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Abstract

In this paper we present a novel approach to the problem of speaker segmentation,
which is an unavoidable previous step to audio indexing. Mutual Information is used
for evaluating the accuracy of the segmentation, as a function to be maximized by
a Simulated Annealing (SA) algorithm. We introduce a novel mutation operator for
the SA, the Consecutive Bits Mutation operator, which improves the performance
of the SA in this problem. We also use the so called Compaction Factor, which
allows the SA to operate in a reduced search space. Our algorithm has been tested
in the segmentation of real audio databases, and it has been compared to several
existing algorithms for speaker segmentation, obtaining very good results in the test
problems considered.
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1 Introduction

Due to the increasing number of TV channels and broadcasting radio stations,
many hours of TV and radio broadcasts are collected every year by public
institutions and private companies. In addition to the architectural problems
in the design of databases for storaging these data, another crucial problem
is information retrieval. In audio data files, information retrieval is normally
performed by indexing the audio databases, associating each audio document
with a file describing its structure in terms of retrieval keys [1].

In order to perform full indexing, an essential initial step is to determine the
segmentation of the database with respect to different signals of the audio file
(speech, music or noise, for example). In many cases, such as interviews or
dialogs, this process consists of knowing which speaker is speaking at a given
time. This is known as speaker segmentation of an audio database, and it is
the problem this paper focuses on.

In addition to indexing, the segmentation of audio databases can be useful
for speech recognition purposes [1], speaker verification [2], low bit-rate audio
coding and environment and channel change detection. Also, it can provide
interesting additional information such as speaker turn and speaker identities
(allowing the automatic indexing and retrieval of all occurrences of a same
speaker) [3].

The problem of segmenting an audio record has been tackled before by using
different approaches. First, in the literature the so called energy-based meth-
ods can be found [4], where it is assumed that sentences uttered by different
speakers in a conversation are delimited by pauses. As a consequence, the seg-
mentation relies on the accuracy of an inter-speaker silence detector, which
usually works by measuring the energy of each segment and comparing it to
a predefined or estimated threshold. This technique suffers from two impor-
tant drawbacks: first, the accuracy of the segmentation strongly depends on
the choice of the energy threshold; secondly, it is not always true that people
speak between significant silences.

Other significant algorithms used in the segmentation of audio data records
are the so called distance-based methods. This approach consists of measur-
ing the dissimilarity between two adjacent windows of (parameterized) audio
data. Then, the system locates a changing mark in the point in which the dis-
similarity is maximum. Several dissimilarity measures have been proposed in
the literature, like the Generalized Likelihood Ratio (GLR) [5], the Kullback-
Leibler distance or the Bayesian Information Criterion (BIC) [6], [7]. Again,
the main drawback is the presence of a threshold which has to be tuned for
each kind of audio database.
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Finally, we mention the model-based segmentation, in which a statistical
model (i.e. a Gaussian Mixture model [8], [9]) is trained for a set of pre-
defined acoustic classes (speech, speaker, background noise, music, telephone
speech, etc.). For segmentation purposes, each frame (or various frames) of
the audio stream is classified by using a Maximum Likelihood criterion and
the segment boundaries are located in the temporal point where a change of
the acoustic class occurs. The main disadvantages of this method are the need
of predefining the number and nature of the acoustic classes, and the necessity
of having available labelled data for building the different acoustic models.

In this paper we consider the problem of the segmentation of audio records
containing two speakers. The problem consists of automatically marking the
periods of time in which every speaker is talking (speaker turns). We propose
a novel approach to this task, using a Simulated Annealing (SA) algorithm,
[10], [11], which maximizes a measure of Mutual Information (MI) [12] be-
tween classes and data. Mutual Information, I(x, C), is a concept taken from
Information Theory (IT) [12], which measures the quantity of “common” in-
formation between a sequence of labels C and a vector of data x. Intuitively,
signals with a high degree of MI between samples and classes are more easily
separable than others that contain a lower level. In this paper we use a new
approach to MI [13], which is based on direct approximation of entropy. The
samples, x, involved in the calculation of I(x, C) are the Mel Frequency Cep-
strum Coefficients (MFCC) of the audio record, whereas the classes, C, are
binary values {0, 1} which represent who the speaker currently talking is. A
SA algorithm is then used to obtain the sequence of classes Co which maxi-
mizes the MI I(x, C). Since the problem consists of segmenting audio records
containing two speakers, a SA with binary representation is suitable for this
purpose. Thus, the SA codifies the sequence C as a binary string (configu-
ration in the SA notation) which represents a possible segmentation of the
audio record. After the SA process, the current configuration represents the
sequence Co (segmentation of the audio record). We test two mutation opera-
tors for the SA algorithm, the traditional Random Flip Mutation, and a novel
mutation operator introduced in this paper: the Consecutive Bits Mutation,
which improves the performance of the algorithm in this problem. We describe
in detail these two operators in Section 3.

