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Abstract

In this paper we present an evolutionary approach to speaker segmentation, an activity that is espe-

cially important prior to speaker recognition and audio content analysis tasks. Our approach consists of

a Genetic Algorithm (GA) which encodes possible segmentations of an audio record, and a measure of

mutual information between the audio data and possible segmentations, which is used as fitness function

for the GA. We introduce a compact encoding of the problem into the GA which reduces the length of

the GA individuals and improves the GA convergence properties. Our algorithm has been tested on the

segmentation of real audio data, and its performance has been compared with several existing algorithms

for speaker segmentation, obtaining very good results in all test problems.

Keywords

Speaker segmentation, genetic algorithms, mutual information, unsupervised learning.

I. Introduction

Unsupervised learning is generally associated with the idea of using a collection of

raw observations {x1, . . . ,xn}, sampled from an unknown distribution p(x) to describe

properties of p(x). Unsupervised learning has been useful, among other applications, for

classification [1], clustering [2], image segmentation [3] and word segmentation in the audio

domain [4]. This paper deals with the problem of audio segmentation.

With the ever increasing number of TV channels and radio stations, many hours of TV

and radio broadcasts are collected every year by national heritage institutions and private

companies. Apart from the architectural problems underlying the design of databases for

storing these data, another crucial problem is information retrieval. In audio data files,

information retrieval is normally performed by indexing the audio databases, associating

each audio document with a file describing its structure in terms of retrieval keys [5]. To

perform full indexing, an essential initial step is to determine which speaker is speaking

at a given time. This process is known as “speaker segmentation” of the audio data base.

Speaker segmentation consists of distinguishing the utterance of one speaker from an-

other in an audio document. In addition to indexing, the segmentation of audio databases

can be useful for speech recognition purposes [5], speaker verification [6], low bit-rate au-

dio coding, environment and channel change detection or providing interesting additional

information such as speaker turn and speaker identities (allowing the automatic indexing

and retrieval of all occurrences of a same speaker) [7].
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The problem of segmenting an audio record has been tackled recently using distance-

based methods [7], [8], [9], and hidden Markov models [10], [11], [12]. The former approach

obtains good results in the segmentation of speech databases, but some problems of ac-

curacy in the tests performed have been reported, such as the missed detection of short

segments. In addition, its performance relies on the selection of a certain threshold which

has to be empirically tuned according to the audio record characteristics. The latter

method has the drawback that hidden Markov models need to be trained, so a previously

labelled training database, or an initial segmentation of the database, is needed. In this

paper, we propose an approach that solves these two drawbacks.

Specifically, we consider the problem of the segmentation of audio records containing

two speakers. The problem consists of automatically marking the periods of time in which

each speaker is talking (speaker turns). We propose an approach to this task which uses

an unsupervised learning algorithm, formed by a Genetic Algorithm (GA) for maximizing

a measure of Mutual Information (MI) between classes and data. MI is a concept taken

from Information Theory [13], which measures the quantity of “common” information be-

tween a sequence of labels C and a vector of data x. Intuitively, signals with a high degree

of MI between samples and classes are more easily separable than others that contain a

lower level. In this paper we use a novel approach to MI [14], which is based on direct

approximation of entropy. The samples, x, involved in the calculation of I(x, C) are the

Mel Frequency Cepstrum Coefficients (MFCC) of the audio record, whereas the sequence

of classes, C consists of a sequence of binary values {0, 1} representing which speaker is

currently talking (each bit represents 10 milliseconds of the audio record). A GA is then

used to obtain the sequence of labels Co which maximizes the MI, I(x, C). Since the

problem consists of segmenting audio records containing only two speakers, a GA with

binary representation is suitable for this purpose. Thus, every sequence C is codified in

the GA as a binary string (GA individual), and represents a possible segmentation of the

audio record. After the evolution of the GA, the best solution found represents the optimal

sequence Co (segmentation of the audio record). Note that alternative approaches can be

used for maximizing the MI: simulated annealing seems to be another appealing option,

since it could be also implemented with binary encoding and using the compaction factor.
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Also variable length genetic algorithms which codify the speaker changes as integer num-

bers instead of binary strings [15] can be applied to solve the problem. Other approaches

like fuzzy coding genetic algorithms [?] or Estimation of Distribution Algorithms (EDAs)

[?] could also be used to solve the problem.

To improve the performance of our algorithm we have introduced several modifications

to the basic GA working scheme stated above: note that the time a given speaker is talking

can be represented in the GA by a string of all 1s (or 0s). Since a given speaker rarely

talks less than one second, it is possible to compact every binary string in the GA by a

Compaction Factor (CF). Thus, a bit in the compacted string represents CF bits in the

non-compacted string. We run the GA in the space of the compacted strings, but the

calculation of the fitness values is performed with non-compacted strings. This process

allows having shorter binary strings in the GA, and its performance in convergence time

is improved.

The use of compact solutions encodings in GAs is not a new topic. There are several

works in the literature where the use of compact representations improves the GA per-

formance on a given problem. For example, in [16] a hybrid GA is used for solving the

frequency assignment problem in satellite communications, using a compact representa-

tion of the problem first introduced in [17]. In this case, the use of a compact encoding

instead of the standard one for this problem, is useful for managing the problem’s con-

straints. This is also the case in [?], where a GA for the minimum unserviced allocation

problem (MUA) is presented. The authors define an alternative encoding which modifies

the search space, improving the performance of the GA proposed in the MUA. Another

interesting work which introduces a compact representation in a GA is [18]. This paper

presents a GA with a compact solution encoding for the container ship stowage problem.

