to challenges that are reflected in the high rate of errors occurring during endovascular procedures. Endovascular virtual reality (VR) simulation has evolved from simple benchtop devices to full physic simulators with advanced haptics and dynamic imaging and physiological controls. The latest developments in this field include the use of fully immersive simulated hybrid angiosuites to train whole endovascular teams in crisis resource management and novel technologies that enable practitioners to build VR simulations based on patient-specific anatomy. As our understanding of the skills, both technical and nontechnical, required for optimal endovascular performance improves, the requisite tools for objective assessment of these skills are being developed and will further enable the use of VR simulation in the training and assessment of endovascular interventionalists and their entire teams. Simulation training that allows deliberate practice without danger to patients may be key to bridging the gap between new endovascular technology and improved patient outcomes

    Development of personalised 3D printed abdominal aortic aneurysm models with use of different materials for clinical education and training in interventional radiology

    Get PDF
    Background 3D printing is increasingly used in medical applications with studies proving its clinical value in surgical planning and simulation of complex surgical procedures. Use of patientspecific or personalised 3D printed models could serve as a useful tool in clinical education and training by practicing interventional procedures on the realistic physical models. Aims This study aimed to develop 3D printed personalised abdominal aortic aneurysm (AAA) models using different materials for the purpose of simulating interventional radiology procedure when performing endovascular aneurysm repair. Methods Anonymized Computed Tomography (CT) images of a sample case with an intrarenal AAA were selected to generate 3D volume data comprising AAA and arterial branches covering from celiac axis to common iliac arteries. The 3D segmented AAA model was printed with six different materials including resin, high impact polystyrene (HIPS), polyethylene terephthalate glycol (PETG), polylactic acid (PLA), polymethacrylate (PMMA), and thermoplastic polyurethane (TPU). The 3D printed models were scanned on a 192-slice CT scanner with and without use of contrast medium. Model accuracy in terms of AAA length and maximal transverse diameter was measured on original CT images and compared with that from these 3D printed models. Results The AAA models were successfully printed with these six different materials. 3D printed AAA models accurately replicated aortic aneurysm dimensions with mean differences less than 0.5 mm between measurements from original CT images and 3D printed models. Conclusion This study shows the feasibility of printing personalised AAA models with different materials with high accuracy of replicating aortic aneurysm. The 3D printed personalised models will be used to train interventional radiology trainees to develop their practical skills on performing endovascular aneurysm repair procedures

    Three-dimensional simulator: training for beginners in endovascular embolization with liquid agents

    Get PDF
    Background: To design a simulator for novices without prior experience in embolization with liquid agents such as n-Butyl cyanoacrylate (n-BCA) and to evaluate the simulator using surveys and post hoc video analysis. Materials and methods: The simulator was created using computer-aided design software and three-dimensionally printed. Before an embolization, trainees completed questionnaires regarding their level of expertise and self-reported confidence level. The participants were shown an instruction video and each participant performed four embolizations on the simulator. Subsequently, the participants completed surveys on self-reported confidence level and assessed the simulator's face and content validity. Results: Five experts and twelve novices trained on the simulator. The experts were radiology residents and fellows with at least 5 years of work experience in interventional radiology. The novices were medical students and radiology residents without any previous experience with embolization. Based on the surveys, the experts assessed the simulator as very useful for embolization training. Performance, e.g. mean duration embolization between experts (mean +/- standard deviation = 189 +/- 42 s) and novices (mean +/- standard deviation = 235 +/- 66 s) were significantly different (p = .001). The overall simulation of the embolization process, simulated complications, and educational capabilities of the simulator were evaluated positively. In the novice group the self-reported confidence level significantly increased (p = .001). Conclusion: The liquid embolization simulator proposed here is a suitable educational tool for training embolization procedures. It reduces the duration of embolization procedures and improves the confidence level of beginners in embolization

    Exploration, design and application of simulation based technology in interventional cardiology

    Get PDF
    Medical education is undergoing a vast change from the traditional apprenticeship model to technology driven delivery of training to meet the demands of the new generation of doctors. With the reduction in the training hours of junior doctors, technology driven education can compensate for the time deficit in training. Each new technology arrives on a wave of great expectations; sometimes our expectations of true change are met and sometimes the new technology remains as a passing fashion only. The aim of the thesis is to explore, design and apply simulation based applications in interventional cardiology for educating the doctors and the public. Chapters 1and 2 present an overview of the current practice of education delivery and the evidence concerning simulation based education in interventional cardiology. Introduction of any new technology into an established system is often met with resistance. Hence Chapters 3 and 4 explore the attitudes and perceptions of consultants and trainees in cardiology towards the integration of a simulation based education into the cardiology curriculum. Chapters 5 and 6 present the “i-health project,” introduction of an electronic form for clinical information transfer from the ambulance crew to the hospital, enactment of case scenarios of myocardial infarction of varied levels of difficulty in a simulated environment and preliminary evaluation of the simulation. Chapter 7 focuses on educating the public in cardiovascular diseases and in coronary interventional procedures through simulation technology. Finally, Chapter 8 presents an overview of my findings, limitations and the future research that needs to be conducted which will enable the successful adoption of simulation based education into the cardiology curriculum.Open Acces

    Editor's Choice – European Society for Vascular Surgery (ESVS) 2023 Clinical Practice Guidelines on Radiation Safety

    Get PDF
    Funding Information: On behalf of the Public and Community Oversight Group (PCOG) of the Health Protection Research Unit in Chemical and Radiation Threats and Hazards: Ian Wright; John Phipps; Colette Kelly; Robert Goundry; Eve Smyth; Andrew Wood; Paul Dale (also of the Scottish Environment Protection Agency). On behalf of the Society and College of Radiographers Patient Advisory Group: Lynda Johnson; Philip Plant; Michelle Carmichael – Specialist Senior Staff Nurse Guy's and St Thomas’ NHS Foundation trust.Peer reviewe

    Patient-specific virtual reality simulation : a patient-tailored approach of endovascular aneurysm repair

    Get PDF

    Virtual reality simulation training in stroke thrombectomy centers with limited patient volume—Simulator performance and patient outcome

    Get PDF
    Background Virtual reality simulation training may improve the technical skills of interventional radiologists when establishing endovascular thrombectomy at limited-volume stroke centers. The aim of this study was to investigate whether the technical thrombectomy performance of interventional radiologists improved after a defined virtual reality simulator training period. As part of the quality surveillance of clinical practice, we also assessed patient outcomes and thrombectomy quality indicators at the participating centers. Methods Interventional radiologists and radiology residents from three thrombectomy-capable stroke centers participated in a five months thrombectomy skill-training curriculum on a virtual reality simulator. The simulator automatically registered procedure time, the number of predefined steps that were correctly executed, handling errors, contrast volume, fluoroscopy time, and radiation dose exposure. The design was a before-after study. Two simulated thrombectomy cases were used as pretest and posttest cases, while seven other cases were used for training. Utilizing the Norwegian Stroke Register, we investigated clinical results in thrombectomy during the study period. Results Nineteen interventional radiologists and radiology residents participated in the study. The improvement between pretest and posttest cases was statistically significant for all outcome measures in both simulated cases, except for the contrast volume used in one case. Clinical patient outcomes in all three centers were well within the recommendations from multi-society consensus guidelines. Conclusion Performance on the virtual reality simulator improved after training. Virtual reality simulation may improve the learning curve for interventional radiologists in limited-volume thrombectomy centers. No correlation alleged, the clinical data indicates that the centers studied performed thrombectomy in accordance with guideline-recommended standards.publishedVersio
    corecore