We have tested our approach in the segmentation of real and synthetic audio
records of different lengths. We have compared our results to several exist-
ing approaches to speaker segmentation: the DISTBIC algorithm in [3], a
clustering algorithm and a hidden Markov model approach, obtaining solid
improvements in all test performed.

The rest of the paper is structured as follows: In the next section, we give a
brief description of Mel Frequency Cepstrum Coefficients, used in this article
for parameterizing the audio signal. Section 3 introduces the SA algorithm we
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propose, and Section 4 shows the results obtained by our algorithm segmenting
real and synthetic audio records, and they are discussed through comparison
with the results obtained by other existing approaches to the segmentation of
audio records. Section 5 concludes the paper giving some final remarks.

2 Background: MFCC parameterization of speech signals

Speech (in general, audio) signals need to be parameterized prior to the seg-
mentation process. Parameterization consists of the extraction of a set of fea-
tures from the speech waveform, which have to have two main characteristics:
they must provide a reasonable and compact representation of the speech
signal (usually, in the time-frequency domain) and they must have adequate
discrimination capabilities for distinguishing between sounds.

MFCCs [14] are the most commonly used Fourier-based parameters in Au-
tomatic Speech Recognition (ASR), speaker verification and more recently,
in speaker change detection [6]. In this paper we have also used the MFCCs
for representing the speech signal. In this subsection, we briefly describe the
procedure for extracting them, as illustrated in Figure 1.

SPEECH WINDOWING MFCC
DISCRETE
COSINE
TRANSFORM

LOG
MELŦSCALE
FILTERBANK

SHORTŦTIME
FOURIER
TRANSFORM

PREŦEMPHASIS

SPECTRAL CHARACTERISTICS EXTRACTION DECORRELATION

Fig. 1. Top-level block diagram of the speech parameterization procedure. The di-
agram illustrates the steps followed for the extraction of the MFCC coefficients.

Since the speech signal varies for each sound and is not stationary, speech anal-
ysis must be performed on short windowed segments. Typically, a speech signal
is divided into a number of overlapping temporal windows (called frames) and
a speech parametric vector is computed to represent each time frame. The
frame period (interval between analysis instants) is usually set to a value be-
tween 10 and 20 milliseconds (ms. hereafter), in our case, the frame period
was 10 ms. Next, we describe the parameterization procedure for each frame
at a given time t:

• As mentioned before, due to its non-stationary nature, the speech signal has
to be divided into quasi-stationary segments in which an accurate spectral
analysis can be performed. For this purpose, the speech signal is windowed
using a Hamming window defined by the following expression:
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w[n] = 0.54− 0.46 cos
(

2πn

N − 1

)
0 ≤ n ≤ N − 1 (1)

in which the window length is set to 32 ms. (N = 512 for a sampling
frequency of 16 kHz).

• A pre-emphasis filter is applied to the windowed speech signal in order to
compensate from the negative spectral slope of its voiced portions. The
impulse response of this filter is:

h[n] = δ(n)− α δ(n− 1) (2)

in which the value of the pre-emphasis coefficient, α, usually falls between
0.85 and 1.0 (α = 0.95, in our case).

• Next, the N-point spectrum of the speech frame is computed, via the fast
Fourier transform, as follows:

S[k] = X
(
Ω = k

2π

N

)
=

N−1∑

n=0

s[n]e−jk 2π
N n, N = 512, k = 0, . . . , 255 (3)

where S(k) is the kth component of the short-time Fourier transform of
s[n] which is the previously windowed and pre-emphasized speech signal.
Due to the symmetry properties of the spectrum of real signals, we only
consider the 256-sample positive half of it.