In this case, the use of the compact representation allows a significant reduction of the

search space, and thus, the GA is able to find more accurate solutions in less time than

using the standard representation for this problem. Note that the idea behind our CF is

similar to that in [18]: to obtain a reduction of the search space which makes the problem

tractable for the GA.

We have tested our approach in the segmentation of real audio records of different
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lengths, involving (i) two male speakers, (ii) two female speakers and (iii) one male and

one female speakers. We have compared our approach with some other algorithms for

speaker segmentation. First, we compare the results obtained by our GA against the

results obtained by the DISTBIC algorithm [7]. In spite of the fact that the DISTBIC

algorithm solves a more general problem (it relaxes the constraint that only two speakers

are involved in the dialogue, as this paper assumes), it is still one of the best known

algorithms for solving the speaker segmentation problem, and a comparison with it can

provide some insight into the performance of our algorithm. In the experiments section

we show that our approach obtains significant improvements over DISTBIC in all tests

problems tackled. In addition, we compare our GA against other unsupervised algorithms

which can be used for speaker segmentation, such as a standard clustering algorithm, and

a Hidden Markov Model (HMM). The comparison with all these methods shows that the

GA proposed in this paper is a competitive method for solving the segmentation of audio

records.

This article is structured as follows: In the next section, we give the background needed

to follow the rest of the paper, including a brief description of MFCC, and some previous

approaches to speaker segmentation that can be found in the literature. Section III intro-

duces the proposed GA. It is subdivided in two subsections: first, the MI measure used as

fitness function is described in Section III-A, and second, the modifications for adapting

the GA to the speaker segmentation problem are described in Section III-B. Section IV

shows the results obtained by our algorithm segmenting real audio records, and they are

discussed through comparison with the results obtained by some other approaches to the

problem. Finally, Section V concludes.

II. Background

In this section we provide some background needed to follow the rest of the paper.

We include the description of the MFCC parameterization of speech signals, some previ-

ous approaches to the segmentation of audio records and an overview of the concept of

detectability in audio records, which will be used in the experiments section.

October 4, 2005 DRAFT



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

A. MFCC parameterization of speech signals

Speech (in general, audio) signals need to be parameterized prior to segmentation. Pa-

rameterization consists of the extraction of a set of features from the speech waveform,

which must present two main characteristics: they must provide a reasonable and compact

representation of the speech signal (usually, in the time-frequency domain) and they must

have adequate discrimination capabilities for distinguishing between sounds.

MFCC [19] are the most commonly used Fourier-based parameters in automatic speech

recognition and speaker recognition applications. In this case, we have decided to use

MFCC as proposed in [8], although there are many other alternatives (see [20] for more

details). Usually speaker change detection is used for indexing and retrieving information

from spoken documents. In this context, automatic speech recognition is used for extract-

ing textual information from audio records. Thus, the use of the same kind of parameters

for both the speaker change detection and speech recognition procedures allows a useful

reduction in the computational load and memory requirements. Here, we have used 12

MFCC parameters, extracted at a frame period of 10 ms. Although it is usual to complete

the feature vectors with their corresponding first derivatives (the so-called ∆-coefficients),

we have not proceeded in this way, following the conclusions extracted by [7], since there is

no evidence that ∆-coefficients are statistically significantly better or worse than MFCCs.

The procedure for extracting the MFCC parameters is illustrated in Figure 1. The use

of MFCC parameters is fairly widespread in speech analysis, the reader is referred to [19]

and [21] for a more detailed explanation on the MFCC generation.

B. Previous approaches to segmentation of audio records

Different approaches for segmentation of audio records have been proposed in recent

years. They can be classified in three groups:

• Energy-based methods: In this approach, it is assumed that sentences uttered by

different speakers in a conversation are delimited by pauses [22]. As a consequence, the

segmentation relies on the accuracy of an inter-speaker silence detector, which usually

works by measuring the energy of each segment and comparing it to a predefined or

adaptively estimated threshold. This technique presents two important drawbacks: first,
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the accuracy of the segmentation strongly depends on the choice of the energy threshold,

and second, it is not always true that people speak between significant silences.

• Distance-based methods: This approach consists of measuring the dissimilarity be-

tween two adjacent windows of (parameterized) audio data. Depending on the degree of

dissimilarity, the system locates a change mark at the point at which the dissimilarity

is maximized. Several dissimilarity measures have been proposed in the literature, such

as the generalized likelihood ratio [23], [9] the Kullback-Leibler distance or the Bayesian

Information Criterion (BIC) [8], [24]. Again, the main drawback is the presence of a

threshold which has to be tuned for each kind of audio database. The DISTBIC algorithm

[7], which is one of the algorithms used in this paper for comparison purposes, can be

considered as a two-pass segmentation method belonging to this group. In the first pass,

the generalized likelihood measure is used for determining the approximate situation of

the segment boundaries, while in the second pass, these changing points are refined by ap-

plying the BIC criterion. A more detailed description of the DISTBIC algorithm is given

in Section IV-C. The clustering approach [10] considered in this paper for comparison also

belongs to this group of segmentation algorithms.

• Model-based segmentation: In this case, a statistical model (for example a hidden

Markov model [12], [10], [11], [25]) is trained for a set of predefined acoustic classes (speech,

speaker, background noise, music, telephone speech, etc.). For segmentation purposes,

each frame (or various frames) of the audio stream is classified using a maximum likelihood

criterion and the segment boundaries are located at the temporal point where a change

of acoustic class occurs. The main disadvantages of this method include the need to

predefine the number and nature of the acoustic classes and the large quantity of labelled

data needed for building the different acoustic models in a supervised manner. This last

drawback can be tackled using an initial segmentation of the database, as has been shown

in [10].

