427 research outputs found

    A simulated annealing approach to speaker segmentation in audio databases

    Get PDF
    In this paper we present a novel approach to the problem of speaker segmentation, which is an unavoidable previous step to audio indexing. Mutual information is used for evaluating the accuracy of the segmentation, as a function to be maximized by a simulated annealing (SA) algorithm. We introduce a novel mutation operator for the SA, the Consecutive Bits Mutation operator, which improves the performance of the SA in this problem. We also use the so-called Compaction Factor, which allows the SA to operate in a reduced search space. Our algorithm has been tested in the segmentation of real audio databases, and it has been compared to several existing algorithms for speaker segmentation, obtaining very good results in the test problems considered

    Offline speaker segmentation using genetic algorithms and mutual information

    Get PDF
    We present an evolutionary approach to speaker segmentation, an activity that is especially important prior to speaker recognition and audio content analysis tasks. Our approach consists of a genetic algorithm (GA), which encodes possible segmentations of an audio record, and a measure of mutual information between the audio data and possible segmentations, which is used as fitness function for the GA. We introduce a compact encoding of the problem into the GA which reduces the length of the GA individuals and improves the GA convergence properties. Our algorithm has been tested on the segmentation of real audio data, and its performance has been compared with several existing algorithms for speaker segmentation, obtaining very good results in all test problems.This work was supported in part by the Universidad de Alcalá under Project UAH PI2005/078

    Automatic summarization of narrative video

    Get PDF
    The amount of digital video content available to users is rapidly increasing. Developments in computer, digital network, and storage technologies all contribute to broaden the offer of digital video. Only users’ attention and time remain scarce resources. Users face the problem of choosing the right content to watch among hundreds of potentially interesting offers. Video and audio have a dynamic nature: they cannot be properly perceived without considering their temporal dimension. This property makes it difficult to get a good idea of what a video item is about without watching it. Video previews aim at solving this issue by providing compact representations of video items that can help users making choices in massive content collections. This thesis is concerned with solving the problem of automatic creation of video previews. To allow fast and convenient content selection, a video preview should take into consideration more than thirty requirements that we have collected by analyzing related literature on video summarization and film production. The list has been completed with additional requirements elicited by interviewing end-users, experts and practitioners in the field of video editing and multimedia. This list represents our collection of user needs with respect to video previews. The requirements, presented from the point of view of the end-users, can be divided into seven categories: duration, continuity, priority, uniqueness, exclusion, structural, and temporal order. Duration requirements deal with the durations of the preview and its subparts. Continuity requirements request video previews to be as continuous as possible. Priority requirements indicate which content should be included in the preview to convey as much information as possible in the shortest time. Uniqueness requirements aim at maximizing the efficiency of the preview by minimizing redundancy. Exclusion requirements indicate which content should not be included in the preview. Structural requirements are concerned with the structural properties of video, while temporal order requirements set the order of the sequences included in the preview. Based on these requirements, we have introduced a formal model of video summarization specialized for the generation of video previews. The basic idea is to translate the requirements into score functions. Each score function is defined to have a non-positive value if a requirement is not met, and to increase depending on the degree of fulfillment of the requirement. A global objective function is then defined that combines all the score functions and the problem of generating a preview is translated into the problem of finding the parts of the initial content that maximize the objective function. Our solution approach is based on two main steps: preparation and selection. In the preparation step, the raw audiovisual data is analyzed and segmented into basic elements that are suitable for being included in a preview. The segmentation of the raw data is based on a shot-cut detection algorithm. In the selection step various content analysis algorithms are used to perform scene segmentation, advertisements detection and to extract numerical descriptors of the content that, introduced in the objective function, allow to estimate the quality of a video preview. The core part of the selection step is the optimization step that consists in searching the set of segments that maximizes the objective function in the space of all possible previews. Instead of solving the optimization problem exactly, an approximate solution is found by means of a local search algorithm using simulated annealing. We have performed a numerical evaluation of the quality of the solutions generated by our algorithm with respect to previews generated randomly or by selecting segments uniformly in time. The results on thirty content items have shown that the local search approach outperforms the other methods. However, based on this evaluation, we cannot conclude that the degree of fulfillment of the requirements achieved by our method satisfies the end-user needs completely. To validate our approach and assess end-user satisfaction, we conducted a user evaluation study in which we compared six aspects of previews generated using our algorithm to human-made previews and to previews generated by subsampling. The results have shown that previews generated using our optimization-based approach are not as good as manually made previews, but have higher quality than previews created using subsample. The differences between the previews are statistically significant