• The power spectrum |S[k]|2 is filtered using a set of M (we have employed
M = 40) triangular band-pass filters, where the energy corresponding to
the output of each filter, E[i], is computed as follows

E[i] =
N−1∑

k=0

|S[k]|2 Wi[k], i = 0, . . . ,M − 1 (4)

whereWi[k] is the kth frequency component of the ith element of the filter-
bank. The central frequencies of the filter-bank are distributed following a
mel scale which is linear for frequencies below 1 kHz and approximately
logarithm for frequencies above 1 kHz, in order to obtain a better frequency
resolution for low frequencies than for high ones. In addition, the filters
are half-overlapped in the mel domain. This filtering process simulates the
behavior of the human auditory system, which is known to be more dis-
criminative for low frequencies.

• Finally, the log-energies, log(E[i]), are subsequently de-correlated using a
Discrete Cosine Transform yielding to Nc (12, in our case) Mel Frequency
Cepstrum Coefficients, x,

x[m] =

√
2

M

M−1∑

i=0

log(E[i]) cos
(

πm

M
(i+

1

2
)
)
, m = 1, . . . , Nc (5)
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x[m] are the input data for the calculation of the simulated annealing’s objec-
tive function, as we will show in the next section.

3 Speaker segmentation based on simulated annealing

SA has been widely applied to solve combinatorial optimization problems [15],
[16], [17]. It is inspired by the physical process of heating a substance and then
cooling it slowly, until a strong crystalline structure is obtained. This process
is simulated by lowering an initial temperature by slow stages until the system
reaches to an equilibrium point, and no more changes occur. Each stage of the
process consists of changing the configuration several times, until a thermal
equilibrium is reached, and a new stage starts, with a lower temperature. The
solution of the problem is the configuration obtained in the last stage. In the
standard SA, the changes in the configuration are performed in the following
way: A new configuration is built by a random displacement of the current
one. If the new configuration is better, then it replaces the current one, and
if not, it may replace the current one probabilistically. This probability of
replacement is high in the beginning of the algorithm, and decreases in every
stage. This procedure allows the system to move toward the best configuration.
Although SA is not guaranteed to find the global optima, it is better than other
algorithms at escaping from local optima. Its solution can be considered to be
“good enough”, but it is not guaranteed to be the best.

The most important part in a SA algorithm are: the chosen representation for
solutions, the objective function to be minimized during the process and the
mutation or configuration change operator. We present these three character-
istics in the next subsections.

3.1 Problem representation

Every possible segmentation (configuration in the SA) has been coded by
means of a binary string, in which every bit codifies 10 ms. of audio (due to
the MFCC frame period, see Section 2). Thus, the labelling of each minute
of audio to be segmented is represented by a binary string of length l = 6000
bits. This implies that the search space will have a size of 26000; in such a
search space the SA will have problems of convergence, obtaining low quality
solutions.

It is possible to overcome this difficulty by analyzing the problem’s structure:
first of all, note that we have codified a solution with an accuracy of 10 ms. (one
second of audio is represented by 100 bits). That is, we would be able to detect
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changes in speakers with such accuracy by using the representation exposed
above. On the other hand, in a standard audio record, a speaker rarely talks
less than one second, which means that the optimal solution will have large
strings of all 1s (or 0s) for codifying the segmentation of the audio record. For
example if a speaker talks for three seconds before changing to other speaker,
the optimal solution would be a string of 300 1s (0s) before changing to 0s (1s).
Thus, it is possible to reduce the length of the representation by compacting
a number CF of bits into one. We call this parameter the Compaction Factor
CF . Figure 2 shows this process. Note that the new length of SA configurations
will be l′ = l

CF , after applying the Compaction Factor.

CF CF 

0

000000000000

1

111111111111

1 1

. . .

. . .

Fig. 2. Example of encoding compression.

In our approach, the SA is run using this new representation l′. We say then
that the SA is being run in its compacted form. Note, however, that the
calculation of the objective function involves individuals of length l and not l′

(because of the audio data length), so every individual in the compacted SA
has to be expanded, i.e. every bit expanded to CF equal bits, for the fitness
calculation.

This length reduction of individuals in the SA affects, obviously, to the accu-
racy of the encoding: using the expanded representation we have an accuracy
of 10 msecs. for detecting changes of speaker. If we use the compacted form of
the SA, the accuracy of segmentation is reduced in a factor of 10 ·CF millisec-
onds. Thus, for instance, if an accuracy of one second is enough for detecting
speaker changes, we could set CF = 100, and the length of individuals in the
GA will be reduced as l′ = l

100 . If we want to be more accurate, the compaction
factor CF has to be smaller.