C. Detectability in speaker segmentation

The performance of the majority of the segmentation algorithms strongly depends on

the segment length in the audio record. As reported in [8] and in [7], short speaker turns

are more difficult to detect than longer ones. Chen and Gopalakrishnan suggest in [8]
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a possible measure of the difficulty for detecting a given speaker change, based on the

concept of detectability.

Let T = {ti} be the sequence of true speaker turns; the detectability of a certain

changing point ti is defined as:

D(ti) = min(ti − ti−1 + 1, ti+1 − ti + 1), (1)

where (ti − ti−1 + 1) is the length of the segment previous to the changing point ti, and

(ti+1−ti+1) is the length of the segment following to the changing point. In general, when

the detectability is low, the current changing point is more likely to be missed, whereas

large values of detectability imply that the changing point is often detected.

III. Genetic Algorithm for Speaker Segmentation

In this paper, the search for the sequence of labels Co which provides a segmentation of

the audio record is performed by a GA. Since we tackle the problem of segmenting audio

records with two speakers, a binary representation of the problem seems appropriate.

Every sequence of classes C representing a possible segmentation of the audio record is

codified by means of a binary string, in which each bit represents 10 ms. of audio (this

quantity is determined by the frame period used in the parameter extraction procedure (see

Subsection II-A)). That is, with the frame period considered in this paper, every minute

of audio is encoded by a binary string of length l = 6000 bits. We use a standard GA

[26], formed by a population of ξ binary individuals, which evolve by means of the classical

genetic operators, selection, crossover and mutation. The fitness function associated which

each individual of the GA is a measure of MI. In the following sections we describe the

measure of MI used as fitness function, and the reduction of GA individuals length by

means of the Compaction Factor.

A. Fitness Function: Mutual Information

Since the formulation of Shannon’s Information Theory, Mutual Information (MI) has

been considered a natural measure of the quantity of information that two (or more)

signals have in common. Analytically, MI is expressed as the Kullback-Leibler divergence
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between the joint probability density function (pdf) of the signals and the product of the

marginal densities [13]:

I(u,v) = DKL

(
p(u,v)|p(u)p(v)

)
=

∫
p(u,v) log

p(u,v)

p(u)p(v)
dudv. (2)

The calculation of this integral is not easy since the pdfs involved are not usually available.

However, some advantage can be taken from the fact that one of the signals is discrete.

Actually, this is the case in either supervised or unsupervised learning problems, in which

continuous signals are related to a set of discrete, finite classes.

In terms of entropy, MI can also be expressed as:

I(u,v) = h(u) − h(u|v), (3)

where

h(u) = −
∫

p(u) log p(u)du, (4)

and p(u) is the pdf of the signal.

In a learning problem, the variables involved are the multidimensional data x ∈ Rd and

a discrete and finite set of classes C ∈ {c1, c2, . . . , cK}, that are the patterns to be learned.

Thus, Equation 3 may be re-expressed as:

I(x, C) = h(x) − h(x|C)

= h(x) −
∑

k

p(ck)h(x|ck).
(5)

Unfortunately, the problem of estimating the entropy is, in the multidimensional case,

extremely difficult. Nevertheless, successful efforts have been carried out for one dimen-

sional signals. The problem of estimating the pdfs can be avoided by directly computing

the entropies from statistics of the data. The entropy of a one-dimensional variable may

be stated as:

h(x) = h(xgauss) − J(x), (6)
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where xgauss follows a Gaussian distribution with the same variance as x and J(x) is the

so-called negentropy. This quantity is always positive since a Gaussian random variable

is, among all the possible distributions with the same variance, the one with the highest

entropy. Two cumulant-based polynomial expansions have been traditionally used for the

estimation of the J(x): the Gram-Charlier series and the Edgeworth series [27]. However,

the terms of higher degree in the expansions make these approximations very sensitive to

outliers and samples coming from the “tails” of the distribution.

Alternative estimations of the negentropy have been successfully used in previous works

in independent component analysis. One approximation of J(x) is given by the expression:

J(x) = k1

[
E

{
x exp

(−x2

2

)}]2

+ k2

[
E

{
exp

(−x2

2

)}
−

√
1

2

]2

, (7)

where k1 and k2 are constants defined by k1 =
36

8
√

3 − 9
and k2 =

24

16
√

3 − 27
, respectively

[28]. This expression has been proven to be more robust and stable against outliers,

providing values for the negentropy quite close to the actual ones [28].

Since this approximation is only defined for one-dimensional signals, a slight modifica-

tion on the cost function must be applied to make use of it. Instead of the original MI

described in Equation 5, the MI between each of the MFCC and C will be computed.

Thus the following approximation will be used:

I(x, C) ≈
∑

i

I(xi, C), (8)

where xi stands for a MFCC coefficient. This approximation assumes that the cross-

entropy between the components is high, and the MI between them negligible. This is the

expression we use as the fitness function for the GA.

B. Reduction of GA individual’s length

As mentioned above, every individual in the GA encodes every minute of audio to be

segmented by means of a binary string of length l = 6000 bits. This implies that the

search space will have a size of 26000. In such a search space the GA will have problems

of convergence, obtaining low quality solutions. This situation would be even worse with
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larger audio records, for example in an audio record of 10 minutes it would be necessary

to use binary strings of l = 60000, making it computationally expensive for the GA to

converge to a solution.