    Automated Speaker Independent Visual Speech Recognition: A Comprehensive Survey

    Full text link
    Speaker-independent VSR is a complex task that involves identifying spoken words or phrases from video recordings of a speaker's facial movements. Over the years, there has been a considerable amount of research in the field of VSR involving different algorithms and datasets to evaluate system performance. These efforts have resulted in significant progress in developing effective VSR models, creating new opportunities for further research in this area. This survey provides a detailed examination of the progression of VSR over the past three decades, with a particular emphasis on the transition from speaker-dependent to speaker-independent systems. We also provide a comprehensive overview of the various datasets used in VSR research and the preprocessing techniques employed to achieve speaker independence. The survey covers the works published from 1990 to 2023, thoroughly analyzing each work and comparing them on various parameters. This survey provides an in-depth analysis of speaker-independent VSR systems evolution from 1990 to 2023. It outlines the development of VSR systems over time and highlights the need to develop end-to-end pipelines for speaker-independent VSR. The pictorial representation offers a clear and concise overview of the techniques used in speaker-independent VSR, thereby aiding in the comprehension and analysis of the various methodologies. The survey also highlights the strengths and limitations of each technique and provides insights into developing novel approaches for analyzing visual speech cues. Overall, This comprehensive review provides insights into the current state-of-the-art speaker-independent VSR and highlights potential areas for future research

    Water filtration by using apple and banana peels as activated carbon

    Get PDF
    Water filter is an important devices for reducing the contaminants in raw water. Activated from charcoal is used to absorb the contaminants. Fruit peels are some of the suitable alternative carbon to substitute the charcoal. Determining the role of fruit peels which were apple and banana peels powder as activated carbon in water filter is the main goal. Drying and blending the peels till they become powder is the way to allow them to absorb the contaminants. Comparing the results for raw water before and after filtering is the observation. After filtering the raw water, the reading for pH was 6.8 which is in normal pH and turbidity reading recorded was 658 NTU. As for the colour, the water becomes more clear compared to the raw water. This study has found that fruit peels such as banana and apple are an effective substitute to charcoal as natural absorbent

    Social Network Analysis for Automatic Role Recognition

    Get PDF
    The computing community has shown a significant interest for the analysis of social interactions in the last decade. Different aspects of social interactions have been studied such as dominance, emotions, conflicts, etc. However, the recognition of roles has been neglected whereas these are a key aspect of social interactions. In fact, sociologists have shown not only that people play roles each time they interact, but also that roles shape behavior and expectations of interacting participants. The aim of this thesis is to fill this gap by investigating the problem of automatic role recognition in a wide range of interaction settings, including production environments, e.g. news and talk-shows, and spontaneous exchanges, e.g. meetings. The proposed role recognition approach includes two main steps. The first step aims at representing the individuals involved in an interaction with feature vectors accounting for their relationships with others. This step includes three main stages, namely segmentation of audio into turns (i.e. time intervals during which only one person talks), conversion of the sequence of turns into a social network, and use of the social network as a tool to extract features for each person. The second step uses machine learning methods to map the feature vectors into roles. The experiments have been carried out over roughly 90 hours of material. This is not only one of the largest databases ever used in literature on role recognition, but also the only one, to the best of our knowledge, including different interaction settings. In the experiments, the accuracy of the percentage of data correctly labeled in terms of roles is roughly 80% in production environments and 70% in spontaneous exchanges (lexical features have been added in the latter case). The importance of roles has been assessed in an application scenario as well. In particular, the thesis shows that roles help to segment talk-shows into stories, i.e. time intervals during which a single topic is discussed, with satisfactory performance. The main contributions of this thesis are as follows: To the best of our knowledge, this is the first work where social network analysis is applied to automatic analysis of conversation recordings. This thesis provides the first quantitative measure of how much roles constrain conversations, and a large corpus of recordings annotated in terms of roles. The results of this work have been published in one journal paper, and in five conference articles
    corecore