3.2 Objective function: Mutual Information

The Mutual Information (MI) between two signals is described by Shannon’s
Information Theory as the quantity of information the signals carry about
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each other. Thus, it is a generalization of the concept of entropy. In this case,
the uncertainty of each variable is measured with respect to the other one [12]:

I(u,v) = h(u)− h(u|v) (6)

where h(·) is the differential entropy of a given multidimensional variable, and
is defined as:

h(u) = −
∫

p(u) log p(u)du

and p(u) is the probability density function (pdf) of u.

In a learning problem, the variables involved are the multidimensional data
x ∈ Rd and a discrete and finite set of classes C ∈ {c1, c2, . . . , cK}, that are
the patterns to be learned. Thus, Equation 6 may be re-expressed as:

I(x, C) = h(x)− h(x|C) = h(x)−
∑

k

p(ck)h(x|ck) (7)

Unfortunately, the problem of estimating the entropy is difficult except for
few, analytically defined pdfs. However, for the simpler case of one-dimensional
signals, some successful approximations have been made. In order to make use
of such estimations, the cost function based on MI will be modified as:

I(x, C) ≈
∑

i

I(xi, C) (8)

that is equivalent to assume h(x) ≈ ∑
i h(xi) and h(x|ck) ≈

∑
i h(xi|ck) where

i indexes each dimension in vector x. This is not a significant change, since
in some applications the statistical dependence between the components xi

is very low. In the case of speech parameterization, MFCC are considered to
have a low correlation and statistical dependence among them.

The problem of estimating the pdf of each one-dimensional component can be
avoided by directly computing the entropies from statistics of the data. Two
cumulant-based polynomial expansions have been traditionally used for this
task: the Gram-Charlier series and the Edgeworth series [18]. These approxi-
mations assume an expression for the entropy as:

h(x) = h(xgauss)− J(x)

where xgauss follows a gaussian distribution with the same variance as x and
J(x) is the so-called negentropy of the random variable x, and must be com-
puted by means of the statistical moments with different orders over the set of
realizations. This quantity is always positive since a gaussian random variable
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is, among all the possible distributions with the same variance, the one with
the highest entropy. Both Edgeworth and Gram-Charlier expansions have a
drawback: they are very sensitive to outliers and, in general, to any outstand-
ing samples, coming from the tails of the distributions. Alternative estimations
of the negentropy have been successfully used in previous works in Indepen-
dent Component Analysis (ICA). The approximation of J(x) given by the
expression:

h(x) = h(xgauss)− k1 (E{xg(x)})2 + k2
(
E{g(x)}− 1/

√
2
)2

(9)

where k1 and k2 are constants defined as k1 =
36

8
√
3− 9

and k2 =
24

16
√
3− 27

,

respectively [19]. This expression has been proven to be more robust and stable
against outliers, providing values for the negentropy quite close to the actual

ones. In this case, we have use as non-polinomial function g(x) = exp

(
−x2

2

)

,

as proposed in [19].

The problem’s objective function is then given by Equation 8 based on the
entropy estimation in Equation 9.

3.3 Mutation operator

In this paper we consider two mutation operators for the SA. First, a clasical
Random Flip Mutation (RFM) operator is applied. The RFM operator obtains
a configuration in the neighborhood of the current one by means of randomly
selecting and flipping Nf bits.

The second mutation operator used consists of changing Sf sets of Kf consec-
utive bits with randomly selected values 1 or 0. We call this mutation operator
Consecutive Bits Mutation (CBM) operator. As was mentioned before, in a
standard audio record, a speaker usually talks more than one second, which
means that the optimal solution will have large strings of all 1s (or 0s) for cod-
ifying the segmentation of the audio record. Thus, it seems that the mutation
operator should have the ability of produce chains of bits set to 1 or 0. The
CBM operator mutates sets of consecutive bits, trying to achive these chains
of bits. Figure 3 shows an example of how CBM performs in an instance with
Sf = 2 and Kf = 5. Note that the CBM will produce binary strings with more
equal consecutive bits than the standard RFM.
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1 0

Original string

Mutation subŦstrings

Final string

0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0

0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0

0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0

Fig. 3. Example of how the CBM mutation operator works (Sf = 2 and Kf = 5).