It is possible to overcome this difficulty by looking at the problem’s structure. First of

all, note that we have codified a solution with an accuracy (resolution) of 10 ms. That is,

we would be able to detect changes in speaker with such accuracy using the representation

exposed above. This also means that one second of audio is represented by 100 bits. On

the other hand, in a standard audio record, a speaker rarely talks for less than one second.

This means that the correct solution will have large strings of all 1s and 0s representing

the segmentation of the audio. For example if a speaker talks for three seconds before

changing to other speaker, the optimal solution would be a string of 300 1s (0s) before

changing to 0s (1s). Thus, it is possible to reduce the length of the GA individuals by

compacting a number CF of bits into one. In the new representation CF bits are codified

as one bit, so the new length of the GA individuals will be l′ = l
CF

.

In our approach, the GA operates on this new representation l′, that reduces the search

space and improves GA’s convergence. We say then that the GA is being run in its

compacted form. Note, however, that the calculation of the fitness involves individuals of

length l and not l′ (because of the audio data length), so every individual in the compacted

GA has to be expanded, i.e. every bit is expanded to CF identical bits, for the fitness

calculation.

This length reduction of individuals in the GA obviously affects the accuracy of the

encoding: using the expanded representation we have an accuracy of 10 ms. for detecting

changes of speaker. If we use the compacted form of the GA, the accuracy of segmentation

is reduced to 10 ·CF ms. Thus, if for example an accuracy of one second is acceptable for

detecting speaker changes, we could set CF = 100, and the length of individuals in the

GA will be reduced as l′ = l
100

. If we want a higher accuracy, the compaction factor CF

has to be smaller.

IV. Simulations and results

In this section, first, we briefly describe the speech databases used in the simulations.

Secondly, we describe the assessment measures considered and the different algorithms
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implemented for comparison purposes. Finally, we report and discuss the results obtained

by our algorithm.

A. Test problems

Two different types of speech data have been used to test the performance of our algo-

rithm: artificially created audio records and real audio records from TV interviews.

• 50 conversations involving 76 different speakers, with a total duration of approximately

62.20 minutes, were artificially created by concatenating sentences from the Resource Man-

agement RM1 Database [29]. This database consists of speech recorded at 16 kHz in clean

conditions, and it has been widely used by the speech technology community for auto-

matic continuous speech recognition assessment. The original pauses between sentences

were shortened to an average duration of approximately 190 ms. for a better simulation of

real conversations. The conversations created contain a total of 1071 speaker turns and the

duration of each segment varies from 1.05 seconds to 7.25 seconds with an average length

of 3.33 seconds. Figure 2 (a) shows the percentage of segments with a given detectability

in the artificial data used. Note that the percentage of short turns with a detectability less

than 2 seconds is over 14%, the percentage of speaker turns with a detectability between 2

and 3 seconds is about 50% and the changing points with a detectability more than 3 sec-

onds is about 36% . In these experiments, we have divided these conversations into three

groups according to the different types of speakers involved: male-male, female-female and

male-female. Table I shows the main characteristics of these problems, numbered as #1,

#2 and #3. A CF of 20 (which corresponds to a segmentation resolution of 200 ms.) was

used in each case.

• A total of 35 TV news broadcasts (corresponding to interviews) with a duration of

55.80 minutes were extracted from the 1997 HUB English Evaluation Speech Database,

distributed by NIST [30]. The conversations involve 36 different speakers in this case.

The original aim of this database was to foster research on the problem of accurately

transcribing broadcast news speech, in which the first step is the segmentation of the speech

data into homogeneous segments (same speaker, same acoustic environment). The selected

data contains spontaneous speech recorded at 16 kHz and at different acoustic conditions
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(clean and in telephone environment). NIST provides hand-segmentations of this data

that we have used as a reference. The conversations extracted from this database contain

128 segment boundaries, which correspond to an average segment length of approximately

20.54 seconds, with a maximum length of 73.21 seconds and a minimum of 0.75 seconds.

Figure 2 (b) shows the percentage of segments depending on its corresponding detectability.

In this case, the percentage of short speaker turns with a detectability less than 2 seconds

is about 33%, whereas 67% of the segments have a detectability of more than 2 seconds.

The average duration of the pauses between speech segments is about 210 ms. This length

distribution is typical for interviews, in which the shortest segments usually correspond

to the questions of journalists. Note the differences in detectability (Figures 2 (a) and

(b)) between real and artificial audio records. Again, different types of speakers have

been considered in the conversations, male-male, female-female and male-female speakers.

Table I shows the main characteristics of these problems (#4, #5, #6). Note that in this

case the CF used was 30 (which corresponds to a segmentation accuracy of 300 ms.), due

to these audio records being longer than the artificial ones.

B. Assessment measures

We distinguish between two type of errors related to speaker turn detection. False

alarms or Type-I errors occur when a speaker turn is detected although it does not exist.

The false alarm rate (FAR) is defined as:

FAR = 100 · number of FA

number of actual speaker turns + number of FA
%. (9)

Missed detections or Type-II errors occur when the process does not detect an existing

speaker turn. The missed detection rate (MDR) is calculated as follows:

MDR = 100 · number of MD

number of actual speaker turns
%. (10)

In our context, a missed detection is more severe than a false alarm, see [7].