3.4 The complete algorithm

The complete SA algorithm for the segmentation of audio data records con-
taining two speakers performs in the following way:

k = 0;

T = T0;

Initialize the current configuration C at random;

(C → Cexpanded): evaluate(I(x, Cexpanded));

repeat

for j = 0 to ξ

Cmut = mutate(C);

(Cmut → Cmut
expanded): evaluate(I(x, Cmut

expanded));

if((I(x, Cmut
expanded) > I(x, Cexpanded)) OR (random(0, 1) < e(

−a
T ))) then

C = Cmut;

endif

endfor

T = fT (T0, k);

k = k + 1;

until(T < Tmin);

where k counts the number of iterations performed; T keeps the current tem-
perature; T0 is the initial temperature; Tmin is the minimum temperature to
be reached; C stands for the current configuration (compacted form), Cmut
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stands for the new configuration after mutation operator is applied (com-
pacted form), Cexpanded for the current configuration in its expanded form and
Cmut

expanded stands for the new configuration after mutation in its expanded form.
I(·, ·) represents the mutual information we use as objective function (see Sec-
tion 3.2); x represents the vector of data containing the MFCC of the audio
record to be segmented; ξ is the number of changes performed with a given
temperature T; fT is the freezer function; and a is a previously fixed constant.
The parameter a and the initial temperature T0 are calculated in order to the
initial acceptance probability to be 0.8, which is the value commonly used. We
do not allow that the probability of acceptance to be lower than 0.005 until
the last 50 iterations of the algorithm.

The freezer function is defined as

fT =
T0

1 + k
. (10)

The minimum temperature Tmin is calculated on the basis of the desired num-
ber of iterations as:

Tmin = fT (T0, numIt). (11)

4 Computational experiments and results

In this section, first we briefly describe the speech databases used; secondly,
we describe the existing algorithms we use for comparison. Finally, we report
and discuss the results obtained by our algorithm comparing its performance
with the previous approaches mentioned.

4.1 Test problems

Two different types of speech data have been used to test the performance of
our algorithm, artificially created audio records and real audio records from
TV interviews:

• Several conversations with a total duration of approximately 12.5 minutes
were artificially created by concatenating sentences from the Resource Man-
agement RM1 Database [20]. This database consists of speech recorded at
16 kHz in clean conditions, and it has been widely used by the speech tech-
nology community for Automatic Continuous Speech Recognition (CSR)
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assessment. The original pauses between sentences were shortened to an
average duration of approximately 185 ms. for a better simulation of real
conversations.
The conversations created contain a total of 215 speaker turns and the

duration of each segment varies from 1.17 seconds to 6.5 seconds with an
average length of 3.35 seconds. A CF of 30 (which corresponds to a segmen-
tation resolution of 300 ms.) was used in all the instances.

• Several TV news broadcasts (corresponding to interviews) with a total du-
ration of 23.35 minutes were extracted from the 1997 HUB English Evalu-
ation Speech Database, distributed by NIST [21]. The original aim of this
database was to foster research on the problem of accurately transcribing
broadcast news speech, in which the first step is the segmentation of the
speech data into homogeneous segments (same speaker, same acoustic en-
vironment). The selected data contains spontaneous speech recorded at 16
kHz and at different acoustic conditions (clean and in telephone environ-
ment). NIST provides hand-segmentations of these data that we have used
as a reference.
The conversations extracted from this database contain 88 segment bound-

aries, which correspond to an average segment length of approximately 14.15
seconds, with a maximum length of 52.08 seconds and a minimum of 0.75
seconds. The average duration of the pauses between speech segments is
about 200 ms. This length distribution is typical for interviews, in which
the shortest segments usually corresponds to the questions from journalists.
A CF of 30 was also used in this case.

4.2 Assessment methods

We consider two type of errors measures related to speaker turn detection.
False alarms (FA) occur when a speaker turn is detected although it does not
exist. The empirical false alarm rate (FAR) is defined as:

FAR = 100 · number of FA

number of actual speaker turns + number of FA
% (12)

Missed detections (MD) occur when the algorithm does not detect an existing
speaker turn. The empirical missed detection rate (MDR) is calculated as
follows:

MDR = 100 · number of MD

number of actual speaker turns
% (13)
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For measuring FAR and MDR, it is necessary to take into account that the
position of the speaker turns are not exactly defined, due to the presence of
inter-speaker silences or non-speech sounds [22]. Therefore, it is considered
that a changing point is correctly located if it belongs to a time interval
[to−∆t, to+∆t] in which to is the reference mark and ∆t is the tolerance (600
ms., in our case).

4.3 Algorithms for comparison

4.3.1 DISTBIC

DISTBIC algorithm [3] is a distance-based method based on the Bayesian
Information Criterion (BIC), first proposed in [27]. BIC uses a likelihood ratio,
in which it is decided whether two fragments belong to the same source or
to two different ones. The log-likelihood ratio associated with the frame i is
defined as:

R(i) = log
L(H0)

L(H1)L(H2)
(14)

being H0 the hypothesis of that there is not a change of source in i. L(H0)
is its corresponding likelihood when a Gaussian distribution is assumed. H1

assumes all frames with index ≤ i to belong to speaker 1 and so H2 does with
index > i and speaker 2.

BIC criterion takes also into account the complexity of the solution. The cost
function is given by:

∆BIC(i,m) = −R(i) + λP (m) (15)

where P (m) is the penalizing term when m parameters are used, being λ a
threshold parameter. Samples with the higher ∆BIC are the most likely to
correspond to a change.

DISTBIC is based on an sliding-windowing that applies BIC to frames all
along the sequence. After measuring the ∆BIC(i,m), DISTBIC carries out
two later steps of refinement and validation that improve the performance
obtained if just the BIC criterion were applied.

There are two main parameters (apart from the threshold parameter λ) DIS-
TBIC depends on. The first one is the size of the sliding window from which
the Gaussian models are built, i.e. the number of samples with index ≤ i the
hypothesis H1 is built according with. This size is usually maintained fixed,
with a typical value of 1 second [3]. The second parameter is the shift of the
window, which determines the resolution of the method.
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4.3.2 Clustering-based segmentation

Speaker segmentation of audio data files can be carried out by using an hierar-
chical agglomerative clustering algorithm as proposed in [25]. This technique
consists of dividing the audio data into a certain number of segments (clusters)
and iteratively merging pairs of clusters according to a predetermined metric.
For two-speaker segmentation, this procedure finishes when two clusters (each
one containing the part of speech uttered by each speaker) are obtained.

In the initialization stage of the clustering algorithm, the data are divided into
segments of equal length. The initial size of the clusters determines the reso-
lution of the segmentation procedure and, in this sense, it plays a similar role
that the CF factor in our SA approach. Thus, to allow a more fair comparison
to our SA method, the clusters have an initial size of CF= 30 (corresponding
to 300 ms.) in both databases.

The distance between two clusters is based on the log-likelihood ratio defined
in Equation 14. To computate the corresponding likelihoods, each cluster is
modelled by tied mixtures of multivariate Gaussian distributions in the cep-
stral space, which are trained following the procedure described in [25]. We
have carried out different experiments varying the number of mixtures and we
find that, for our databases, the best results are obtained using 32 mixtures.

4.3.3 HMM-based segmentation

Hidden Markov models can also be used for speaker segmentation as it has
been shown in [25] and more recently in [22] and [24].

In this case, speakers are considered as different acoustic classes. Each of these
classes is statistically represented by a mixture of multivariate gaussian den-
sities which are trained before the segmentation. Then, the audio data is clas-
sified using a Maximum Likelihood criterion with a Viterbi decoder [26] that
yields a set of boundaries between classes corresponding to the hypothesized
speaker turns.

To build the corresponding models, some labelled data is needed. In real ap-
plications, it is difficult to obtain these audio data, so we have adopted an un-
supervised strategy in the training stage as proposed in [25]. In particular, we
have used the segmentation provided by the agglomerative clustering method
described in the previous subsection for the initialization of the speaker models
which are adequately retrained using the well known Baum-Welch algorithm
[26].

To design the HMM-based segmenter we have used the HMM topology shown
in Figure 4. A similar approach has been proposed in [9] for speech and music
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segmentation and recently adapted for speaker segmentation purposes in [24].

As it can be seen in Figure 4, the system consists of two fully connected HMM
sub-networks, each one corresponding to each speaker. Each sub-network is
composed of several internal states associated with the same mixture gaussian
distribution. It is important to note that the number of concatenated states
imposes a minimum segment duration and determines the resolution of the
algorithm. For a better comparison with clustering and SA approaches, we
have enforced the same constraint of minimum duration of 300 ms.

Speaker 2Speaker 1

. . . . . .

Fig. 4. HMM topology for the HMM-based speaker segmentation system.

As information about prior probabilities of speakers is not available, we have
assumed that both speakers are equally likely. Transition probabilities between
speakers have been empirically selected in order to favor remaining in the
current state (speaker 1 or speaker 2).