Some authors [11], [9], use two different measures (precision (PRC) and recall (RCL))

which are closely related to FA and MD rates. They are defined as,
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PRC = 100 × number of correctly found speaker turns

number of hypothesized speaker turns
%, (11)

RCL = 100 × number of correctly found speaker turns

number of actual speaker turns
%. (12)

As it is difficult to compare the performance of different algorithms examining FAR-

MDR or PRC-RCL pairs, a new metric referred to as the F-measure is frequently used

[11], [9]. It is computed as a function of precision and recall measures as follows,

F =
2.0 * PRC * RCL

PRC + RCL
. (13)

F-measure values fall between 0 and 1. Algorithms achieving a F-measure close to 1

show the best performance.

To compute these different metrics, it is necessary to take into account that the position

of the speaker turns are not exactly defined, due to the presence of inter-speaker silences

or non-speech sounds [11]. Therefore, it is considered that a changing point is correctly

located if it belongs to a time interval [to − ∆t, to + ∆t] in which to is the reference mark

and ∆t is the tolerance (600 ms., in our case).

In the experiments described below, we will indicate FAR, MDR, PRC, RCL and F-

measure achieved by our algorithm segmenting the audio files referred above, and we

use these parameters for comparing the performance of our algorithm with DISTBIC,

clustering and HMM segmentation methods.

C. Algorithms for comparison purposes

C.1 DISTBIC

DISTBIC algorithm [7] is based on the Bayesian Information Criterion (BIC), first

proposed in [31]. BIC uses a likelihood ratio, in which it is decided whether two fragments

belong to the same source or to two different ones. The log-likelihood ratio associated
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with the frame i is defined as:

R(i) = log
L(H0)

L(H1)L(H2)
, (14)

where H0 is the hypothesis of that there is not a change of source in i. L(H0) is its

corresponding likelihood when a Gaussian distribution is assumed. H1 assumes all frames

with index ≤ i to belong to speaker 1 and so H2 does with index > i and speaker 2.

BIC criterion takes also into account the complexity of the solution. The cost function

is given by:

∆BIC(i,m) = −R(i) + λP (m), (15)

where P (m) is the penalizing term when m parameters are used, with λ being a threshold

parameter. Samples with the higher ∆BIC are the most likely to correspond to a change.

DISTBIC is based on an sliding-windowing that applies BIC to frames all along the

sequence. After measuring the ∆BIC(i,m), DISTBIC carries out two later steps of re-

finement and validation that improve the performance obtained if just the BIC criterion

were applied.

There are two main parameters (apart from the threshold parameter λ) DISTBIC de-

pends on. The first one is the size of the sliding window from which the Gaussian models

are built, i.e. the number of samples with index ≤ i the hypothesis H1 is built according

with. This size is usually maintained fixed, with a typical value of 1 second [7]. The second

parameter is the shift of the window, which determines the resolution of the method.

C.2 Clustering-based segmentation

Speaker segmentation of audio data files can be carried out by using a group average

hierarchical agglomerative clustering algorithm as proposed in [10]. This technique consists

of dividing the audio data into a certain number of segments (clusters) and iteratively

merging two clusters according to a predetermined metric. As we know that all the audio

records considered contain two speakers, this procedure finishes when two clusters (each

one containing the part of speech uttered by each speaker) are obtained. Note that the

information about the number of speakers in each audio file is also used in the HMM-based

(see next subsection) and GA approaches.
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In the initialization stage of the clustering algorithm, the data are divided into segments

of equal length. The initial size of the clusters determines the resolution of the segmen-

tation procedure and, in this sense, it plays a similar role that the CF factor in the GA

approach. Thus, for allowing a fairer comparison to the GA method, the clusters have an

initial size of CF in both databases: in the RM1 database, initial clusters consists of 200

ms. of speech and in the HUB 97 database, they consist of speech of 300 ms. length.

The distance between two clusters is based on the log-likelihood ratio defined in Equa-

tion 14. For the computation of corresponding likelihoods, each cluster is modelled by tied

mixtures of multivariate Gaussian distributions in the cepstral space, which are trained fol-

lowing the procedure described in [10]. We have carried out different experiments varying

the number of mixtures and we find that, for our databases, the best results are obtained

using 32 mixtures.

C.3 HMM-based segmentation

Hidden Markov models can also be used for speaker segmentation as it has been shown

in [10] and more recently in [11] and [25].

In this case, speakers are considered different acoustic classes. Each of these classes is

statistically represented by a mixture of multivariate Gaussian densities which are trained

before the segmentation. Then, the audio data is classified using a Maximum Likelihood

criterion with a Viterbi decoder [32] that yields a set of boundaries between classes corre-

sponding to the hypothesized speaker turns.

For building the corresponding models, some labelled data is needed. As in real appli-

cations, it is probably difficult to obtain this audio data, we have adopted an unsupervised

strategy in the training stage as proposed in [10]. In particular, we have used the segmenta-

tion provided by the agglomerative clustering method described in the previous subsection

for the initialization of the speaker models which are adequately retrained using the well

known Baum-Welch algorithm [32].

For designing the HMM-based segmenter we have used the HMM topology shown in

Figure 3. A similar approach has been proposed in [12] for speech and music segmentation

and recently adapted for speaker segmentation purposes in [25]. As in Figure 3, the

system consists of two fully connected HMM sub-networks, each one corresponding to
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each speaker. Both sub-networks are fully connected in order to allow transitions from one

speaker to another, and vice-versa. Internally, each sub-network is composed of several

left-to-right connected states associated with the same mixture Gaussian distribution.

Self-loops are only allowed in the last state. The number of concatenated states imposes

a minimum segment duration and determines the resolution of the algorithm, whereas the

self-transition of the last state makes possible to increase the segment duration as much as

necessary. For a better comparison with clustering and GA approaches, we have enforced

the same constraint of minimum duration: 200 ms. for the RM1 database and (which

corresponds to 20 internal HMM states) and 300 ms. (30 internal HMM states) for the

HUB 97 database.

As information about prior probabilities of speakers is not available, we have assumed

that both speakers are equally likely. Transition probabilities between speakers have been

empirically selected in order to favor remaining in the current state (speaker 1 or speaker

2).

In our case, preliminary experiments showed that using 32 mixture components per

internal state provides a good segmentation accuracy, so we have used this value in the

experiments described in next subsection.

C.4 Comments on the compared algorithms

First of all, note that the DISTBIC is the most general algorithm considered, in the sense

that it is able to detect more than two speakers. On the other hand, DISTBIC only detects

changes between speakers, without identifying which one are involved in the change. Also,

the DISTBIC algorithm depends on a threshold which must be tuned in each database.

The GA in this paper only considers the segmentation of files containing two speakers. This

is also the case of the clustering and HMM approaches in the implementation considered

in this paper. The clustering algorithm uses the information about the number of speakers

as stopping criterion. It also uses the same distance measure as the DISTBIC algorithm.

The HMM approach starts from the segmentation provided by the clustering algorithm in

order to initialize the corresponding acoustic models. Note that in this sense, the HMM

algorithm is expected to perform better than the clustering and DISTBIC algorithm. Note

also that the GA only uses the mutual information between MFCC and classes for guiding
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the search, without any kind of initialization.

D. Results

A conventional GA [26] is used in the simulations, with the MI described in Section

III-A as the fitness function, a population of ξ = 50 individuals, probability of crossover

Pc = 0.6, probability of mutation Pm = 0.01, and maximum generations equal to 1000.

A compaction factor CF = 20 has been used in simulations with RM1 database whereas

CF = 30 has been used in tests with NIST HUB 97 database, as can be seen in Table I.

These selections of CF allow a balance between accuracy and length reduction of the GA

individuals in the problems considered.

We compare results from our new algorithm with those obtained using an implemen-

tation of DISTBIC, the clustering method and the HMM-based algorithm described in

Section IV-C. As was mentioned in Section IV-C, DISTBIC is a distance-based segmenta-

tion method. Therefore, its performance strongly depends on the choice of the threshold

of speaker turn detection (Equation 15). A small value of this threshold produces an

over-segmentation (an increase in the false alarm rate); on the contrary, a large value

produces an under-segmentation of the data (an increase of the missed detection rate).

In order to perform a detailed analysis of DISTBIC algorithm, we have carried out a set

of experiments varying this threshold. Then, the corresponding Detection Error Trade-off

(DET) curves have been obtained. DET curves show the relationship between MD and

FA rates as the DISTBIC threshold varies. Note that the GA, the clustering and the

HMM-based algorithm will produce a single point in the DET curves. In addition, the

DISTBIC algorithm also depends on the value of the shift of the window parameter. We

have conducted two different sets of experiments, the first one with a shift of 100 ms.,

and the second one with a shift of 200 ms. for the RM1 database, and 300 for the HUB

97 database. These values are comparable with the GA using a CF of 20 (200 ms.) and

30 (300 ms.) respectively. The clustering and the HMM-based algorithms have also been

tested with the same resolution.

Figure 4 (a) shows the DET curves obtained with the DISTBIC algorithm in the ar-

tificially created audio records, from RM1 database, and the GA, clustering and HMM

results, as the average over all the changing points in the database. We have enhanced
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the so-called Equal-Error Rate (EER) point in the DET curves of DISTBIC. The EER is

defined as the point at which false alarms equals missed detections. Note that the closer

to the bottom left hand corner is the point obtained by the algorithm, the better is its

performance in the segmentation problem. Note that the result obtained by the GA is

below the DET curves of DISTBIC, and clustering and HMM-based points. This means

that, for a given false alarm rate, the GA always obtains a lower value of missed detec-

tions than the other algorithms, and vice versa, given a value of missed detections rate,

the corresponding value of false alarm rate is always lower using the GA than using the

other approaches.

Figure 4 (b) shows the DET curves, and the GA, clustering and HMM results for the

real conversations in the NIST HUB 97 database. It is easy to see that the GA also

obtains in this case a solution below the DISTBIC DET curves, and its results is below

the points obtained by the clustering and the HMM algorithms. Note that the EER points

for the DISTBIC are obtained using a different value of the threshold, which depends on

the database, and also on the shift of the window.

To further analyze the performance of our approach, we also present the results obtained

by the GA, DISTBIC algorithm (EER point), clustering and HMM-based approaches when

there are different types of speakers involved in the conversation: male-male, female-

female and male-female are the considered cases. Tables II and III show the different

values of FAR, MDR, PRC, RCL and F-measure obtained by our algorithm compared

with the results obtained by the other approaches considered (best results are highlighted

in boldface). Note that these tables detail the results given in average in Figures 4.

The results in the RM1 (Table II) show that our GA obtains better results than other

approaches to the segmentation problem. Note that our GA obtains on average (over

all the changing points) better results than the other approaches, in all the measures

considered. In problem #3 DISTBIC with a shift of 100 ms. obtains a better result in

terms of FAR and PRC but the MDR and the RCL measures are in both cases much

better using the GA approach. In all cases, however, the result of F-measure obtained by

the GA is better than the one obtained by the other approaches considered.