Preliminary experiments showed that using 32 mixtures components per in-
ternal state provides a good segmentation accuracy, so we have used this value
in the experiments described in next subsection.

4.4 Results

The SA algorithm defined in Section 3 is used in the simulations, with the
following parameters: the number of iterations of the SA, numIt, was fixed
to 300 with ξ = 50. The parameters of the CMB operator were empirically
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fixed to be Sf = 3 and Kf = 5, whereas the value of Nf in the RFM operator
was fixed to 20 (see Section 3.3). A Compaction Factor CF = 30 has been
used in both databases considered. We compare the results obtained using the
SA with those obtained by the DISTBIC algorithm, the clustering and HMM
approaches.

Figure 5 shows the average values of FAR versus MDR obtained by the SA
with RFM and CBM operators, clustering and HMM over all the conversa-
tions in the RM1 database (one point each in the figure). We compare these
results with the Detection Trade-off (DET) curves obtained with the DISTBIC
algorithm. The DET curve is calculated by means of varying the DISTBIC
threshold. It shows the number of MD in function of the number of FA. Note
that the results obtained by the DISTBIC algorithm strongly depend on the
election of the threshold. In this figure we also indicate the Equal Error Rate
(EER) point, which is defined as the point in which the value of FAR is equal to
the value of MDR for the DISTBIC DET curve. Note that the point obtained
with the SA using the CBM operator is below the EER point of DISTBIC,
and also below the points obtained by the clustering and HMM approaches.
The SA with the RFM does not provide good results in these problems.
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Fig. 5. DET curve obtained varying the DISTBIC threshold parameter, and FA-MD
rates obtained using the SA approach with RFM and CBM, clustering and HMM
algorithms for the RM1 database.

Table 1 shows the false alarm rate (FAR) and missed detection rate (MDR)
for the RM1 database, for the different algorithms considered. The results
of DISTBIC correspond to the EER point, note that the average values in
the table corresponds to the FAR and MDR over all the conversations in the
RM1 database. It is easy to note that the RFM mutation operator in the SA
produces a larger number of false alarms compared with the SA with CBM.
However, the SA algorithm working with the CBM obtains better results in
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Table 1
Change detection error rates (FAR and MDR) obtained with our approach with the
CBM mutation operator, compared with the RFM mutation operator, DISTBIC,
clustering and HMM methods for the RM1 Evaluation Database.

Segmentation method FAR MDR

SA (CBM) 11.89 % 10.70 %

SA (RFM) 49.88 % 13.49 %

DISTBIC (EER point) 16.02 % 16.28 %

CLUSTERING 22.10 % 15.35 %

HMM 17.31 % 12.95 %

terms of FAR and MDR than all the other algorithms.

Results for HUB 97 database are shown in Figure 6 and Table 2. The same ex-
periments as for the RM1 database have been carried out. It is easy to see that
the SA with the CBM operator outperforms the compared approaches. The
differences between our SA with CBM and the points obtained by the other
algorithms (EER point for the DISTBIC), are even larger in this database.
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Fig. 6. DET curve obtained varying the DISTBIC threshold parameter, and FA-MD
rates obtained using the SA approach with RFM and CBM, clustering and HMM
algorithms for the HUB 97 database.

5 Conclusions

In this paper we have presented a Simulated Annealing (SA) approach to
the segmentation of audio databases. The SA algorithm looks for the best
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Table 2
Change detection error rates (FAR and MDR) obtained with our approach with the
CBM mutation operator, compared with the RFM mutation operator, DISTBIC,
clustering and HMM methods for the NIST HUB 97 Evaluation Database.

Segmentation method FAR MDR

SA (CBM) 6.38 % 11.36 %

SA (RFM) 81.12 % 3.41 %

DISTBIC (EER point) 24.79 % 23.86 %

CLUSTERING 34.81 % 18.18 %

HMM 23.48 % 14.77 %

segmentation, i.e. the binary string which maximizes a measure of Mutual
Information with the samples of the audio record. We introduce several mod-
ifications in the algorithm like the so called Consecutive Bit Mutation (CBM)
operator, which improves SA performance in this problem, and the so called
Compaction Factor (CF), which allows the SA to operate in a reduced search
space. The performance of the presented algorithm has been tested in sev-
eral conversations from two different audio databases, and has been compared
with several state of the art approaches to segmentation of audio data files,
obtaining very good results in all the experiments carried out.
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