The results in the HUB 97 database (Table III) show that the GA obtains better results
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than DISTBIC in all the cases, but in problem #5, where DISTBIC obtains better results

in terms of FAR and PRC, GA is able to obtain better values of MDR, RCL and F-

measure. The clustering algorithm and the HMM-based approaches are, in this database,

able to obtain better results than the GA in problem #4 (male-female). The GA obtains

better results than the clustering and HMM-based algorithms in the rest of the cases using

this database. Summarizing, the GA obtains better results considering the average of all

speaker changes in this database.

Figure 5 compares the performance of our algorithm only with the DISTBIC algorithm

(100 ms.) in a conversation involving two female speakers in NIST HUB 97 database

(included in Problem #6). Vertical lines mark speaker turn. Note that our approach is

more accurate at detecting speaker changes than DISTBIC in this particular problem. In

this figure it is possible to see that most of missed detections produced by DISTBIC are

due to short sentences, whereas our approach is able to accurately detect them. Figure 6

shows two examples of the GA convergence in conversations of problems #5 (a) and #6

(b), respectively. The fitness of the best individual in the population is displayed. In both

examples, the GA obtained the best segmentation about generation 800, with no further

improvements in the remaining generations. Note also that the value of MI is completely

different from one conversation to the other, depending on the MFCCs that characterize

the conversation.

E. Discussion

For the final discussion, first we analyze if the differences in performance between our

GA and the other algorithms compared are statistically significant, and after that, we

offer some more insight about the GA’s performance, by means of analyzing its behavior

in problems with different detectability characteristics.

In Table IV we show the values of a two-tailed z-test [?] performed on the differences

between our GA and the other approaches considered, for RM1 and HUB 97 databases.

We have performed the z-test using the average values of FAR and MDR measures. Values

marked with a † are significant at α = 0.05. Note that the differences between our GA

and all the other algorithms are statistically significant in the RM1 database. For the

HUB 97 database, in FAR our GA is better than the DISTBIC with shift of 300 ms. and
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clustering, but there is not a statistically significant difference in performance with the

DISTBIC with a shift of 100 ms. and the HMM approach. However, our GA performs

statistically better than all the other compared approaches in MDR.

Experiments carried out have demonstrated that the approach proposed in this paper

provides very good results in the segmentation of audio records. We are interested then

in analyzing the behavior of the algorithms in problems with different detectability char-

acteristics. In Table I it is possible to check the detectability of the problems considered.

Related to this, we would like to study the accuracy of our algorithm detecting short

speaker turns compared with the accuracy of the other algorithms. To study this, we have

used the following expression

Number of MD (D(ti) < 2s)

Total number of segments (D(ti) < 2s)
(16)

This formula measures the amount of missed detections of short speaker turns (detectabil-

ity under 2 seconds) over the total of short turns with a detectability under 2 seconds.

Table V shows the percentage of missed detection of short speaker term for the RM1

and HUB 97 databases and all the algorithms considered. We found that, for the RM1

database, the average percentage of missed detections for all the database using our GA is

6.89%, lower than the value obtained by the other algorithms. In the HUB 97 database,

our GA missed only 12.31% of short speaker turns, whereas the DISTBIC (shift= 100

ms.) algorithm missed 48.3% of them. The results of the clustering and HMM approaches

are more accurate than the DISTBIC’s, however, they are still worse than the obtained

by the GA.

V. Conclusions and future work

In this paper we have presented an evolutionary technique for solving the problem of

speaker segmentation in an audio record, which is a preparatory step in speaker recog-

nition. We have proposed a GA which encodes possible segmentations, and a measure

of the mutual information (MI) between the samples of audio and the individuals of the

GA, which is used as GA fitness function. The performance of the GA is improved by

introducing a more compact encoding of the GA, by means of the so-called Compaction
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Factor, which reduces the search space size and improves the convergence performance of

the algorithm. The performance of our approach has been tested and discussed in real au-

dio records, and compared with several existing algorithms for the segmentation of audio

records, obtaining very good results in all audio records tested.

Regarding the future research starting from this paper, we plan to extend the genetic

algorithm presented to the segmentation of conversations containing more than two speak-

ers. Several adaptations in the GA and in the measure of MI would be necessary in order

to adapt our algorithm to that problem.
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TABLE I

Main characteristics of the test problems tackled

Problem Data Duration Percentage of CF Number of Type of

# Base (minutes) segments with D < 2 s speaker turns speakers

#1 RM1 21.10 16.24 20 361 male-female

#2 RM1 20.70 9.85 20 382 male-male

#3 RM1 20.41 20.15 20 328 female-female

#4 HUB 97 25.80 50.75 30 52 male-female

#5 HUB 97 21.12 18.35 30 54 male-male

#6 HUB 97 8.90 27.27 30 22 female-female
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TABLE II

Change detection rates (FAR, MDR, PRC, RCL –all in percentages–, and factor F)

obtained with our approach, compared with DISTBIC, agglomerative clustering and

HMM-based methods for the RM1 Database. The best results are indicated in boldface.

Experiment FAR MDR PRC RCL F

GA

#1 4.92 6.89 96.13 93.11 0.946

#2 2.67 2.63 98.15 97.37 0.975

#3 18.54 19.03 76.04 80.97 0.784

Average 8.29 9.08 90.71 90.87 0.906

DISTBIC (λ = 2.5) Shift = 100 ms.

#1 10.45 8.96 91.31 91.04 0.912

#2 21.54 10.85 72.04 89.15 0.797

#3 12.14 27.73 80.40 72.27 0.761

Average 14.92 15.38 81.10 84.63 0.825

DISTBIC (λ = 1) Shift = 200 ms.

#1 19.23 22.11 77.43 87.89 0.823

#2 28.35 27.89 61.40 72.11 0.663

#3 25.02 24.20 69.56 75.80 0.725

Average 24.26 24.81 69.31 78.57 0.736

CLUSTERING

#1 11.02 13.87 88.15 86.13 0.871

#2 9.13 7.96 89.06 92.04 0.905

#3 27.89 28.90 66.14 71.10 0.685

Average 15.51 16.37 81.74 83.64 0.826

HMM

#1 10.95 9.06 89.10 90.94 0.900

#2 9.56 2.96 91.23 97.04 0.940

#3 18.98 25.47 73.45 74.53 0.740

Average 12.91 11.92 85.07 88.56 0.865
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TABLE III

Change detection rates (FAR, MDR, PRC, RCL –all in percentages–, and factor F)

obtained with our approach, compared with DISTBIC, agglomerative clustering and

HMM-based methods for the NIST HUB 97 Evaluation Database. The best results are

indicated in bold-face.

Experiment FAR MDR PRC RCL F

GA

#4 25.31 12.24 70.82 87.76 0.783

#5 21.01 1.32 79.54 98.68 0.880

#6 8.33 0.00 91.67 100.00 0.957

Average 20.57 5.53 78.09 94.48 0.854

DISTBIC (λ = 3.5) Shift = 100 ms.

#4 26.0 35.60 67.81 64.40 0.660

#5 10.35 17.93 90.76 82.07 0.861

#6 37.14 9.09 60.61 90.91 0.727

Average 21.31 23.37 76.26 76.41 0.756

DISTBIC (λ = 2.7) Shift = 300 ms.

#4 40.15 38.96 49.18 61.04 0.548

#5 28.00 29.92 62.23 70.08 0.659

#6 42.11 40.91 44.83 59.09 0.510

Average 35.36 35.48 53.94 64.52 0.588

CLUSTERING

#4 11.37 16.90 87.51 83.1 0.852

#5 31.84 30.6 59.24 69.4 0.639

#6 58.86 9.09 40.82 90.91 0.563

Average 28.17 21.33 67.56 78.67 0.712

HMM

#4 9.12 10.01 90.36 89.99 0.917

#5 32.76 20.91 65.67 79.09 0.717

#6 33.33 13.64 63.33 86.36 0.731

Average 23.25 15.23 75.30 84.77 0.800
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TABLE IV

Z-test values of the statistical comparison between the GA approach and the

DISTBIC, clustering and HMM methods according to their respective performance

(FAR and MDR) for the RM1 and HUB 97 Databases. † stands for values of z which are

significant at α = 0.05

Experiment RM1 z value (FAR) z value (MDR)

GA - DISTBIC (λ = 2.5) Shift = 100 ms. 5.15† 4.47†

GA - DISTBIC (λ = 1) Shift = 200 ms. 11.44† 9.92†

GA - CLUSTERING 5.56† 5.09†

GA - HMM 3.69† 2.15†

Experiment HUB 97 z value (FAR) z value (MDR)

GA - DISTBIC (λ = 2.5) Shift = 100 ms. 0, 26 4, 20†

GA - DISTBIC (λ = 1) Shift = 200 ms. 5, 50† 6, 39†

GA - CLUSTERING 2, 73† 3, 81†

GA - HMM 0, 95 2, 58†
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TABLE V

Missed detections of short speaker turns for the RM1 and HUB 97 Databases

Experiment (RM1) Number of MD (D(ti) < 2s)
Total number of segments (D(ti) < 2s)

GA 6.89 %

DISTBIC (λ = 2.5) Shift = 100 ms. 23.54 %

DISTBIC (λ = 1) Shift = 200 ms. 52.28 %

CLUSTERING 16.29 %

HMM 11.92 %

Experiment (HUB 97) Number of MD (D(ti) < 2s)
Total number of segments (D(ti) < 2s)

GA 12.31 %

DISTBIC (λ = 3.5) Shift = 100 ms. 48.30 %

DISTBIC (λ = 2.7) Shift = 300 ms. 52.74 %

CLUSTERING 32.81 %

HMM 20.76 %
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Fig. 1. Top-level block diagram of the speech parameterization procedure. The diagram illustrates the

steps followed for the extraction of the MFCC coefficients.

October 4, 2005 DRAFT



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 33

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

50

Detectability in seconds

N
um

be
r o

f s
eg

m
en

ts
 (%

)

(a)

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

18

20

Detectability in seconds

N
um

be
r o

f s
eg

m
en

ts
 (%

)

(b)

Fig. 2. (a) Detectability histogram for RM1 database used; (b) Detectability histogram for NIST HUB

97 database used.
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Fig. 3. HMM topology for the HMM-based speaker segmentation system.
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Fig. 4. (a) DET curve obtained varying the DISTBIC threshold parameter, and FA-MD rates obtained

using the GA approach, for RM1 database; (b) DET curve obtained varying the DISTBIC threshold

parameter, and FA-MD rates obtained using the GA approach, for NIST HUB 97 database.
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Fig. 5. Actual speaker turns (upper), speaker turns detected by using DISTBIC with a resolution of

100 ms. (medium) and speaker turns detected by the proposed GA (lower) in a conversation from

test problem #6. Well-detected speaker boundaries are indicated by solid lines, false alarms (FA) by

dashed lines and missed detections (MD) by dotted lines.
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Fig. 6. (a) GA convergence for one of the conversations of problem #5; (b) GA convergence for one of

the conversations of problem #6.
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